高中物理知识点总结热力学基础

合集下载

高中物理3-3热学知识点归纳

高中物理3-3热学知识点归纳

分子的数量.n =M N =£V NM p V 1V N =N A V A 1 2•分子永不停息地做无规则热运动 (1)分子永不停息做无规则热运动的实验事实:扩散现象和布郎运动。

(2)扩散现象:不同物质能够彼此进入对方的现象。

本质:由物质分子的无规则运动产生的。

(3)布朗运动布朗运动是悬浮在液体(或气体)中的固体微粒的无规则运动。

布朗运动不是分子本身的运动,但它间接地反映了液体(气体)分子的无规则运动。

①实验中画出的布朗运动路线的折线,不是微粒运动的真实轨迹。

因为图中的每一段折线,是每隔30s 时间观察到的微粒位置的连线,就是在这短短的30s 内,小颗粒的运动也是极不规则的。

②布朗运动产生的原因大量液体分子(或气体)永不停息地做无规则运动时,对悬浮在其中的微粒撞击作用的不平衡性是产生布朗运动的原因。

简言之:液体(或气体)分子永不停息的无规则运动是产生布朗运动的原因。

③影响布朗运动激烈程度的因素固体微粒越小,温度越高,固体微粒周围的液体分子运动越不规则,对微粒碰撞的不平衡性越强,布朗运动越激烈。

④ 能在液体(或气体)中做布朗运动的微粒都是很小的,一般数量级在错误!未找到引用源。

,这种微粒肉眼是看不到的,必须借助于显微镜。

3.分子间存在着相互作用力(1)分子间的引力和斥力同时存在,实际表现出来的分子力是分子引力和斥力的合力。

分分子质量:分子平均占据的空间大小)分子直径: N 4兀(°)3=V球体模型:A 32I 16V d=31■ 3兀\6V ~ 0-(固体、液体一般用此模型) 选修3-3热学知识点归纳一、分子运动论1•物质是由大量分子组成的(1)分子体积分子体积很小,它的直径数量级是错误!未找到引用源。

(2)分子质量分子质量很小,一般分子质量的数量级是错误!未找到引用源。

(3)阿伏伽德罗常数(宏观世界与微观世界的桥梁)1摩尔的任何物质含有的微粒数相同,这个数的测量值:错误!未找到引用源。

全高中物理知识点归纳总结

全高中物理知识点归纳总结

全高中物理知识点归纳总结物理作为一门自然科学,涵盖了广泛的知识领域,为全体高中学生提供了深入探索世界本质的机会。

对于学习物理的同学们来说,系统地总结和归纳所学知识点,有助于巩固记忆、提高理解能力。

本文将全面归纳高中物理的知识点,以便同学们系统梳理各个重要知识点,加深对物理学的理解。

一、热力学1. 温度与热量:温度的定义及单位,物体的热平衡与温度的测量,气压的测量,热传递方式(传导,对流和辐射),热量的传递与热平衡,热力学第一定律:内能的变化与热量、功的关系。

2. 理想气体定律:火山喷发问题、定压过程、定容过程、定温过程,焦耳实验,微观模型与理想气体的不足,实际气体的状态方程。

3. 物态变化:三态及相互转化,相变潜热与显热,状态图与三相点,升华与凝华,气体的冷却过程。

二、力学1. 牛顿运动定律:第一定律、第二定律、第三定律及其应用;进行简单问题的分析与解决;运动学量的定义与计算;惯性与非惯性系。

2. 万有引力与重力:地球表面的物体自由落体运动,单位质点的万有引力与重力势能、重力势能与动能的转换,行星运动及开普勒定律。

3. 力的合成与分解:力的合成与平衡、合力与结果力,平行四边形法则,冲量与动量,不同质量刚性物体的碰撞问题。

三、波动1. 机械波:波的产生与传播、波状数与功率、波的干涉与衍射、波速与波长、波动方程。

2. 光的反射与折射:光的直线传播、光的反射定律、镜面成像、球面镜的成像、光的折射定律、全反射与光纤。

3. 光的波动性:杨氏实验、光的衍射、光的干涉、光的色散、单色光与白光。

四、电学1. 静电场:电荷的离散与转移、库仑定律、电场、电场强度、电势。

2. 电流与电阻:电流与带电粒子的运动、电流的定义与测量、欧姆定律、电阻与电阻率、电功、电源与电动势、电池、伏安特性、热效应。

3. 电磁感应:法拉第电磁感应实验、感应电动势、磁场中的载流导线受力、电磁感应定律、发电机与电磁铁。

五、相对论1. 狭义相对论:相对性原理、光速不变原理、钟慢效应、长度收缩效应、同时性。

物理高中物理热学知识点总结

物理高中物理热学知识点总结

物理高中物理热学知识点总结热学是物理学的重要分支,研究热与能量的传递、转化和守恒规律。

它是我们理解自然界和实际生活中许多现象的基础。

下面将对高中物理中的热学知识点进行总结。

1. 温度与热量温度是物体分子热运动的指标,通常用摄氏度或开尔文度来表示。

摄氏度与开尔文度之间的转换关系为:K = ℃ + 273.15。

热量是物体内能的一种形式,它是能量的传递和转化形式之一。

2. 热量传递与传导热量的传递有三种方式:导热、对流和辐射。

导热是指物体内部由高温区向低温区传递热量,可以通过热传导方程来描述。

对流是指热量通过流体的流动传递,常见的例子是风扇散热。

辐射是指通过电磁波辐射的热量传递,如太阳的辐射能。

3. 热传导定律热传导定律用于描述物体内部的热量传递规律。

热传导定律表明,热流密度与温度梯度成正比,与物体的导热性质有关。

热传导定律可以表达为:q = -kA(T₁-T₂)/d,其中q表示单位时间内传导的热量,k表示物质的导热系数,A表示传热面积,T₁和T₂表示热度的两个位置,d表示位置之间的距离。

4. 热容与比热容热容是物体对热量增加的反应程度,表示单位温升所需要的热量。

比热容是单位质量物质温度升高所需要的热量。

热容与比热容之间的关系为:C = mc,其中C表示热容,m表示物体的质量,c表示比热容。

5. 相变与相变热物质在一定条件下,由一个相变为另一个相的过程称为相变。

相变时物质的温度不变,所吸收或释放的热量称为相变热。

常见的相变有固体-液体相变、液体-气体相变等。

6. 理想气体定律理想气体定律描述了理想气体的状态,它包括三个定律:玻意耳-马略特定律、查理定律和盖吕萨克定律。

其中,玻意耳-马略特定律表示在一定质量、一定温度的条件下,气体体积与压强成反比。

查理定律表示在一定压强、一定质量的条件下,气体体积与温度成正比。

盖吕萨克定律表示在一定温度下,气体的压强与体积成正比。

7. 热力学第一定律热力学第一定律描述了能量守恒的规律,它表明系统的内能变化等于系统吸收的热量与对外做功的和。

电学热学知识点总结高中

电学热学知识点总结高中

电学热学知识点总结高中电学和热学是高中物理课程中重要的两个模块,涉及到电流、电压、电阻、电路、热力学、热传递等内容,是物理学中的基础知识,也是应用广泛的领域。

下面我们将对电学和热学的知识点进行总结。

一、电学知识点总结1. 电流和电路电流是电荷在单位时间内通过导体横截面的数量,单位是安培(A)。

电路包括串联电路和并联电路。

串联电路中,电流只有一条路线,电流强度相同;并联电路中,电流有多条路线,电流强度分开。

串联电路等效电阻之和等于总电阻,而并联电路总电阻的倒数等于各个分支电阻的倒数之和。

2. 电压和电功率电压是单位电荷的能量,单位是伏特(V)。

电压也可以理解为两点之间的电位差。

电压和电流之间的关系由欧姆定律确定,即电流等于电压除以电阻。

电功率是单位时间内的电能转换速率,单位是瓦特(W)。

电功率与电压和电流之间的关系由电功率公式确定,即电功率等于电压乘以电流。

3. 电阻和电阻率电阻是导体对电流通过的阻碍作用,单位是欧姆(Ω)。

电阻是根据导体材料的特性和几何结构来确定的。

电阻率是材料的固有特性,单位是欧姆·米(Ω·m)。

电阻与电阻率之间的关系由电阻公式确定,即电阻等于电阻率乘以长度除以截面积。

4. 电容和电感电容是导体之间储存电荷的能力,单位是法拉(F)。

电容与导体之间的电势差和导体之间的电荷量成正比。

电感是导体对变化电流的阻碍作用,单位是亨利(H)。

电感与导体的自感系数和导体之间的几何结构有关。

5. 直流电路和交流电路直流电路中,电流的方向是固定不变的,交流电路中,电流的方向是变化的。

交流电路中,频率和周期是两个重要的参数,频率是单位时间内交流电信号的变化次数,周期是交流电信号完成一个周期所用的时间。

二、热学知识点总结1. 热力学基本概念热力学研究热现象的物理规律,热量是热现象的物理量,单位是焦耳(J)。

热容是物质单位温度升高时吸收的热量,单位是焦尔每开尔文(J/K)。

比热是单位质量物质的单位温度升高所吸收的热量,单位是焦尔每克每摄氏度(J/g·°C)。

高二新教材必修三物理知识点总结

高二新教材必修三物理知识点总结

高二新教材必修三物理知识点总结在高中物理学习中,必修三是一门重要的科目,涵盖了许多基础的物理知识点。

本文将对高二新教材必修三的物理知识点进行总结,帮助同学们复习和强化这些知识。

一、热学知识点总结1. 温度与热量:温度是物体冷热程度的度量,单位是摄氏度(℃)。

热量是物体热能的交换,单位是焦耳(J)。

2. 热传导、热对流和热辐射:热传导是在物质中传播热能的方式,常见于固体。

热对流是流体中热能传递的方式,常见于液体和气体。

热辐射是通过电磁波辐射传递热能的方式。

3. 热膨胀:热膨胀是物体受热后体积增大的现象,由于热膨胀,物体长度、面积和体积均会发生变化。

4. 热力学第一定律:热力学第一定律是能量守恒定律在热学中的具体应用,它表明能量可以由一种形式转化为另一种形式,但总能量守恒。

二、光学知识点总结1. 光的直线传播和折射:光的传播是直线的,当光线从一种介质传播到另一种介质时,会发生折射现象,其折射规律由斯涅尔定律给出。

2. 光的反射和成像:光的反射是光线遇到界面时发生的现象,根据反射规律,可以预测光线的反射方向。

成像是光线经过透镜、反射镜等光学元件后形成的图像。

3. 光的色散和光的波粒二象性:光的色散是指光线通过某些介质时不同颜色的光线被折射角度的差异,导致颜色的分离。

光的波粒二象性是指光既可以看作波也可以看作微粒。

三、电磁学知识点总结1. 静电场和电介质:静电场是由电荷引起的电场,通过电场力的作用,可以实现电荷间的相互作用。

电介质是相对于真空而言的,具有极化性质,能够改变电场分布。

2. 电场和电势:电场是指周围空间中电荷受到的力的作用,用电场强度表示。

电势是指单位正电荷在电场中所具有的势能,单位是伏特(V)。

3. 电流和电路:电流是电荷在单位时间内通过导体横截面的数量,单位是安培(A)。

电路是指电流在导体中的闭合路径,包括串联和并联两种连接方式。

4. 磁场和电磁感应:磁场是由电流或磁体产生的,可以使磁铁、铁钉等物体受到磁力作用。

高中物理知识点总结:热力学基础

高中物理知识点总结:热力学基础

一. 教学内容:热力学基础(一)改变物体内能的两种方式:做功和热传递1. 做功:其他形式的能与内能之间相互转化的过程,内能改变了多少用做功的数值来量度,外力对物体做功,内能增加,物体克服外力做功,内能减少。

2. 热传递:它是物体间内能转移的过程,内能改变了多少用传递的热量的数值来量度,物体吸收热量,物体的内能增加,放出热量,物体的内能减少,热传递的方式有:传导、对流、辐射,热传递的条件是物体间有温度差。

(二)热力学第一定律1. 内容:物体内能的增量等于外界对物体做的功W和物体吸收的热量Q的总和。

2. 表达式:。

3. 符号法则:外界对物体做功,W取正值,物体对外界做功,W取负值,吸收热量Q取正值,物体放出热量Q取负值;物体内能增加取正值,物体内能减少取负值。

(三)能的转化和守恒定律能量既不能凭空产生,也不能凭空消失,它只能从一种形式转化为另一种形式或从一个物体转移到另一个物体。

在转化和转移的过程中,能的总量不变,这就是能量守恒定律。

(四)热力学第二定律两种表述:(1)不可能使热量由低温物体传递到高温物体,而不引起其他变化。

(2)不可能从单一热源吸收热量,并把它全部用来做功,而不引起其他变化。

热力学第二定律揭示了涉及热现象的宏观过程都有方向性。

(3)热力学第二定律的微观实质是:与热现象有关的自发的宏观过程,总是朝着分子热运动状态无序性增加的方向进行的。

(4)熵是用来描述物体的无序程度的物理量。

物体内部分子热运动无序程度越高,物体的熵就越大。

(五)说明的问题1. 第一类永动机是永远无法实现的,它违背了能的转化和守恒定律。

2. 第二类永动机也是无法实现的,它虽然不违背能的转化和守恒定律,但却违背了热力学第二定律。

(六)能源和可持续发展1. 能量与环境(1)温室效应:化石燃料燃烧放出的大量二氧化碳,使大气中二氧化碳的含量大量提高,导致“温室效应”,使得地面温度上升,两极的冰雪融化,海平面上升,淹没沿海地区等不良影响。

高中 热学知识点总结

高中 热学知识点总结

高中热学知识点总结热学是研究热现象及其规律的科学,是物理学的重要分支之一。

在高中物理教学中,热学知识点包括热力学基本定律、热能和内能、热传导、热辐射等内容,对于理解物质内部微观运动以及热现象的发生具有重要意义。

下面将对高中热学知识点进行总结。

1. 热力学基本定律(1)热力学第一定律热力学第一定律是热力学中最基本的定律之一,也称能量守恒定律。

它表明了热能的转换规律,即在系统内,热能和功都可以转化为内能,但总能量守恒。

数学上表示为ΔU=Q-W,即系统内能的增加等于热量减去做功。

这一定律对于理解能量转化和利用具有重要作用。

(2)热力学第二定律热力学第二定律是指热力学过程中不可逆性的定律,它表明了有关热能转化中存在的一种不可逆现象。

热力学第二定律有很多表述形式,其中最常见的是克劳修斯表述和开尔文表述。

克劳修斯表述表明了热量自发只能从高温物体传递到低温物体,而不能反之。

开尔文表述则是指不可能从单一热源中取热而将其完全转化为功而不产生其他影响。

这两个表述都揭示了热力学中存在的一种不可逆现象,即热能转化中存在一种自发趋势,不可能逆转。

2. 热能和内能热能是指物体由于温度差异而具有的能量,是热现象的产物。

热能的传递有几种方式,主要包括传导、对流和辐射。

传导是指物体直接接触而能量传递,对流是指流体内部通过对流运动而进行的能量传递,辐射是指通过电磁辐射而进行的能量传递。

通常情况下,在热学的研究中,会对不同物体之间的热能传递进行分析。

内能是指系统由于其微观粒子运动而具有的能量,是与物体内部微观结构、组成有关的能量。

内能的改变与热量、做功有关,具体表现为ΔU=Q-W。

在高中物理教学中,常常会涉及到内能的概念,以及内能与热力学过程中的关系。

3. 热传导热传导是指物体之间由于温度差异而进行的热能传递方式,是热学中研究的重要内容之一。

热传导有几种基本规律,包括傅里叶热传导定律和导热系数等。

傅里叶热传导定律表明了热传导速率与温度梯度成正比,与物体材料的导热能力有关。

高中物理公式及知识点汇总-热学

高中物理公式及知识点汇总-热学

高中物理公式及知识点汇总-热学高中物理中,热学是一个重要的领域,涉及到热传导、热膨胀、热力学等内容。

下面我将为大家整理出一些常见的物理公式和知识点。

热力学1. 热力学第一定律(能量守恒定律):ΔU = Q - W其中,ΔU表示系统内能的变化,Q表示系统吸收的热量,W表示系统对外做功。

2. 内能的计算公式:ΔU = nCΔT其中,ΔU表示内能的变化,n表示物质的摩尔数,C表示摩尔定容热容,ΔT表示温度的变化。

3. 理想气体状态方程:PV = nRT其中,P表示气体的压强,V表示气体的体积,n表示气体的摩尔数,R表示气体常数,T表示气体的温度。

4. 热力学第二定律(克劳修斯表述):热量不会自发地从低温物体传递到高温物体。

5. 熵的变化与热量传递的关系:ΔS = Qrev/T其中,ΔS表示熵的变化,Qrev表示可逆过程中的吸收的热量,T表示温度。

热传导1. 热传导的热流量公式:Q/t = kAΔT/L其中,Q/t表示单位时间内传导的热量,k表示热传导系数,A 表示传热面积,ΔT表示温度差,L表示传热长度。

2. 热传导的热阻公式:R = L/ (kA)其中,R表示热阻,L表示传热长度,k表示热传导系数,A 表示传热面积。

3. 热传导的导热方程:∂Q/∂t = -k∇²T其中,∂Q/∂t表示单位时间内通过单位面积的热流量,k为热传导系数,∇²T表示温度在空间中的二阶偏导数。

热膨胀1. 线膨胀的计算公式:ΔL = αL₀ΔT其中,ΔL表示长度的变化,α表示线膨胀系数,L₀表示初始长度,ΔT表示温度的变化。

2. 面膨胀的计算公式:ΔA = 2αA₀ΔT其中,ΔA表示面积的变化,α表示面膨胀系数,A₀表示初始面积,ΔT表示温度的变化。

3. 体膨胀的计算公式:ΔV = βV₀ΔT其中,ΔV表示体积的变化,β表示体膨胀系数,V₀表示初始体积,ΔT表示温度的变化。

热辐射1. 斯特藩—玻尔兹曼定律:P = εσA(T² - T₀²)其中,P表示单位时间内通过单位面积的辐射功率,ε表示发射率,σ为斯特藩—玻尔兹曼常数,A表示面积,T为温度,T₀为参考温度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理知识点总结热力学基础IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】一.教学内容:热力学基础(一)改变物体内能的两种方式:做功和热传递1. 做功:其他形式的能与内能之间相互转化的过程,内能改变了多少用做功的数值来量度,外力对物体做功,内能增加,物体克服外力做功,内能减少。

2. 热传递:它是物体间内能转移的过程,内能改变了多少用传递的热量的数值来量度,物体吸收热量,物体的内能增加,放出热量,物体的内能减少,热传递的方式有:传导、对流、辐射,热传递的条件是物体间有温度差。

(二)热力学第一定律1. 内容:物体内能的增量等于外界对物体做的功W和物体吸收的热量Q 的总和。

2. 表达式:。

3. 符号法则:外界对物体做功,W取正值,物体对外界做功,W取负值,吸收热量Q 取正值,物体放出热量Q取负值;物体内能增加取正值,物体内能减少取负值。

(三)能的转化和守恒定律能量既不能凭空产生,也不能凭空消失,它只能从一种形式转化为另一种形式或从一个物体转移到另一个物体。

在转化和转移的过程中,能的总量不变,这就是能量守恒定律。

(四)热力学第二定律两种表述:(1)不可能使热量由低温物体传递到高温物体,而不引起其他变化。

(2)不可能从单一热源吸收热量,并把它全部用来做功,而不引起其他变化。

热力学第二定律揭示了涉及热现象的宏观过程都有方向性。

(3)热力学第二定律的微观实质是:与热现象有关的自发的宏观过程,总是朝着分子热运动状态无序性增加的方向进行的。

(4)熵是用来描述物体的无序程度的物理量。

物体内部分子热运动无序程度越高,物体的熵就越大。

(五)说明的问题1. 第一类永动机是永远无法实现的,它违背了能的转化和守恒定律。

2. 第二类永动机也是无法实现的,它虽然不违背能的转化和守恒定律,但却违背了热力学第二定律。

(六)能源和可持续发展1. 能量与环境(1)温室效应:化石燃料燃烧放出的大量二氧化碳,使大气中二氧化碳的含量大量提高,导致“温室效应”,使得地面温度上升,两极的冰雪融化,海平面上升,淹没沿海地区等不良影响。

(2)酸雨污染:排放到大气中的大量二氧化硫和氮氧化物等在降水过程中溶入雨水,使其形成酸雨,酸雨进入地表、江河、破坏土壤,影响农作物生长,使生物死亡,破坏生态平衡,同时腐蚀建筑结构、工业装备、动力和通讯设备等,还直接危害人类健康。

2. 能量耗散和能量降退(1)能量耗散:在能量转化过程中,一部分机械能转变成内能,而这些内能最终流散到周围的环境中,我们没有办法把这些流散的内能重新收集起来加以利用,这种现象叫做能量的耗散。

(2)能量降退:从可被利用的价值来看,内能较之机械能、电能等,是一种低品质的能量。

能量耗散不会使能的总量减少,却会导致能量品质的降低。

二. 重点、难点(一)热力学第一定律热力学第一定律说明了做功和热传递是物体内能改变的量度,没有做功和热传递就不可能实现能的转化和转移。

按照符号法则将“ ”“-”号代入计算或分析问题,如果事先不便确定其正负,可以先假定它为正,在计算出结果以后再作判断。

若大于零,说明与原假设一致,若结果为负,则说明与原假设相反。

热力学第一定律的应用一般步骤是:1. 根据符号法则写出各已知量(W、)的正负。

2. 根据方程求出未知量3. 再根据未知量的正负判断该量的变化。

例1. 一定量的气体在某一过程中,外界对气体做了 A. B. C. D. 解析:根据热力学第一定律的符号法则,,所以选项B正确。

答案:B(二)正确运用能量守恒定律计算内能和机械能相互转化的问题物体内能对分子而言,它是组成物体所有分子热运动的动能和分子热能的总和,它是状态量,它的大小与温度、体积以及物体所含分子数有关。

机械能是对物体整体而言,它是物体整体的动能和势能(包括重力势能和弹性势能)的统称,即使静止物体的动能为零,重力势能和弹性势能也不变,物体仍具有内能。

物体的机械能与内能之间可以发生相互转化,例如“摩擦生热”,但能的总量不变。

在分析此类问题时,一要注意能量转化的方向,二要考虑到转化的快慢导致的效果上的不同。

例2. 如图所示容器中,A、B各有一个可自由移动的轻活塞,活塞下是水,上为空气,大气压恒定。

A、B底部由带有阀门K的管道相连,整个装置与外界绝热,原先A中水面比B中高,打开阀门,使A中水逐渐向B流,最后达到平衡。

在这个过程中,下面哪个说法正确()A. 大气压对水做功,水的内能增加B. 水克服大气压力做功,水的内能减少C. 大气压对水不做功,水的内能不变D. 大气压对水不做功,水的内能增加解析:本题主要考查能量转化与守恒定律和大气压力做功的计算,打开阀门后,A 中的水逐渐流入B中,最后达到平衡,即稳定下来。

这一过程中,水的重心一定降低,重力势能一定减少,依据能的转化与守恒定律,减少的重力势能全部转化为整个系统的内能,水的内能增加(容器的内能也增加)。

A、B液面大气压强相等,设为答案:D例3. 如图所示,固定容器及可动活塞P都是绝热的,中间有一导热的固定隔板B,B 的两边分别盛有气体甲和气体乙,现将活塞P缓慢地向B移动一段距离,已知气体的温度随其内能的增加而升高,则在移动P的过程中()A. 外力对乙做功,甲的内能增加B. 外力对乙做功,乙的内能不变C. 乙传递热量给甲,乙的内能增加D. 乙的内能增加,甲的内能不变解析:以气体乙为研究对象,外力对气体乙做功,内能增加,因而气体的温度随其内能的增加而升高。

B是固定的导热隔板,通过热传递,乙传递热量给甲,甲的内能增大。

固定容器及可动活塞都是绝热的,以系统为研究对象,由热力学第一定律得,答案:AC例4. 如图所示,直立容器内部有被隔板隔开的A、B两部分气体,A的密度小,B的密度较大,抽去隔板,加热气体,使两部分气体均匀混合,设在此过程中气体吸热为Q,气体内能增加为,则()A.C.解析:A、B气体开始的合重心在中线下,混合均匀后在中线,所以系统重力势能增大,由能量守恒知,吸收热量一部分增加气体内能,一部分增加重力势能。

故答案:B(三)热力学第二定律1. (1)热力学第二定律符合能量守恒定律;(2)热力学第二定律的两种表述是等价的,可以以其中一种表述推导出另一种表述。

对任何一类宏观自然过程进行方向的说明,都可以作为热力学第二定律的表述。

(3)第二类永动机不违背能量守恒定律,但违背了热力学第二定律。

所以是不可能制成的。

(4)热力学第二定律揭示了有大量分子参与的宏观过程的方向性,使得它们成为独立于热力学第一定律的自然规律。

2. 热力学第一定律和热力学第二定律是热力学知识的基础理论。

热力学第一定律指出任何热力学过程中能量守恒,而对过程没有其他限制。

热力学第二定律指明哪些过程可以发生,哪些不可能发生,如:第二类永动机不可能实现,热机效率不可能是100%,热现象过程中能量耗散是不可避免的,宏观的实际的热现象过程是不可逆的等等。

3. 热力学第一定律反映了功、热量跟内能改变之间的定量关系;热力学第二定律的实质是:自然界中进行的涉及热现象的宏观过程都具有方向性,都是不可逆的。

违背该定律的第二类永动机是无法实现的。

例5. 下列说法正确的是()A. 热量不能由低温物体传递到高温物体B. 外界对物体做功,物体的内能必定增加C. 第二类永动机不可能制成,是因为违反了能量守恒定律D. 不可能从单一热源吸收热量并把它全部用来做功,而不引起其他变化解析:由热力学第二定律可知,热量不能自发地从低温物体传递到高温物体,但可借助于外在动力实现,如冰箱、空调等设施,A选项不正确。

又由热力学第一定律可知,物体内能的改变由做功和热传递两种方式共同决定,所以B选项不确切。

第二类永动机违背了热力学第二定律,所以C选项错误。

由机械能与内能转化过程的方向性(热力学第二定律表述2)可知,D选项正确。

答案:D例6. 关于永动机和热力学定律的讨论,下列叙述正确的是()A. 第二类永动机违反能量守恒定律B. 如果物体从外界吸收了热量,则物体的内能一定增加C. 外界对物体做功,则物体的内能一定增加D. 做功和热传递都可以改变物体的内能,但从能量转化或转移的观点来看这两种改变方式是有区别的解析:第二类永动机违反热力学第二定律并不违反能量守恒定律,故A错。

据热力学第一定律知内能的变化由做功W和热传递Q两个方面共同决定,只知道做功情况或只知道传热情况就无法确定内能的变化情况,故B、C项错误。

做功和热传递都可改变物体内能。

但做功是不同形式能的转化,而热传递是同种形式能间的转移,这两种方式是有区别的,故D正确。

答案:D【模拟试题1. 以下说法中正确的是()A. 0℃的水结成0℃的冰,由于体积增大,分子势能增大B. 将铁块烧热,铁块中分子平均动能增大,分子势能增大C. 物态发生变化时,分子势能一定变化D. 物体的机械能和内能都可能为零2. 行驶中的汽车制动后滑行一段距离,最后停下;流星在夜空中坠落并发出明亮的光焰;降落伞在空中匀速下降;条形磁铁在下落过程中穿过闭合线圈,线圈中产生电流。

上述不同现象中所包含的相同的物理过程是()①物体克服阻力做功②物体的动能转化为其他形式的能量③物体的势能转化为其他形式的能量④物体的机械能转化为其他形式的能量A. ①②B. ①③C. ①④D. ③④3. 高为h(m)的瀑布,设落到瀑布底部的水损失的重力势能全部转化为内能,且被水本身所吸收,则瀑布顶部的水与底部的水的温度差为()A. C. D. 4. 在一个标准大气压下,设100℃的1g水具有的内能为 A.C.5. 在温度均匀的液体中,一个小气泡由液体的底层缓慢地浮至液面,则气泡在浮起的过程中()A. 放出热量B. 吸收热量C. 不吸热也不放热D. 无法判断6. 若热机从热源吸收热量为Q,对外做功为W,定义为热机效率值为()A. 可以是100%B. 可以大于100%C. 可以大于或等于100%D. 一定小于100%7. 关于热力学第二定律的微观意义,下列说法正确的是()A. 大量分子无规则的热运动,能够自发转变为有序运动B. 热传递的自然过程是大量分子从有序运动状态向无序运动状态转化的过程C. 热传递的自然过程是大量分子从无序程度小的运动状态向无序程度大的运动状态转化的过程D. 一切自然过程总是沿着分子热运动的无序性增大的方向进行,系统的总熵不会减小8. 下列关于熵的有关说法错误的是()A. 熵是系统内分子运动无序性的量度B. 在自然过程中熵总是增加的C. 热力学第二定律也叫做熵减小原理D. 熵值越大代表越为无序9. 一定质量的气体从外界吸收了的功,问(1)物体的内能变化多少?(2)分子势能是增加还是减少?(3)分子平均动能如何变化?10. 如图所示,一个小铁块沿半径为R=0.2m的半球内壁自上缘由静止下滑,当滑至半球底部时,速度为,重力加速度【试题答案1. BC2. C3. A4. D5. B6. D7. CD8. C9. (1)(2)增加(3)减少10.。

相关文档
最新文档