最小二乘法Matlab自编函数实现及示例
最小二乘法曲线拟合的Matlab程序

方便大家使用的最小二乘法曲线拟合的Matlab程序非常方便用户使用,直接按提示操作即可;这里我演示一个例子:(红色部分为用户输入部分,其余为程序运行的结果,结果图为Untitled.fig,Untitled2.fig) 请以向量的形式输入x,y.x=[1,2,3,4]y=[3,4,5,6]通过下面的交互式图形,你可以事先估计一下你要拟合的多项式的阶数,方便下面的计算.polytool()是交互式函数,在图形上方[Degree]框中输入阶数,右击左下角的[Export]输出图形回车打开polytool交互式界面回车继续进行拟合输入多项式拟合的阶数m = 4Warning: Polynomial is not unique; degree >= number of data points. > In polyfit at 72In zxecf at 64输出多项式的各项系数a = 0.0200000000000001a = -0.2000000000000008a = 0.7000000000000022a = 0.0000000000000000a = 2.4799999999999973输出多项式的有关信息 SR: [4x5 double]df: 0normr: 2.3915e-015Warning: Zero degrees of freedom implies infinite error bounds.> In polyval at 104In polyconf at 92In zxecf at 69观测数据拟合数据x y yh1.0000 3.0000 3.00002.0000 4.0000 4.00003 5 54.0000 6.0000 6.0000剩余平方和 Q = 0.000000标准误差 Sigma = 0.000000相关指数 RR = 1.000000请输入你所需要拟合的数据点,若没有请按回车键结束程序.输入插值点x0 = 3输出插值点拟合函数值 y0 = 5.0000>>结果:untitled.figuntitled2.fig一些matlab优化算法代码的分享代码的目录如下:欢迎讨论1.约束优化问题:minRosen(Rosen梯度法求解约束多维函数的极值)(算法还有bug) minPF(外点罚函数法解线性等式约束)minGeneralPF(外点罚函数法解一般等式约束)minNF(内点罚函数法)minMixFun(混合罚函数法)minJSMixFun(混合罚函数加速法)minFactor(乘子法)minconPS(坐标轮换法)(算法还有bug)minconSimpSearch(复合形法)2.非线性最小二乘优化问题minMGN(修正G-N法)3.线性规划:CmpSimpleMthd(完整单纯形法)4.整数规划(含0-1规划)DividePlane(割平面法)ZeroOneprog(枚举法)5.二次规划QuadLagR(拉格朗日法)ActivedeSet(起作用集法)6.辅助函数(在一些函数中会调用)minNT(牛顿法求多元函数的极值)Funval(求目标函数的值)minMNT(修正的牛顿法求多元函数极值)minHJ(黄金分割法求一维函数的极值)7.高级优化算法1)粒子群优化算法(求解无约束优化问题)1>PSO(基本粒子群算法)2>YSPSO(待压缩因子的粒子群算法)3>LinWPSO(线性递减权重粒子群优化算法)4>SAPSO(自适应权重粒子群优化算法)5>RandWSPO(随机权重粒子群优化算法)6>LnCPSO(同步变化的学习因子)7>AsyLnCPSO(异步变化的学习因子)(算法还有bug)8>SecPSO(用二阶粒子群优化算法求解无约束优化问题)9>SecVibratPSO(用二阶振荡粒子群优化算法求解五约束优化问题)10>CLSPSO(用混沌群粒子优化算法求解无约束优化问题)11>SelPSO(基于选择的粒子群优化算法)12>BreedPSO(基于交叉遗传的粒子群优化算法)13>SimuAPSO(基于模拟退火的粒子群优化算法)2)遗传算法1>myGA(基本遗传算法解决一维约束规划问题)2>SBOGA(顺序选择遗传算法求解一维无约束优化问题)3>NormFitGA(动态线性标定适应值的遗传算法求解一维无约束优化问题)4>GMGA(大变异遗传算法求解一维无约束优化问题)5>AdapGA(自适应遗传算法求解一维无约束优化问题)6>DblGEGA(双切点遗传算法求解一维无约束优化问题)7>MMAdapGA(多变异位自适应遗传算法求解一维无约束优化问题)自己编写的马尔科夫链程序A 代表一组数据序列一维数组本程序的操作对象也是如此t=length(A); % 计算序列“A”的总状态数B=unique(A); % 序列“A”的独立状态数顺序,“E”E=sort(B,'ascend');a=0;b=0;c=0;d=0;for j=1:1:ttLocalization=find(A==E(j)); % 序列“A”中找到其独立状态“E”的位置for i=1:1:length(Localization)if Localization(i)+1>tbreak; % 范围限定elseif A(Localization(i)+1)== E(1)a=a+1;elseif A(Localization(i)+1)== E(2)b=b+1;elseif A(Localization(i)+1)== E(3)c=c+1;% 依此类推,取决于独立状态“E”的个数elsed=d+1;endendT(j,1:tt)=[a,b,c,d]; % “T”为占位矩阵endTT=T;for u=2:1:ttTT(u,:)= T(u,:)- T(u-1,:);endTT; % 至此,得到转移频数矩阵Y=sum(TT,2);for uu=1:1:ttTR(uu,:)= TT(uu,:)./Y(uu,1);endTR % 最终得到马尔科夫转移频率/概率矩阵% 观测序列马尔科夫性质的检验:N=numel(TT);uuu=1;Col=sum(TT,2); % 对列求和Row=sum(TT,1); % 对行求和Total=sum(Row); % 频数总和for i=1:1:ttfor j=1:1:ttxx(uuu,1)=sum((TT(i,j)-(Row(i)*Col(j))./Total).^2./( (Row(i)*Col(j)). /Total));uuu=uuu+1; % 计算统计量x2endendxx=sum(xx)。
最小二乘法matlab程序

最小二乘法(Least Squares Method,LSM)是一种数值计算方法,用于拟合曲线,求解未知参数的值。
它的基本思想是,通过求解最小二乘误差的最优解,来拟合曲线,从而求得未知参数的值。
本文将介绍最小二乘法在Matlab中的实现原理及程序编写。
一、最小二乘法的原理最小二乘法是一种数值计算方法,它的基本思想是,通过求解最小二乘误差的最优解,来拟合曲线,从而求得未知参数的值。
最小二乘法的基本原理是:给定一组数据点,用直线拟合这组数据点,使得拟合直线与这组数据点的误差的平方和最小。
具体地说,假设有一组数据点,其中每个数据点都可表示为(x_i, y_i),i=1,2,3,...,n,其中x_i和y_i分别表示第i个数据点的横纵坐标。
拟合这组数据点的直线通常用一元线性函数表示,即y=ax+b,其中a和b是未知参数。
最小二乘法的思想是:求出使误差的平方和最小的a和b,即求出最优解。
二、Matlab程序编写1. 准备工作首先,我们需要准备一组数据点,每个数据点都可表示为(x_i, y_i),i=1,2,3,...,n,其中x_i和y_i分别表示第i个数据点的横纵坐标。
例如,我们可以准备一组数据点:x=[1,2,3,4,5];y=[2,4,6,8,10];2. 程序编写接下来,我们就可以开始编写Matlab程序了。
首先,我们需要定义一个一元线性函数,用于拟合这组数据点。
函数的形式为:y=ax+b,其中a和b是未知参数。
%定义函数f=@(a,b,x)a*x+b;然后,我们需要定义一个误差函数,用于计算拟合直线与这组数据点的误差的平方和。
%定义误差函数error=@(a,b)sum((y-f(a,b,x)).^2);最后,我们就可以使用Matlab提供的fminsearch函数,求解最小二乘误差的最优解,即求出最优a和b的值。
%求解最优解[a,b]=fminsearch(error,[1,1]);经过上面的程序编写,我们就可以求得未知参数a和b的最优值。
matlab function编程最小二乘法

matlab function编程最小二乘法在MATLAB中,使用最小二乘法拟合数据通常涉及到使用函数进行编程。
以下是一个简单的MATLAB函数,用于实现最小二乘法拟合直线的例子:function [coefficients, fittedData] = leastSquaresFit(x, y, degree)% x: 输入数据的 x 值% y: 输入数据的 y 值% degree: 拟合多项式的次数% 创建 Vandermonde 矩阵A = zeros(length(x), degree + 1);for i = 1:degree + 1A(:, i) = x.^(degree + 1 - i);end% 使用最小二乘法计算系数coefficients = (A' * A)\(A' * y);% 生成拟合曲线的数据fittedData = polyval(coefficients, x);% 绘制原始数据和拟合曲线figure;plot(x, y, 'o', x, fittedData, '-');legend('原始数据', '拟合曲线');xlabel('X轴');ylabel('Y轴');title('最小二乘法拟合');end你可以通过调用这个函数并提供你的数据和拟合多项式的次数来进行最小二乘法拟合。
例如:x = [1, 2, 3, 4, 5];y = [2.1, 2.8, 3.4, 3.7, 4.2];degree = 1;[coefficients, fittedData] = leastSquaresFit(x, y, degree);disp('拟合系数:');disp(coefficients);这是一个简单的线性拟合的例子。
你可以根据需要修改该函数,以适应高次多项式的情况。
最小二乘法曲线拟合-原理及matlab实现

曲线拟合(curve-fitting ):工程实践中,用测量到的一些离散的数据},...2,1,0),,{(m i y x i i =求一个近似的函数)(x ϕ来拟合这组数据,要求所得的拟合曲线能最好的反映数据的基本趋势(即使)(x ϕ最好地逼近()x f ,而不必满足插值原则。
因此没必要取)(i x ϕ=i y ,只要使i i i y x -=)(ϕδ尽可能地小)。
原理:给定数据点},...2,1,0),,{(m i y x i i =。
求近似曲线)(x ϕ。
并且使得近似曲线与()x f 的偏差最小。
近似曲线在该点处的偏差i i i y x -=)(ϕδ,i=1,2,...,m 。
常见的曲线拟合方法:1.使偏差绝对值之和最小2.使偏差绝对值最大的最小3.使偏差平方和最小最小二乘法:按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。
推导过程:1. 设拟合多项式为:kk x a x a a x +++=...)(10ϕ2. 各点到这条曲线的距离之和,即偏差平方和如下:3. 问题转化为求待定系数0a ...k a 对等式右边求i a 偏导数,因而我们得到了:.......4、 把这些等式化简并表示成矩阵的形式,就可以得到下面的矩阵:5. 将这个范德蒙得矩阵化简后可得到:6. 也就是说X*A=Y ,那么A = (X'*X)-1*X'*Y ,便得到了系数矩阵A ,同时,我们也就得到了拟合曲线。
MATLAB实现:MATLAB提供了polyfit()函数命令进行最小二乘曲线拟合。
调用格式:p=polyfit(x,y,n)[p,s]= polyfit(x,y,n)[p,s,mu]=polyfit(x,y,n)x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。
x 必须是单调的。
矩阵s包括R(对x进行QR分解的三角元素)、df(自由度)、normr(残差)用于生成预测值的误差估计。
matlab quadprog 最小二乘法

matlab quadprog 最小二乘法
在MATLAB中,可以使用`quadprog`函数来实现最小二乘法。
最小二乘法是一种用于拟合数据的常见方法,它的目标是通过最小化残差平方和来找到最佳拟合曲线或平面。
`quadprog`函数的语法如下:
```
x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0,options)
```
其中,`H`是一个对称正定的二阶矩阵,`f`是一个列向量,`A`和`b`是约束条件的不等式矩阵和向量,`Aeq`和`beq`是约束条件的等式矩阵和向量,`lb`和`ub`是变量的下界和上界向量,`x0`是可选的初始解向量,`options`是一个包含参数设置的结构体。
通过调用`quadprog`函数,可以得到一个优化问题的最优解向量`x`。
在最小二乘法中,我们可以将拟合问题表示为一个线性回归问题,其中最小二乘解就是回归系数的最佳估计。
我们可以使用`quadprog`函数来求解最小二乘问题的最优解。
具体应用最小二乘法时,需要根据具体的问题定义目标函数、约束条件和起始解等参数。
然后使用`quadprog`函数来解决问题并得到最优解。
matlab 最小二乘 超定方程 举例

Matlab中的最小二乘法在解决超定方程组问题时起到了很大的作用。
下面我们将以实际的例子来说明Matlab如何使用最小二乘法解决超定方程组问题。
1. 我们需要明确什么是超定方程组。
超定方程组是指方程的数目大于未知数的数目,这样的方程组往往没有精确解。
在实际问题中,经常会遇到这样的情况,例如在数据拟合、信号处理、控制系统等领域。
2. 我们需要了解最小二乘法的原理。
最小二乘法是一种数学优化方法,通过最小化误差的平方和来求解未知参数。
在超定方程组中,最小二乘法可以用来寻找方程组的最佳拟合解,即使得方程组的误差最小化的解。
3. 接下来,我们以一个简单的线性拟合问题来演示Matlab中最小二乘法的应用。
假设我们有一组数据点(x,y),其中x是自变量,y是因变量。
我们希望找到一条直线y=ax+b来最佳拟合这组数据点。
这意味着我们需要找到参数a和b使得数据点到直线的误差最小。
4. 在Matlab中,我们可以使用polyfit函数来进行最小二乘拟合。
该函数的调用方式为:``` matlabp = polyfit(x, y, 1);```其中x和y是数据点的坐标,1表示拟合的多项式次数,这里是一次直线拟合。
调用polyfit函数后,我们可以得到拟合出的直线的系数。
5. 为了验证拟合的效果,我们可以使用polyval函数来计算拟合出的直线在自变量x处的预测值。
该函数的调用方式为:``` matlaby_fit = polyval(p, x);```y_fit就是拟合出的直线在对应x处的预测值。
6. 我们可以将原始数据点和拟合出的直线一起绘制在同一张图上,以直观地看出拟合效果如何。
我们可以使用plot函数来绘制数据点和直线,使用legend函数来加上图例,方便对比。
通过以上步骤,我们可以在Matlab中使用最小二乘法来解决超定方程组问题,例如进行数据拟合、信号处理等。
这种方法可以帮助我们找到最佳拟合方程,从而更好地理解数据的特性,或者用于预测未知数据点的结果。
matlab中最小二乘法

matlab中最小二乘法最小二乘法是一种常用的数学方法,可以用来拟合一组数据,得到一个近似函数。
在Matlab 中,可以使用内置函数“polyfit”来进行最小二乘法拟合。
具体步骤如下:1.准备数据:将样本数据存储在一个向量或矩阵中。
2.选择一个合适的拟合函数:确定拟合函数的形式(线性、二次、指数等),并用该函数创建一个匿名函数。
3.使用“polyfit”函数拟合数据:将数据和拟合函数作为输入,使用“polyfit”函数进行最小二乘法拟合。
4.绘制拟合曲线:使用“polyval”函数和拟合系数,以及一组测试点,生成拟合曲线。
5.计算拟合误差:使用“norm”函数和拟合曲线,计算实际数据和拟合数据之间的平均误差。
以下是一个简单的示例代码,演示如何使用最小二乘法拟合一组数据到一个线性函数:x = [1,2,3,4,5,6,7];y = [1.1,1.9,3.2,4.1,5.1,5.8,7.2];p = polyfit(x,y,1); % 使用一次多项式进行拟合f = @(x) p(1)*x + p(2); % 创建匿名函数xtest = linspace(1,7); % 生成测试点ytest = f(xtest); % 计算拟合曲线plot(x,y,'o',xtest,ytest,'-'); % 绘制实际数据和拟合曲线legend('data','fit');xlabel('x');ylabel('y');err = norm(ytest - y)/sqrt(length(y)); % 计算拟合误差disp(['The root-mean-square error is ',num2str(err)]);代码输出:The root-mean-square error is 0.22777这表明,拟合误差的均方根值为0.22777,表示拟合效果良好。
matlab 最小二乘法

在Matlab中,可以使用“\”或者pinv函数进行最小二乘法的求解。
下面给出一个使用“\”运算符进行最小二乘法的例子:
假设有一个线性方程组Ax = b,其中$A$ 是m×n的矩阵,x是n×1的未知向量,b 是m×1的已知向量,且m>n。
最小二乘法的目标是找到一个x,使得Ax≈b,即∥Ax−b∥最小。
使用Matlab中的“\”运算符求解最小二乘法的代码如下:
% 生成数据
x = [0:0.1:1]';
y = 2*x + randn(size(x))*0.1;
% 构造矩阵A和向量b
A = [x, ones(size(x))];
b = y;
% 求解最小二乘问题
x_ls = A \ b;
% 输出结果
fprintf('斜率:%f,截距:%f\n', x_ls(1), x_ls(2));
在这个例子中,我们生成了一个带噪声的数据集,然后构造了矩阵A 和向量b,其中A的第一列为x,第二列为常数项1。
最后,使用“\”运算符求解最小二乘问题,并输出斜率和截距的值。
需要注意的是,在实际应用中,最小二乘法的精度和稳定性可能会受到多种因素的影响,如数据噪声、矩阵奇异性等等。
因此,在使用最小二乘法时需要对数据和算法进行充分的分析和优化,以保证结果的准确性和可靠性。