一文读懂开关电源(DC-DC)的原理介绍
DC-DC工作原理介绍

1
脉冲宽度调制(PWM)
使用PWM技术控制开关管的开关时间,从而改变输出电压的平均值。
2
电感和电容滤波器
使用电感和电容元件对电流和电压进行滤波,以去除噪音和波动。
3
电路拓扑
使用不同的电路拓扑,如升压、降压、半桥和全桥,实现不同的电源变换功能。
DC-DC电源的优势
1 高效能
DC-DC电源能够以高效率进行能量转换,减少能量的损失和浪费。
2 稳定性
DC-DC电源能够提供稳定的输出电压和电流,保障电子设备的正常工作。
3 小型化
DC-DC电源的体积小巧,适合应用于紧凑的电子设备中。
DC-DC电源的应用
移动设备
DC-DC电源广泛应用于手机、平板电脑和可穿戴 设备等移动设备中,为其提供稳定的电源。
通信设备
DC-DC电源被使用于网络设备、路由器和交换机 等通信设备中,为其提供可靠的电源。
• 部分DC-DC电源会产生电磁干扰,可能对其他电子设备造成干扰。 • 不同类型的DC-DC电源有不同的转换效率和功耗特性。 • 部分DC-DC电源需要外部元件(如电感和电容)辅助工作,增加了系统的复杂性。
3
升降型
能够根据输入电压的不同,自动实现升压或降压的功能,广泛应用于电源管理系 统。
常见DC-DC电源的选择和设计
• 根据设备的动态电流需求,选择合适的输出电流和功率。 • 考虑输入电压和输出电压之间的差异,选择合适的变换拓扑。 • 使用模拟或数字控制技术,以提高功率转换的效率和稳定性。
DC-DC电源的缺点和局限性
DC-DC技术的工作原理
DC-DC电源是一种将直流电能转换为不同电压、电流,并提供给其他电子设备 使用的电子元件。它通过不同的电路拓扑实现电能的变换和调整。
dcdc开关电源工作原理

dcdc开关电源工作原理
DC-DC开关电源是一种将输入直流电压转换为不同电压输出
的电源。
它通过在开关管(通常是MOSFET)上开关操作来
实现电压转换。
工作原理如下:
1. 输入电压:首先,输入直流电压通过输入电容器进行滤波,以确保输入电压的稳定性。
这样可以避免输入电压的变化对输出电压造成干扰。
2. 开关操作:接下来,控制器会根据所设定的输出电压来控制开关管的工作。
它通常使用脉冲宽度调制(PWM)技术,即
通过改变开关管的开关周期和占空比来调节输出电压。
3. 能量存储:在开关管开启的瞬间,输入电压会通过电感器将能量储存起来,形成电感能量。
4. 能量释放:而在开关管关闭的瞬间,储存在电感中的能量会通过输出电容器提供给输出负载。
通过这种方式,能够将输入电压转换为所需要的输出电压。
5. 反馈控制:在整个过程中,反馈控制器会对输出电压进行监测并与预设的输出电压进行比较。
如果输出电压偏离了预设值,反馈控制器会相应地调整开关管的开关周期和占空比,以使输出电压保持稳定。
这种开关操作的方式可以实现高效的能量转换,并且相比线性稳压器,DC-DC开关电源具有更高的效率和更小的体积。
它
广泛应用于电子设备中,如计算机、通信设备、电源适配器等。
开关电源入门必读开关电源工作原理超详细解析

开关电源入门必读开关电源工作原理超详细解析开关电源是一种将直流电源转换为可变直流电压输出的电源装置。
它通过开关管的通断控制,以高频脉冲方式调节输出电压,能够实现高效、稳定、可靠的电源转换。
本文将详细解析开关电源的工作原理。
开关电源由以下几个基本组成部分组成:输入滤波电路、整流电路、能量存储元件、控制电路和输出电路。
输入滤波电路的作用是滤除输入电源中的高频噪声和干扰,确保输入电压稳定。
它一般由电容、电感和绕组构成。
输入电压经过滤波电路后,接入整流电路。
整流电路的作用是将交流电转换为脉冲直流电。
常用的整流电路有单相桥式整流电路和三相桥式整流电路。
整流电路通过整流管将输入的交流电转换为直流电,并通过电容滤波电路将脉冲形式的直流电转换为平滑的直流电压。
能量存储元件一般是电感和电容。
电感能存储电能,电容能存储电荷。
在开关电源中,电感和电容组成的电容滤波电路起到储存能量的作用。
它们能够在负载电流突然增加时,释放存储的能量,从而保持输出电压的稳定性。
控制电路是开关电源的核心部分,其中包括开关管的控制电路和反馈电路。
开关管的控制电路负责控制开关管的通断,从而改变输出电压的大小。
反馈电路用于检测输出电压的实际值与设定值之间的差异,并向控制电路提供反馈信号,用于调整开关管的通断状态。
开关电源的输出电压由开关管通断的频率和占空比决定。
开关管的通断由控制电路控制,控制信号通常由脉冲宽度调制(PWM)产生。
PWM信号通过改变脉冲的宽度和间隔,调整开关管的通断时间,从而改变输出电压的大小。
开关电源的优点是高效率、稳定性好和体积小。
相比传统的线性电源,开关电源的转换效率更高,可以达到90%以上。
此外,开关电源的输出电压稳定性好,能够在负载变化较大的情况下保持输出电压的稳定。
由于使用高频脉冲调节输出电压,在相同输出功率的情况下,开关电源体积更小。
总之,开关电源是一种高效、稳定、可靠的电源装置。
它通过开关管的通断控制,以高频脉冲方式调节输出电压,实现电源转换。
dcdc电源电路基础知识

DC/DC基本知识DC/DC是开关电源芯片。
开关电源,指利用电容、电感的储能的特性,通过可控开关(MOSFET等)进行高频开关的动作,将输入的电能储存在电容(感)里,当开关断开时,电能再释放给负载,提供能量。
其输出的功率或电压的能力与占空比(由开关导通时间与整个开关的周期的比值)有关。
开关电源可以用于升压和降压。
我们常用的DC-DC产品有两种。
一种为电荷泵(Charge Pump),一种为电感储能DC-DC转换器。
本文详细讲解了这两种DC/DC产品的相关知识。
目录一. 电荷泵1. 工作原理2. 倍压模式如何产生3. 电荷泵的效率4. 电荷泵的应用5. 电荷泵选用要点二. 电感式DC/DC1. 工作原理(BUCK)2. 整流二极管的选择3. 同步整流技术4. 电感器的选择5. 输入电容的选择6. 输出电容的选择7. BOOST 与BUCK的拓扑结构一. 电荷泵电荷泵为容性储能DC-DC产品,可以进行升压,也可以作为降压使用,还可以进行反压输出。
电荷泵消除了电感器和变压器所带有的磁场和电磁干扰。
1. 工作原理电荷泵是通过外部一个快速充电电容(Flying Capacitor),内部以一定的频率进行开关,对电容进行充电,并且和输入电压一起,进行升压(或者降压)转换。
最后以恒压输出。
在芯片内部有负反馈电路,以保证输出电压的稳定,如上图Vout ,经R1,R2分压得到电压V2,与基准电压VREF做比较,经过误差放大器A,来控制充电电容的充电时间和充电电压,从而达到稳定值。
电荷泵可以依据电池电压输入不断改变其输出电压。
例如,它在1.5X或1X的模式下都可以运行。
当电池的输入电压较低时,电荷泵可以产生一个相当于输入电压的1.5倍的输出电压。
而当电池的电压较高时,电荷泵则在1X模式下运行,此时负载电荷泵仅仅是将输入电压传输到负载中。
这样就在输入电压较高的时候降低了输入电流和功率损耗。
2. 倍压模式如何产生以1.5x mode为例讲解:电压转换分两个阶段完成。
DCDC电路原理

dcdc电路:
DC-DC是英语直流变直流
精心整理
升压变换器:将低电压变换为高电压的电路。
降压升压等功能同时存在。
精心整理
DC-DC变换器的基本电路
励
磁,电感增加的磁通为:
精心整理
(Vi-Vo)*Ton。
空比D<1,所以Vi>Vo,实
精心整理
现降压功能。
升压变换器原理图如图2所
精心整理
示,当开关闭合时,输入电压加在电感上,此时电感由
当开关闭合与开关断开的状
精心整理
态达到平衡时,(Vi)*Ton=(Vo- Vi)*Toff,由于占空
图
2 升压变换器原理图
精心整理
升降压变换器、入出极性相反原理如图3, 当开关闭合
的磁通,(Vi)*Ton=(Vo)
精心整理
*Toff,根据Ton比Toff值不同,可能Vi< Vo,也可能
精心整理。
DC-DC变换器原理

DC-DC变换器原理DC/DC Converter Principle太阳电池输出的是直流电,是不是可直接作为直流电源使用呢,对于对电压没有准确要求的微、小型用电设备是可以的,如计算器、玩具等。
太阳电池输出电压取决于光伏器件的连接方式与数量,并与负载大小与光照强度直接有关,不能直接作为正规电源使用。
通过DC-DC变换器可以把太阳电池输出的直流电转换成稳定的不同电压的直流电输出。
DC-DC变换器就是直流——直流变换器,是太阳能光伏发电系统的重要组成部分,下面就其原理作简单介绍。
DC-DC变换基本原理直流变换电路主要工作方式是脉宽调制(PWM)工作方式,基本原理是通过开关管把直流电斩成方波(脉冲波),通过调节方波的占空比(脉冲宽度与脉冲周期之比)来改变电压。
降压斩波电路直流斩波电路简单,是使用广泛的直流变换电路。
图1左上部是一个斩波基本电路,Ud是输入的直流电压,V是开关管,UR是负载R上的电压,开关管V把输入的Ud斩成方波输出到R上,图1右上部绿线为斩波后的输出波形,方波的周期为T,在V导通时输出电压等于Ud,导通时间为ton,在V关断时输出电压等于0,关断时间为toff,占空比D=ton/T,方波电压的平均值与占空比成正比。
图1下部绿线为连续输出波形,其平均电压如红线所示。
改变脉冲宽度即可改变输出电压,在时间t1 前脉冲较宽、间隔窄,平均电压(UR1)较高;在时间t1 后脉冲变窄,平均电压(UR2)降低。
固定方波周期T不变,改变占空比调节输出电压就是(PWM)法,也称为定频调宽法。
由于输出电压比输入电压低,称之为降压斩波电路或Buck变换器。
图1 DC-DC变换基本原理方波脉冲不能算直流电源,实际使用要加上滤波电路,图2是加有LC滤波的电路,L是滤波电感、C2是滤波电容、D是续流二极管。
当V导通时,L与C2蓄能,向负载R输电;当V关断时,C2向负载R输电,L通过D向负载R输电。
输出方波选用的频率较高,一般是数千赫兹至几十千赫兹,故电感体积很小,输出波纹也不大。
一文读懂开关电源(DC/DC)的原理介绍

DC/DC电源指的是直流转直流的电路,有升压降压两种电路,按理来说,LDO也是DCDC 电源,但行业内只认为以开关形式实现的电源为DC/DC电源。
一、DC/DC基本拓扑一个功率变换器,当输入、负载和控制均为固定值时的工作状态,在开关电源中,被称为稳态。
稳态下,功率变换器中的电感满足电感电压伏秒平衡定律:对于已工作在稳态的DC/DC功率变换器,有源开关导通时加在功率电感上的正向伏秒一定等于有源开关截至时加在该电感上的反向伏秒。
1、BUCK降压型当PWM驱动高电平使得NMOS管S1导通,忽略MOS管的导通压降,电感电流呈线性上升,此时电感正向伏秒为:V*Ton=(Vin-Vo)*Ton当PWM驱动低电平使得NMOS管S1截至时,电感电流不能突变,经过续流二极管形成回路(忽略二极管压降),给输出负载供电,此时电感电流下降,此时电感反向伏秒为:V*Toff=Vo*(Ts-Ton)根据电感电压伏秒平衡定律可得:(Vin-Vo)*Ton=Vo*(Ts-Ton)即 Vo=D*Vin (D为占空比)2、BOOST升压型和BUCK电路类似的分析方法,当MOS管导通时,电感的正向伏秒为:Vin*Ton;当MOS 管截至时,电感的反向伏秒为:(Vo- Vin)*(Ts-Ton)根据电感电压伏秒平衡定律可得:Vin*Ton=(Vo- Vin)*(Ts-Ton)即 Vo=Vin/(1-D)3、同步整流技术由于二极管导通时至少存在0.3V的压降,因此续流二极管D所消耗的功率将会称为DC/DC电源主要功耗,从而严重限制了效率的提高。
为解决该问题,以导通电阻极小的MOS 管取代续流二极管。
然后通过控制器同时控制开关管和同步整流管,要保证两个MOS管不能同时导通,负责将会发生短路。
二、DC/DC电源调制方式DC/DC电源属于斩波类型,即按照一定的调制方式,不断地导通和关断高速开关,通过控制开关通断的占空比,可以实现直流电源电平的转换。
dc dc 工作原理

dc dc 工作原理DC-DC转换器是一种电力转换装置,其工作原理基于直流电流的转换和稳压。
DC代表直流(Direct Current),DC-DC转换器的作用是将输入的直流电压转换成所需的输出直流电压。
DC-DC转换器的工作原理可以简单地描述为以下几个步骤:输入直流电压经过输入滤波电路进行滤波和稳压,然后经过开关电源进行电能转换,最后经过输出滤波电路得到稳定的输出直流电压。
输入直流电压通过输入滤波电路进行滤波和稳压。
输入滤波电路主要由电容和电感组成,通过对输入电压进行滤波和稳压,去除电压中的纹波和噪声,保证后续电路的稳定工作。
然后,经过开关电源进行电能转换。
开关电源是DC-DC转换器的核心部件,它通过控制开关管的导通和截止来实现直流电压的转换。
开关电源主要由开关管、控制电路和变压器组成。
当开关管导通时,输入电压通过变压器传递给输出端;当开关管截止时,变压器的能量储存在电感中,输出端的电流由电感提供。
通过控制开关管的导通和截止时间,可以调节输出电压的大小和稳定性。
经过输出滤波电路得到稳定的输出直流电压。
输出滤波电路与输入滤波电路类似,主要由电容和电感组成,通过对输出电压进行滤波和稳压,进一步减小输出电压中的纹波和噪声,使输出电压更加稳定。
除了以上的基本原理,DC-DC转换器还有一些特殊的工作方式,如降压、升压、降升压等。
降压转换器通过降低输入电压来获得所需的输出电压;升压转换器则相反,通过提高输入电压来获得所需的输出电压;而降升压转换器则可以实现输入电压的降低和升高。
DC-DC转换器还有一些其他的特点和应用。
例如,它具有高效率、小体积、重量轻等优点,因此被广泛应用于电子设备、通信设备、汽车电子等领域。
同时,DC-DC转换器还可以提供稳定的电压给电子设备,保证设备的正常工作。
总结起来,DC-DC转换器是一种将输入的直流电压转换成所需输出直流电压的电力转换装置。
其工作原理基于直流电压的转换和稳压,通过输入滤波电路、开关电源和输出滤波电路的协同作用,实现直流电压的转换和稳定输出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一文读懂开关电源(DC/DC)的原理介绍
DC/DC电源指的是直流转直流的电路,有升压降压两种电路,按理来说,LDO也是DCDC电源,但行业内只认为以开关形式实现的电源为DC/DC电源。
一、DC/DC基本拓扑
一个功率变换器,当输入、负载和控制均为固定值时的工作状态,在开关电源中,被称为稳态。
稳态下,功率变换器中的电感满足电感电压伏秒平衡定律:对于已工作在稳态的DC/DC功率变换器,有源开关导通时加在功率电感上的正向伏秒一定等于有源开关截至时加在该电感上的反向伏秒。
1、BUCK降压型
当PWM驱动高电平使得NMOS管S1导通,忽略MOS管的导通压降,电感电流呈线性上升,此时电感正向伏秒为:VxTon=(Vin-V o)xTon
当PWM驱动低电平使得NMOS管S1截至时,电感电流不能突变,经过续流二极管形成回路(忽略二极管压降),给输出负载供电,此时电感电流下降,此时电感反向伏秒为:VxToff=V ox(Ts-Ton)根据电感电压伏秒平衡定律可得:(Vin-V o)xTon=V ox(Ts-Ton)即V o=DxVin (D为占空比)
2、BOOST升压型
和BUCK电路类似的分析方法,当MOS管导通时,电感的正向伏秒为:VinxTon;当MOS管截至时,电感的反向伏秒为:(V o- Vin)
x(Ts-Ton)
根据电感电压伏秒平衡定律可得:VinxTon=(V o- Vin)x(Ts-Ton)即V o=Vin/(1-D)
3、同步整流技术
由于二极管导通时至少存在0.3V的压降,因此续流二极管D 所消耗的功率将会称为DC/DC电源主要功耗,从而严重限制了效率的提高。
为解决该问题,以导通电阻极小的MOS管取代续流二极管。
然后通过控制器同时控制开关管和同步整流管,要保证两个MOS管不能同时导通,负责将会发生短路。
二、DC/DC电源调制方式
DC/DC电源属于斩波类型,即按照一定的调制方式,不断地导通和关断高速开关,通过控制开关通断的占空比,可以实现直流电源电平的转换。
DC/DC电源的调制方式有三种:PWM方式、PFM方式、PWM与PFM的混合方式。
1、PWM(脉冲宽度调制)
PWM采用恒定的开关频率,通过调节脉冲宽度(占空比)的方法来实现稳定电源电压的输出。
在PWM调制方式下,开关频率恒定,即不存在长时间被关断的情况。
优点:噪声低、效率高,对负载的变化响应速度快,且支持连续供电的工作模式。
缺点:轻负载时效率较低,且电路工作不稳定,在设计上需要提供假负载。
2、PFM(脉冲频率调制)
PFM通过调节开关频率以实现稳定的电源电压的输出。
PFM工作时,在输出电压超过上阈值电压后,其输出将关断,直到输出电压跌落到低于下阈值电压时,才重新开始工作。
优点:功耗较低,轻负载时,效率高且无需提供假负载。
缺点:对负载变化响应较慢,输出电压的噪声和纹波相对较大,不适合工作于连续供电方式。
三、DC/DC芯片的内部构造
接下来我们来看看DC/DC电源芯片内部的单元模块,并且给大家看看基本拓扑与电源芯片的联系。
1、Vref&;Error 基准电压与误差放大器
误差放大器的作用就是将反馈电压(FB引脚电压)与基准电压(200mv)的差值进行放大,然后再用该信号去控制PWM输出信号的占空比。
2、Thermal Shutdown 温度保护:当温度高于限定值,芯片停止工作。
3、soft start软启动电路:用于电源启动时,减小浪涌电流,使输出电压缓慢上升,减小对输入电源的影响。
四、DC/DC电路的硬件设计参数选择标准
1、设置输出电压:先选择合适的R2,R2过小会导致静态电流过大,从而导致加大损耗;R2太大会导致静态电流过小,而导致FB 引脚的反馈电压对噪声敏感,一般在数据手册中有推荐值范围参考。
选定R2,根据输出电压计算R1的值,R1=((V out-Vref)/Vref)xR2。
电压选定以后,开关电源会自动调节占比总,取得我们想要的电压。
2、电感:电感的选择要满足直到输出最小规定电流时,电感电流也保持连续。
在电感选取过程中需要综合输出电流、纹波、体积等多个因素进行考虑。
较大的电感将导致较小的纹波电流,从而导致较低的纹波电压,但是电感越大,将具有更大的物理占用面积,更高的串联电阻和更低的饱和电流。
电感感值越小,开关电源PWM信号的频率就越高,一般开关电源很少有好过10MHz的开关频率,大部分在100K~1MHz之间,所需要的功率电感值在2.2uH~22uH之间。
3、输出电容:输出电容的选择主要是根据设计中所需要的输出纹波的要求来进行选取。
电容产生的纹波:相对很小,可以忽略不计;电容等效电感产生的纹波:在300KHz~500KHz以下,可以忽略不计;电容等效电阻产生的纹波:与ESR和流过电容电流成正比,该电流纹波主要是和开关管的开关频率有关,基本为开关频率的n次谐波,为了减少纹波,让ESR尽量小。
需要在开关电源输出端增加pF级电容,减少百兆级噪声的干扰。