5种经典开关电源拓扑结构
大功率开关电源拓扑

大功率开关电源拓扑
大功率开关电源通常采用多种拓扑结构,以满足不同的应用需求。
其中比较常见的包括单端降压拓扑、双向变换拓扑和桥式全桥
拓扑。
首先,单端降压拓扑是一种常见的大功率开关电源拓扑结构。
它通过开关管控制输入电压的通断,然后通过输出电感和电容进行
滤波,从而实现对输出电压的调节和稳定。
这种拓扑结构适用于需
要从高电压转换到低电压的场合,例如电源适配器和电动汽车充电
器等。
其次,双向变换拓扑是另一种常见的大功率开关电源拓扑结构。
它可以实现双向能量转换,既可以将直流电转换为交流电,也可以
将交流电转换为直流电。
这种拓扑结构适用于需要实现能量的双向
传输的场合,例如电动汽车充电桩和光伏逆变器等。
最后,桥式全桥拓扑是一种适用于大功率开关电源的拓扑结构。
它通过四个开关管和一个输出变压器构成一个全桥结构,可以实现
对输入电压的高效变换和输出电压的稳定调节。
这种拓扑结构适用
于需要高功率密度和高效率的场合,例如工业变频电源和电力电子
设备等。
总的来说,大功率开关电源拓扑结构多样,选择合适的拓扑结
构需要根据具体的应用需求和性能要求进行综合考虑,以实现高效、稳定和可靠的能量转换和调节。
开关电源拓扑结构详解

开关电源拓扑结构详解主回路——开关电源中,功率电流流经的通路。
主回路一般包含了开关电源中的开入端和负载端。
开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。
开关电源主回路可以分为隔离式与非隔离式两大类型。
1. 非隔离式电路的类型:非隔离——输入端与输出端电气相通,没有隔离。
1.1. 串联式结构串联——在主回路中开关器件(下图中所示的开关三极管T)与输入端、输出端、电感器L、负载RL四者成串联连接的关系。
开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。
串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换。
例如buck 拓扑型开关电源就是属于串联式的开关电源。
上图是在图1-1-a电路的基础上,增加了一个整流二极管和一个LC滤波电路。
其中L是储能滤波电感,它的作用是在控制开关K接通期间Ton限制大电流通过,防止输入电压Ui直接加到负载R上,对负载R进行电压冲击,同时对流过电感的电流iL转化成磁能进行能量存储,然后在控制开关T关断期间Toff把磁能转化成电流iL继续向负载R提供能量输出;C是储能滤波电容,它的作用是在控制开关K接通期间Ton把流过储能电感L的部分电流转化成电荷进行存储,然后在控制开关K关断期间Toff把电荷转化成电流继续向负载R提供能量输出;D是整流二极管,主要功能是续流作用,故称它为续流二极管,其作用是在控制开关关断期间Toff,给储能滤波电感L释放能量提供电流通路。
在控制开关关断期间Toff,储能电感L将产生反电动势,流过储能电感L的电流iL由反电动势eL的正极流出,通过负载R,再经过续流二极管D的正极,然后从续流二极管D的负极流出,最后回到反电动势eL的负极。
电源拓扑结构及工作原理

电源拓扑结构及工作原理电源拓扑结构是电源的基本组成部分,是指电源中各部分组成的结构和电路,是电源工作的关键。
不同的电源拓扑结构在工作原理上也有所不同,我们可以根据需要选择适合自己的电源拓扑结构。
一、直流电源的拓扑结构1. 线性稳压器线性稳压器是最简单的直流电源拓扑结构,其工作原理是利用功率晶体管控制电源的输出电压。
直流电源通过变压器降压之后会进入一个整流电路,其将交流电压转换为直流电压。
而后直流电压进入一个滤波电路,其可以去除电源的电流突变和波动,使输出的直流电压更加平稳稳定。
2. 开关稳压器开关稳压器(Switching regulator)是一种可随意调整输出电压的电源拓扑结构,其工作原理是通过周期性开关控制电源的输出电压。
开关稳压器主要由四个部件组成:开关管、电感器、滤波电容和稳压管。
在工作时,一般都是通过工作周期和调节占空比来控制直流电源的输出电压。
二、交流电源的拓扑结构1. 单相全控桥电路单相全控桥电路是交流电源的基本拓扑结构之一,其工作原理为四个可控硅管组成的桥式电路。
通过控制可控硅管的通断状态,可以实现交流电源的开关及输出控制。
2. 三相桥式整流电路三相桥式整流电路是交流电源比较成熟的一种拓扑结构,其工作原理是在交流电源端加装三相桥式整流电路。
可以使交流电源的波形更为平稳,输出功率更加稳定。
总结:电源拓扑结构及其工作原理是电源研究的重要基础,而且在实际应用中,应根据不同的使用需求,选择不同的电源拓扑结构。
同时,随着技术的不断发展,电源拓扑结构也会不断更新,我们需要不断学习新技术,以便更好地为实际应用服务。
六种基本DCDC变换器拓扑结构总结

六种基本DCDC变换器拓扑结构总结DC-DC变换器是一种将一种直流电压转换为另一种直流电压的电子设备。
根据其拓扑结构,可以将DC-DC变换器分为六种基本拓扑结构。
下面将对这六种拓扑结构进行总结。
1. 升压型拓扑结构(Boost Converter):升压型拓扑结构是将输入电压提升到更高电压的一种拓扑结构。
其基本结构由一个电感、一个开关管、一个二极管和一个输出滤波电容组成。
工作原理为当开关管打开时,电感储存能量;当开关管关闭时,电感释放储存的能量,将电流经过二极管和输出滤波电容供给负载。
2. Buck拓扑结构(降压型拓扑结构):Buck拓扑结构是将输入电压降低到更低电压的一种拓扑结构。
其基本结构由一个电感、一个开关管和一个输出滤波电容组成。
工作原理为当开关管打开时,电感储存能量;当开关管关闭时,电感释放储存的能量,将电流经过输出滤波电容供给负载。
3. Buck-Boost拓扑结构(降升压型拓扑结构):Buck-Boost拓扑结构可以实现输入电压的增益和降低。
其基本结构由一个电感、一个开关管和一个输出滤波电容组成。
工作原理为当开关管打开时,电感储存能量;当开关管关闭时,电感释放储存的能量,将电流经过输出滤波电容供给负载。
该拓扑结构可以实现输入电压大于、等于或小于输出电压的转换。
4. 反激型拓扑结构(Flyback Converter):反激型拓扑结构是一种将输入电压转换为输出电压的一种拓扑结构。
其基本结构由一个变压器、一个开关管和一个输出滤波电容组成。
工作原理为开关管导通时,电能储存在变压器中;开关管关闭时,变压器释放储存的能量,将电流经过输出滤波电容供给负载。
5. 单边反激型拓扑结构(Half-Bridge Converter):单边反激型拓扑结构也是一种将输入电压转换为输出电压的一种拓扑结构。
其基本结构由两个开关管、一对二极管和一个输出滤波电容组成。
工作原理为开关管交替导通和关闭,将输入直流电压分别连接到变压器的两个输入端,以实现电压的转换。
最新开关电源拓扑结构概述

开关电源拓扑结构概述主回路——开关电源中,功率电流流经的通路。
主回路一般包含了开关电源中的开关器件、储能器件、脉冲变压器、滤波器、输出整流器、等所有功率器件,以及供电输入端和负载端。
开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。
开关电源主回路可以分为隔离史与非隔离式两大类型。
一、非隔离式电路的类型:非隔离——输入端与输出端电气相通,没有隔离。
1、串联式结构串联——在主回路中开关器件(下图中所示的开关三极管T)与输入端、输出端、电感器L、负载RL四者成串联连接的关系。
开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D 自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。
串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换。
2、并联式结构并联——在主回路中,相对于输入端而言,开关器件(下图中所示的开关三极管T)与输出端负载成并联连接的关系。
开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T对电感器L充电,同时续流二极管D关断,负载R靠电容器存储的电能供电;当开关管T关断时,续流二极管D 导通,输入端电源电压与电感器L中的自感电动势正向叠加后,通过续流二极管D对负载R供电,并同时对电容器C充电。
由此可见,并联式结构中,可以获得高于输入电压的输出电压,因此为升压式变换。
并且为了获得连续的负载电流,并联结构比串联结果对输出滤波电容C的容量有更高的要求。
3、极性反转型变换器结构极性反转——输出电压与输入电压的极性相反。
电路的基本结构特征是:在主回路中,相对于输入端而言,电感器L与负载成并联。
开关管T交替工作于通/断两种状态,工作过程与并联式结构相似,当开关管T导通时,输入端电源通过开关管T对电感器L充电,同时续流二极管D关断,负载RL 靠电容器存储的电能供电;当开关管T关断时,续流二极管D导通,电感器L中的自感电动势通过续流二极管D对负载RL供电,并同时对电容器C充电;由于续流二极管D的反向极性,使输出端获得相反极性的电压输出。
九个最有用的电源拓扑结构图

九个最有用的电源拓扑结构图现代电源设计大约开始于三十年前,只有少数的拓扑结构可以很好地服务于业界。
在年代,对新的和领先的电源转换技术的研究创建了数以千计的可以加以使用的新型拓扑结构。
今天,主流行业已回到早期拓扑结构。
少数的相同的电路可以为大多数应用提供最佳解决方案。
在电源设计开始,有三种基本的转换器:降压式、升压式和降压升压式。
早期分析论文仅覆盖了这些拓扑结构。
也有的转换器表现完全与这些基本拓扑结构一样。
它们被认为是降压式、升压式和降压升压系列,电路中内建了隔离。
内建在降压式转换器系列是正激、双开关正激、半桥、全桥和推挽式。
升压有一种隔离型号,可以采用一个桥接或推挽式电路。
隔离降压升压电路是著名的反激式转换器。
发明新的电源拓扑结构和研究其工作正成为有趣的研究工作。
这形成了过去的大部分研究,尤其在年代期间。
一些新奇的电路发明出来,绞尽脑汁以全面了解它们的操作。
的论文提出了超过个新的拓扑结构,使用了更多的开关和二极管。
有一段时间,似乎老的待机拓扑结构已处于被取代的危险之中。
对许多需要生产产品的设计人员来说,这是一个非常困惑的时间。
在阅读会议论文之后,工程师们很想尝试预示着上佳表现,但是却被证明很难投入生产的奇异新颖的拓扑结构。
因此,业界兜了一大圈又回到原处。
现在,几乎所有设计都依赖于原来的基本拓扑结构。
例外的是对某些非常高密度的应用,或者是不寻常的电压及功率范围,但是工作的工程师几乎总能用一组基本电路找到可做的工作。
这不是说行业没有进展。
行业有了长足的发展——恰恰不是通过使用根本不同的电路拓扑结构。
主要进展一直在正确的应用中明智地利用正确的电路,某些拓扑结构将电源分割成较小的若干块(如母板和负载点转换器)、先进的封装、新的硅片器件,以及小心应用低损耗开关。
降压式转换器降压式转换器是所有电源中最基本的。
它提供比输入更低的电压输出,可以用在不需要隔离的所有功率级别。
如图()所示,当输出电压处于低电位时,降压式转换器的二极管可以用一个有源开关替代。
开关电源几种拓扑结构的工作细节及波形

开关电源几种拓扑结构的工作细节下面讲解几种拓扑结构的工作细节■降压调整器:连续导电临界导电不连续导电■升压调整器(连续导电)■变压器工作■反激变压器■正激变压器1、Buck-降压调整器-连续导电time—»■电感电流连续。
■ Vout是其输入电压(V1)的均值。
■输出电压为输入电压乘以开关的负荷比(D)。
■接通时,电感电流从电池流出。
■开关断开时电流流过二极管。
■忽略开关和电感中的损耗,D与负载电流无关。
■降压调整器和其派生电路的特征是:输入电流不连续(斩波),输出电流连续(平滑)2、Buck-降压调整器-临界导电■电感电流仍然是连续的,只是当开关再次接通时“达到”零。
这被称为“临界导电”。
输出电压仍等于输入电压乘以D。
3、Buck-降压调整器-不连续导电■在这种情况下,电感中的电流在每个周期的一段时间中为零。
■输出电压仍然(始终)是v1的平均值。
■输出电压不是输入电压乘以开关的负荷比(D)。
■当负载电流低于临界值时,D随着负载电流而变化(而Vout保持不变)15V 丁1胡TVin = _Li15V T>4、Boost升压调整器------ Vout = 15Vfane ----- 1■输出电压始终大于(或等于)输入电压。
■输入电流连续,输出电流不连续(与降压调整器相反)。
■输出电压与负荷比(D)之间的关系不如在降压调整器中那么简单。
在连续导电的情Vo = Vin1—D丿况下: 在本例中,Vin = 5,Vout = 15, and D = 2/3.Vout = 15 ,D = 2/3.5、变压器工作(包括初级电感的作用)■变压器看作理想变压器,它的初级(磁化)电感与初级并联。
19、反激变压器■此处初级电感很低,用于确定峰值电流和存储的能量。
当初级开关断开时,能量传送到次级。
6、Forward 正激变换变压器■初级电感很高,因为无需存储能量。
■磁化电流(i1) 流入“磁化电感”,使磁芯在初级开关断开后去磁( 电压反向)。
熟悉各种常见电源拓扑结构

熟悉各种常见电源拓扑结构在现代科技发展的背景下,电力供应已成为人们生活中不可或缺的一部分。
电源拓扑结构是指电力系统中将电能转换为普遍可用的形式的方式和方法。
了解各种常见的电源拓扑结构对于电力系统的设计和使用至关重要。
1. 直流直流 (DC-DC) 转换器DC-DC转换器的主要功能是将直流电源转换为所需的直流电压。
常见的DC-DC转换器结构包括降压型、升压型和升降压型。
降压型DC-DC转换器降低输入电压以获得所需输出电压,升压型DC-DC转换器提高输入电压以获得所需的输出电压,而升降压型DC-DC转换器则能够将输入电压转换为高于或低于输入电压的输出电压。
2. 交流直流 (AC-DC) 变换器AC-DC变换器将交流电源转换为直流电源。
这种转换器是电力系统中常见的部分,因为大多数电子设备需要直流电源才能正常工作。
最常见的AC-DC变换器是整流器,它将交流电压转换为直流电压。
整流器主要包括单相整流器和三相整流器。
单相整流器适用于家庭和商业领域,而三相整流器常用于工业领域。
3. 直流交流 (DC-AC) 变换器DC-AC变换器用于将直流电源转换为交流电源。
这种转换器在许多应用中都非常重要,例如太阳能系统和逆变器。
太阳能系统中的DC-AC变换器将太阳能电池板产生的直流电能转换为交流电能,以供给电网。
逆变器则将电池或汽车电源等直流电源转换为可供家庭电器使用的交流电源。
4. 交流交流 (AC-AC) 变换器AC-AC变换器是将交流电源从一种形式转换为另一种形式的设备。
这种转换器在电力系统中发挥着重要作用,例如变压器。
变压器可以提高或降低交流电压的大小,并且广泛应用于电力传输、家庭电器和工业设备等领域。
5. 隔离和非隔离拓扑结构电源拓扑结构可以分为隔离和非隔离两种结构。
隔离结构能够提供电气隔离,使输出与输入之间保持安全隔离。
而非隔离结构没有电气隔离,在一些特定应用中可能会造成安全问题。
所以,在设计电源系统时,必须仔细考虑安全需求和隔离要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工作过程分析
� � � �
�
工作过程:1、当K导通时 →IL线性增加,D1截止→ 此时IL和C向负载供电 当IL> Io时,IL向 C充电也向负载供电 2、当K关断时→L通 过D1形成续流回路, IL向C充电也向负 载供电→当 IL﹤Io时,L 和C同时向负载供电。 若IL减小到0,则D 关断,只有C向负载供电
隔离式电路的类型
坛 m 论 o c 器 . t 压 i b 变 g 子 i b 电 . s 特 b b 比 / 大 p:/ t t h
非隔离式拓扑举例
坛 m 论 o � BUCK拓扑 c 器 . t 压 i � BOOST拓扑 b 变 g 子 i b � BUCK-BOOST 拓扑 电 . s 特 b b 比 / 大 p:/ t t h
0
电流连续时τ>L/RTs ,
∆ il 2 =
t2 t1
∆il1 = ∫
t1
Vi − Vo Vi − Vo Vi − Vo dt = t1 = D1Ts (1式) L L L
Vo Vo Vo dt = ( t 2 − t 1) = D 2 Ts ( 2 式 ) L L L
电压增益比M(DCM)
Τ<L/RTs,同CCM模式相似,同样可以由1式2式相 等,得到M=Vo/Vs=D1/(D1+D2),此时D1+D2<1。 � 又有Io是IL在Ts内的平均值,即IL等腰三角形面积 在Ts时间内的平均值,并且等于Vo/R.固有 Io=[0.5(D1+D2)Ts(Vs-Vo)D1Ts/L]/Ts=Vo/R,两式联 , 合可以解得 2 Vo
坛 m 论 o c 器 . t 压 i b 变 g 子 i b 电 . s 特 b b 比 / 大 p:/ t t h
�
�
�
隔离——输入端与输出端电气不相通,通过脉冲变压器的 磁偶合方式传递能量,输入输出完全电气隔离 单端——通过一只开关器件单向驱动脉冲变压器; 隔离室电路主要分为正激式和反激式两种 正激式:就是只有在开关管导通的时候,能量才通过变压 器或电感向负载释放,当开关关闭的时候,就停止向负载 释放能量。目前属于这种模式的开关电源有:串联式开关 电源,buck拓扑结构开关电源,激式变压器开关电源、推 免式、半桥式、全桥式都属于正激式模式。 反激式:就是在开关管导通的时候存储能量,只有在开关 管关断的时候释放才向负载释放能量。属于这种模式的开 关电源有:并联式开关电源、 boots、极性反转型变换器、 反激式变压器开关电源。
�
坛 m 论 o c 器 . t 压 i b 变 g 子 i b 电 . s 特 b b M/ = = 比 Vs 8τ / 大 : 1+ 1+ p L 2 t D 1 τ = RTs ht
临界情况下,M的计算用以上 两种模式下任一种都可以, 这里就不做分析了。
坛 m 论 o c 器 . t 压 i b 变 g 子 i b 电 . s 特 CCM模式下,电压增益 M 就是 b b 比 / 占空比D1, / 大 : DCM模式下,电压增益 M和占 p t 空比D1则呈现非线性关系。 t h 总体上来看,随着D1的增大M
坛 m 论 o c 器 . t 压 i b 变 g 子 i b 电 . s 特 b b 比 / 大 p:/ t t h
CCM模式下的电压增益
�
� � �
τ>0.5D1(1-D1)(1-D1)时,IL连续,IL的上升部分为 ΔIL1=ViD1Ts/L,IL的下降部分为ΔIL2=-(Vo-Vi) D2Ts/L, D1是K闭合,D导通的时间Ton占总周期Ts的比例, D2是K关断,D截止的时间Toff占总周期Ts的比例 由以上两式相等可以得到电压增益M=Vo/Vi=1/(1D1),此时D1+D2=1 由此处可知BOOST电路是一种升压电路,输入小于 输出
BUCK降压电路
�
坛 m 论 o c 器 . t 压 i b 变 g 子 i b 电 . s 特 b b 比 / / BUCK电路的经典模型。晶体管,二极管, 上图是 大 : p 电感,电容和负载构成了主回路,下方的控制回路 t t h 一般采用PWM芯片控制占空比决定晶体管的通断。
BUCK电路的功能:把直流电压Ui转换成直流电压 Uo,实现降压的目的
坛 m 论 o c 器 . t 压 i b 变 g 子 i b 电 . s 特 b b 比 / 大 p:/ t t h
CCM,DCM模式下的各点电压
�
坛 m 论 o c 器 . t 压 i b 变 g 子 i b 电 . s 特 b b 比 / 大 p:/ t IL线性下降,若周期结束即 K导通瞬间IL不等 在K关断期间, t h 于0,则IL呈现左侧图(c)中的波形,电流连续。若 K导通之前
若IL值继续减小直至 0,则D关断,只有 C向负载放电,直 到下次周期开始
电感电流连续的临界条件
�
�
� �
同BUCK电路相似,也可以从 电压图形中分析出 BOOST电路 临界(BCM)的条件,即当 IL 的平均值就是输出电流 Is, ΔIL 为IL在本周期内的最大变化值。 观察上图的波形可以发现,当 电流刚好处在临界状态时, 0.5 ΔIL=Io,分析化简之后可以等 效为,τ=0.5D1(1-D1)(1-D1) τ=L/RTs τ>0.5D1(1-D1)(1-D1)时,Io 处在连续的状态。 Τ<0.5D1(1-D1)(1-D1) 时,Io 则会出现断流的情况。
坛 m 论 o c 器 . t 压 i b 变 g 子 i b 电 . s 特 b b 比 / 大 p:/ t t h
BOOST拓扑
� � �
�
坛 m 论 o c 器 . t 压 i b 变 g 子 i 稳定电压输出的形成: b 电 . L的电流iL开始增加,同时电流 当K接通时,Ui开始对L充电,流过 s 特 b 在L中也要产生反电动势eLb ,C向R放电,形成稳定电压Uo 比 / 当K由接通转为关断的时候,为了保持励磁不变, L也会产生反电 / 大 K关断前的方向相反,但与电 动势eL 。eL反电动势的方向与开关 : p 流的方向相同,在控制开关 K两端的输出电压uo等于输入电压Ui与 t t 反电动势eL之和。 h 在开关关断Toff期间,K关断,L把电流iLm转化成反电动势,与输
化简之后可以等效为τ=(1-D1)/2, τ=L/RTs 0.5ΔIL<Io时,即τ>(1-D1)/2 ,Io处在连续的状态。 0.5ΔIL>Io时,即τ<(1-D1)/2 , Io则会出现断流的情况。
电压增益比M(CCM)
�
坛 m ∫ 论 o c , 器 . t 压 i (通常定义D1为K导通D关断的时段0到T1占 Ts的比例,D2为K b 变 关断D导通的时段 T1到T2占Ts 的比例) g 子 i b 此时D1+D2=1。 电 . s 特 b b 比 / / 1式2式相等,可以得到 大 p: M=Vo/Vs=D1, t t h 电路是一种降压电路,输出小于输入 由此处可知 BUCK
开关电源拓扑结构综述
坛 m 论 o c 器 . t 压 i b 变 g 子 i � 开关电源主要包括主回路和控制回路两大部分 b 电 . s � 主回路是指开关电源中功率电流流经的通路。主回 特 b b 比 / 路一般包含了开关电源中的开关器件、储能器件、 / 大 : p 脉冲变压器、滤波器、输出整流器、等所有功率器 t 件,以及供电输入端和负载端。 ht
器 . t 压 i b 变 g 子 i b 电 . s 特 b b 比 / / 大 p: t t h
开关电综述 � 开关电源分类 � 非隔离式拓扑举例 BUCK BOOST BUCK-BOOST � 隔离式拓扑举例 正激式 反激式
�
坛 m 论 o c 器 . t 压 i b 变 g 子 i b 电 . s 特 b b 比 / 大 p:/ t t h
入电压Ui串联迭加,通过整流二极管D继续向负载R提供能量,R 两端形成稳定电压输出Uo=Ui+El BOOST输出电压高于输入,是一个升压电路
�
工作过程分析
� �
�
�
工作过程: 1、当K导通时→IL 线性增加,D截止此 时C向负载供电 2、当K关断时→Ul 和Ui串联,以高于 Uo的电压向C充电同 时向负载供电,此时 D导通,IL逐渐减小 若IL减小到0,则D 截止,只有C向负载 供电
坛 m 论 o c 器 . t 压 i b 变 g 子 i b 电 . s 特 b b 比 / 大 p:/ t t h
CCM,DCM
�
�
� �
由工作过程分析可以得 知,IL可能会出现断流的 情况。 通常我们把电流连续的模 式称为CCM模式,电流断 续的模式称为DCM模式。 当然也有两者之间的临界 情况BCM模式 下面就将按照以上三种模 式对电路做具体的分析。 注意:Uo,Io作为输出电压 电流,均认为是稳定的直 流量。
IL就已经降为0,IL就会呈现断流的情形,为右侧图( c)的 波形。
临界情况下的电路各点波形
坛 m 论 o c 器 . t 压 i b 变 g 子 i b 电 . s 特 b b 比 / / 大 : 从电路结构可以看出IL的平均值就是输出电流Io, ΔIL为IL在本周期内的最大 p t 变化值。 ht 观察上图的波形可以发现,当电流刚好处在临界状态时, 0.5 ΔIL=Io,分析
�
控制回路一般采用PWM控制方式,通过输出信号 和基准的比较来控制主回路中的开关器件
开关电源分类
� �
开关电源主回路可以分为隔离式与非隔离式两大类型。 非隔离——输入端与输出端电气相通,没有隔离。 1、串联式结构是指在主回路中,相对于输入端而言,开 关器件与输出端负载成并联连接的关系。例如 buck拓扑型 开关电源就是属于串联式的开关电源 2、并联式结构是指在主回路中,相对于输入端而言,开 关器件与输出端负载成并联连接的关系。例如 boost拓扑 型开关电源就是属于串联式的开关电源 3、极性反转结构是指输出电压与输入电压的极性相反。 电路的基本结构特征是:在主回路中,相对于输入端而 言,电感器L与负载成并联。 Buck-boost拓扑就是反极性 开关电源