数值分析复化梯形公式,复化Simpson公式MATLAB程序电子版本
MATLAB数值分析实验二(复合梯形、辛普森和龙贝格求积,以及二重积分计算等)

佛山科学技术学院实验报告课程名称_______________ 数值分析________________________实验项目_______________ 数值积分____________________专业班级机械工程姓名余红杰学号2111505010 指导教师陈剑成绩日期月日一、实验目的b1、理解如何在计算机上使用数值方法计算定积分 a f ""X的近似值;2、学会复合梯形、复合Simpson和龙贝格求积分公式的编程与应用。
3、探索二重积分.11 f (x, y)dxdy在矩形区域D = {( x, y) | a _ x _ b, c _ y _ d}的数值D积分方法。
二、实验要求(1)按照题目要求完成实验内容;(2)写出相应的Matlab程序;(3)给出实验结果(可以用表格展示实验结果);(4)分析和讨论实验结果并提出可能的优化实验。
(5)写出实验报告。
三、实验步骤1、用不同数值方法计算积xln xdx =-- 0 9(1)取不同的步长h,分别用复合梯形及复合辛普森求积计算积分,给出误差中关于h的函数,并与积分精确值比较两公式的精度。
(2)用龙贝格求积计算完成问题(1 )。
2、给出一种求矩形区域上二重积分的复化求积方法,然后计算二重积分..e"y dxdy,其中积分区域D二{0乞x岂1,0岂y乞1}。
1.%lnt_t.m复化梯形:function F = Int_t(x1,x2,n)%复化梯形求积公式% x1,x2为积分起点和中点%分为n个区间,没选用步长可以防止区间数为非整数。
%样点矩阵及其函数值:x = lin space(x1,x2 ,n+1);y = f(x);m = len gth(x);%本题中用Matlab计算端点位置函数值为NaN,故化为零: y(1) = 0;y(m) = 0;%算岀区间长度,步长h:h = (x2 -x1)/n;a = [1 2*o nes(1,m-2) 1];%计算估计的积分值:F = h/2*sum(a.*y);%f.mfun cti on y = f(x)y = sqrt(x).*log(x);%run 11.mclc,clear;%分为10个区间,步长0.1的积分值:F = In t_t(0,1,10);F10 = F%分为100个区间F = In t_t(0,1,100);F100 = F%误差计算W10 = abs((-4/9)-F10);W100 = abs((-4/9)-F100);W = [W10 W100]%复化辛普森:%l nt_s.mfun cti on F = In t_s(x1,x2 ,n)%复化梯形求积公式% x1,x2区间,分为n个区间。
复化梯形公式,复化辛普森公式,复化柯特斯公式

复化梯形公式,复化辛普森公式,复化柯特斯公式
复化梯形公式、复化辛普森公式和复化柯特斯公式都是用来计算定积分的近似值的方法。
1. 复化梯形公式:将积分区间分成若干个小区间,在每个小区间上用梯形面积近似代替该小区间的曲边梯形面积,然后将这些梯形面积相加,得到积分的近似值。
2. 复化辛普森公式:将积分区间分成若干个等分小区间,在每个小区间上用矩形面积近似代替该小区间的曲边梯形面积,然后将这些矩形面积相加,得到积分的近似值。
3. 复化柯特斯公式:将积分区间分成若干个等分小区间,在每个小区间上用切线段长度近似代替该小区间的曲边梯形面积,然后将这些切线段长度相加,得到积分的近似值。
这三种方法都是通过将积分区间分成若干个小区间,然后在每个小区间上用近似方法计算该小区间的曲边梯形面积,最后将这些近似值相加得到积分的近似值。
它们的精度和误差都与分区间的大小有关。
matlab复化Simpson求积公式计算数值积分

,(k 0,1,...,n)k x a kh =+=b a h n-=2221222121(x)dx (x)dx [(x )4(x )(x )]3k k m a x b x k m k k k k f f h f f f -=--=≈≈++∑⎰⎰∑复化Simpson 求积公式计算数值积分一·复化Simpson 求积公式的数学理论如果用分段二次插值函数近似被积函数,即在小区间上用Simpson 公式计算积分近似值,就可导出复化Simpson 公式。
二·复化Simpson 求积公式的算法和流程图将积分区间[a,b]分成n=2m 等分,分点为,在每个小区间[222,x k k x -](k=0,1,…,n-1)上。
用Simpson 公式求积分,则有2222222221222212(x)dx [(x )4(x )(x )]6[(x )4(x )(x )]3kk x k k k k k x k k k x x f f f f h f f f -------≈++=++⎰求和得整理后得到122111(x)dx [(a)(b)2(x )4(x )]3m m bk k a k k h f f f f f --==≈+++∑∑⎰ (5-21)式(5-21)称为复化Simpson 公式。
如果(4)(x)[a,b]f c ∈,则由Simpson 插值余项公式可得复化公式的截断误差为1221115(4)2221()(x)dx [(a)(b)2(x )4(x )]3(2h)()[x ,x ]2880m m bS k k a k k mk k k h R f f f f f f ξξ--==-==-+++=-∈∑∑⎰∑因为(4)f x 为连续,故存在[a,b]ξ∈,使得(4)(4)11()()m k k f f m ξξ==∑代入上式得5(4)4(4)1(2h)()()()(a,b)2880180m s k b a R f mf h f ξξξ=-=-=-∈∑ (5-22)式(5-22)表明,步长h 越小,截断误差越小。
数值分析积分实验报告(3篇)

第1篇一、实验目的本次实验旨在通过数值分析的方法,研究几种常见的数值积分方法,包括梯形法、辛普森法、复化梯形法和龙贝格法,并比较它们在计算精度和效率上的差异。
通过实验,加深对数值积分理论和方法的理解,提高编程能力和实际问题解决能力。
二、实验内容1. 梯形法梯形法是一种基本的数值积分方法,通过将积分区间分割成若干个梯形,计算梯形面积之和来近似积分值。
实验中,我们选取了几个不同的函数,对积分区间进行划分,计算积分近似值,并与实际积分值进行比较。
2. 辛普森法辛普森法是另一种常见的数值积分方法,它通过将积分区间分割成若干个等距的区间,在每个区间上使用二次多项式进行插值,然后计算多项式与x轴围成的面积之和来近似积分值。
实验中,我们对比了辛普森法和梯形法的计算结果,分析了它们的精度差异。
3. 复化梯形法复化梯形法是对梯形法的一种改进,通过将积分区间分割成多个小区间,在每个小区间上使用梯形法进行积分,然后计算所有小区间积分值的和来近似积分值。
实验中,我们对比了复化梯形法和辛普森法的计算结果,分析了它们的精度和效率。
4. 龙贝格法龙贝格法是一种通过外推加速提高计算精度的数值积分方法。
它通过比较使用不同点数(n和2n)的积分结果,得到更高精度的积分结果。
实验中,我们使用龙贝格法对几个函数进行积分,并与其他方法进行了比较。
三、实验步骤1. 编写程序实现梯形法、辛普森法、复化梯形法和龙贝格法。
2. 选取几个不同的函数,对积分区间进行划分。
3. 使用不同方法计算积分近似值,并与实际积分值进行比较。
4. 分析不同方法的精度和效率。
四、实验结果与分析1. 梯形法梯形法在计算精度上相对较低,但当积分区间划分足够细时,其计算结果可以接近实际积分值。
2. 辛普森法辛普森法在计算精度上优于梯形法,但当积分区间划分较细时,计算量较大。
3. 复化梯形法复化梯形法在计算精度上与辛普森法相当,但计算量较小。
4. 龙贝格法龙贝格法在计算精度上优于复化梯形法,且计算量相对较小。
数值分析计算方法程序汇总

(一)复化梯形公式例:求121?x dx -=⎰程序:#include "stdio.h"void main(){double a,b,s,h,x;int i,n;a=-1.0;b=1.0;n=10;h=(b-a)/n;x=a;s=x*x/2;for(i=1;i<n;i++){x=x+h;s=s+x*x;}s=s+b*b/2;s=s*h;printf("s=%f\n",s);}结果:s=0.680000(二)复化辛普森公式例:求130?x dx=⎰程序:#include "stdio.h"void main(){double a,b,c,s,h,x,y;int i,n;a=0.0;b=1.0;n=10;s=0.0;h=(b-a)/n;x=a;y=x+h;c=(x+y)/2;for(i=1;i<=n;i++){s=s+x*x*x+4*c*c*c+y*y*y;x=x+h;y=y+h;c=c+h;}s=s*h/6;printf("s=%f\n",s);}结果:s=0.250000(三)复化高斯公式例:求220?x dx=⎰程序:#include <stdio.h>#include <math.h>main(){double a,b,h,s,x1,x2;int i,n;a=0;b=2;n=20;s=0;h=(b-a)/n;for(i=0;i<n;i++){x1=a+i*h+h/2*(1/1.732+1); x2=a+i*h+h/2*(1-1/1.732); s=s+x1*x1*x1+x2*x2*x2; }s=h/2*s;printf("s=%f\n",s);}结果:s=4.000000(四)迭代法例:求x=x2的解。
程序:#include "stdio.h"#include<math.h>main(){double x,xl,y,yl;int i,j;x=0.5;xl=x;y=0.5;yl=y;for(i=0;;i++){x=x*x;if(fabs(xl-x)<0.0001)break;else xl=x;}for(j=0;;j++){y=sqrt(y);if(fabs(yl-y)<0.0001)break;else yl=y;printf("x=%f,y=%f\n",x,y);}结果:x=0.000000,y=0.999915(五)牛顿迭代法y=f(x),求f(x*)=0。
复合梯形公式、复合辛普森公式matlab

复合梯形公式、复合⾟普森公式matlab 1. ⽤1阶⾄4阶Newton-Cotes公式计算积分程序:function I = NewtonCotes(f,a,b,type)%syms t;t=findsym(sym(f));I=0;switch typecase 1,I=((b-a)/2)*(subs(sym(f),t,a)+subs(sym(f),t,b));case 2,I=((b-a)/6)*(subs(sym(f),t,a)+4*subs(sym(f),t,(a+b)/2)+...subs(sym(f),t,b));case 3,I=((b-a)/8)*(subs(sym(f),t,a)+3*subs(sym(f),t,(2*a+b)/3)+...3*subs(sym(f),t,(a+2*b)/3)+subs(sym(f),t,b));case 4,I=((b-a)/90)*(7*subs(sym(f),t,a)+...32*subs(sym(f),t,(3*a+b)/4)+...12*subs(sym(f),t,(a+b)/2)+...32*subs(sym(f),t,(a+3*b)/4)+7*subs(sym(f),t,b));case 5,I=((b-a)/288)*(19*subs(sym(f),t,a)+...75*subs(sym(f),t,(4*a+b)/5)+...50*subs(sym(f),t,(3*a+2*b)/5)+...50*subs(sym(f),t,(2*a+3*b)/5)+...75*subs(sym(f),t,(a+4*b)/5)+19*subs(sym(f),t,b));case 6,I=((b-a)/840)*(41*subs(sym(f),t,a)+...216*subs(sym(f),t,(5*a+b)/6)+...27*subs(sym(f),t,(2*a+b)/3)+...272*subs(sym(f),t,(a+b)/2)+...27*subs(sym(f),t,(a+2*b)/3)+...216*subs(sym(f),t,(a+5*b)/6)+...41*subs(sym(f),t,b));case 7,I=((b-a)/17280)*(751*subs(sym(f),t,a)+...3577*subs(sym(f),t,(6*a+b)/7)+...1323*subs(sym(f),t,(5*a+2*b)/7)+...2989*subs(sym(f),t,(3*a+4*b)/7)+...1323*subs(sym(f),t,(2*a+5*b)/7)+...3577*subs(sym(f),t,(a+6*b)/7)+751*subs(sym(f),t,b));endsyms xf=exp(-x).*sin(x);a=0;b=2*pi;I = NewtonCotes(f,a,b,1)N=1:I =N=2:I =N=3:I =(pi*((3*3^(1/2)*exp(-(2*pi)/3))/2 - (3*3^(1/2)*exp(-(4*pi)/3))/2))/4N=4:I =(pi*(32*exp(-pi/2) - 32*exp(-(3*pi)/2)))/452. 已知,因此可以通过数值积分计算的近似值。
复化梯形公式和复化Simpson公式

数值计算方法上机题目3计算定积分的近似值:221x e xe dx =⎰ 要求:(1)若用复化梯形公式和复化Simpson 公式计算,要求误差限71021-⨯=ε,分别利用他们的余项估计对每种算法做出步长的事前估计;(2)分别利用复化梯形公式和复化Simpson 公式计算定积分;(3)将计算结果与精确解比较,并比较两种算法的计算量。
1.复化梯形公式程序:程序1(求f (x )的n 阶导数:syms xf=x*exp(x) %定义函数f (x )n=input('输入所求导数阶数:')f2=diff(f,x,n) %求f(x)的n 阶导数结果1输入n=2f2 =2*exp(x) + x*exp(x)程序2:clcclearsyms x%定义自变量xf=inline('x*exp(x)','x') %定义函数f(x)=x*exp(x),换函数时只需换该函数表达式即可f2=inline('(2*exp(x) + x*exp(x))','x') %定义f(x)的二阶导数,输入程序1里求出的f2即可。
f3='-(2*exp(x) + x*exp(x))'%因fminbnd()函数求的是表达式的最小值,且要求表达式带引号,故取负号,以便求最大值e=5*10^(-8) %精度要求值a=1 %积分下限b=2 %积分上限x1=fminbnd(f3,1,2) %求负的二阶导数的最小值点,也就是求二阶导数的最大值点对应的x值for n=2:1000000 %求等分数nRn=-(b-a)/12*((b-a)/n)^2*f2(x1) %计算余项if abs(Rn)<e %用余项进行判断break% 符合要求时结束endendh=(b-a)/n %求hTn1=0for k=1:n-1 %求连加和xk=a+k*hTn1=Tn1+f(xk)endTn=h/2*((f(a)+2*Tn1+f(b)))z=exp(2)R=Tn-z %求已知值与计算值的差fprintf('用复化梯形算法计算的结果 Tn=')disp(Tn)fprintf('等分数 n=')disp(n) %输出等分数fprintf('已知值与计算值的误差 R=')disp(R)输出结果显示:用复化梯形算法计算的结果 Tn= 7.3891等分数 n= 7019已知值与计算值的误差 R= 2.8300e-0082. Simpson公式程序:程序1:(求f(x)的n阶导数):syms xf=x*exp(x) %定义函数f(x)n=input('输入所求导数阶数:')f2=diff(f,x,n) %求f(x)的n阶导数结果1输入n=4f2 =4*exp(x) + x*exp(x)程序2:clcclearsyms x%定义自变量xf=inline('x*exp(x)','x') %定义函数f(x)=x*exp(x),换函数时只需换该函数表达式即可f2=inline('(4*exp(x) + x*exp(x))','x') %定义f(x)的四阶导数,输入程序1里求出的f2即可f3='-(4*exp(x) + x*exp(x))'%因fminbnd()函数求的是表达式的最小值,且要求表达式带引号,故取负号,一边求最大值e=5*10^(-8) %精度要求值a=1 %积分下限b=2 %积分上限x1=fminbnd(f3,1,2) %求负的四阶导数的最小值点,也就是求四阶导数的最大值点对应的x值for n=2:1000000 %求等分数nRn=-(b-a)/180*((b-a)/(2*n))^4*f2(x1) %计算余项if abs(Rn)<e %用余项进行判断break% 符合要求时结束endendh=(b-a)/n %求hSn1=0Sn2=0for k=0:n-1 %求两组连加和xk=a+k*hxk1=xk+h/2Sn1=Sn1+f(xk1)Sn2=Sn2+f(xk)endSn=h/6*(f(a)+4*Sn1+2*(Sn2-f(a))+f(b)) %因Sn2多加了k=0时的值,故减去f(a)z=exp(2)R=Sn-z %求已知值与计算值的差fprintf('用Simpson公式计算的结果 Sn=')disp(Sn)fprintf('等分数 n=')disp(n)fprintf('已知值与计算值的误差 R=')disp(R)输出结果显示:用Simpson公式计算的结果 Sn= 7.3891等分数 n= 24已知值与计算值的误差 R= 2.7284e-008用复化梯形公式计算的结果为:7.3891,与精确解的误差为:2.8300e-008。
数值分析复化梯形公式,复化Simpson公式MATLAB程序

分别用复化梯形公式、复化Simpson 公式计算定积分dx e x ⎰+201,取n=2,4,8,16分别验证结果(精确值I=4.006994)。
复化梯形公式求定积分:
function I=tquad(x,y)
%复化梯形求积公式,其中,
%x 为向量,被积函数自变量的等距结点; %y 为向量,被积函数在结点处的函数值; n=length(x);
m=length(y);
%积分自变量的结点数应与它的函数值的个数相同 h=(x(n)-x(1))/(n-1);
a=[1 2*ones(1,n-2) 1];
I=h/2*sum(a.*y);
复化Simpson 公式求定积分:
function I=squad(x,y)
%复化Simpson 求积公式,其中,
%x 为向量,被积函数自变量的等距结点; %y 为向量,被积函数在结点处的函数值; n=length(x);
m=length(y);
%积分自变量的结点数应与它的函数值的个数相同 if rem(n-1,2)~=0
I=tquad(x,y);
return;
end
N=(n-1)/2;
h=(x(n)-x(1))/N;
a=zeros(1,n);
for k=1:N
a(2*k-1)=a(2*k-1)+1;
a(2*k)=a(2*k)+4;
a(2*k+1)=a(2*k+1)+1;
end
I=h/6*sum(a.*y);。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值分析复化梯形公式,复化S i m p s o n公式M A T L A B程序
精品资料
仅供学习与交流,如有侵权请联系网站删除 谢谢2 分别用复化梯形公式、复化Simpson 公式计算定积分dx e x ⎰+201,取
n=2,4,8,16分别验证结果(精确值I=4.006994)。
复化梯形公式求定积分:
function I=tquad(x,y)
%复化梯形求积公式,其中,
%x 为向量,被积函数自变量的等距结点;
%y 为向量,被积函数在结点处的函数值;
n=length(x);
m=length(y);
%积分自变量的结点数应与它的函数值的个数相同 h=(x(n)-x(1))/(n-1);
a=[1 2*ones(1,n-2) 1];
I=h/2*sum(a.*y);
复化Simpson 公式求定积分:
function I=squad(x,y)
%复化Simpson 求积公式,其中,
%x 为向量,被积函数自变量的等距结点;
%y 为向量,被积函数在结点处的函数值;
n=length(x);
m=length(y);
%积分自变量的结点数应与它的函数值的个数相同 if rem(n-1,2)~=0
I=tquad(x,y);
return;
end
N=(n-1)/2;
h=(x(n)-x(1))/N;
a=zeros(1,n);
for k=1:N
a(2*k-1)=a(2*k-1)+1;
a(2*k)=a(2*k)+4;
a(2*k+1)=a(2*k+1)+1;
end
I=h/6*sum(a.*y);。