五年级奥数专题--假设法解题

合集下载

五年级奥数——假设法解题

五年级奥数——假设法解题

第十二讲假设法解题例1、鸡与兔共10只,脚共22只,问:鸡有几只?兔有几只?练习1、鸡与兔共100只,鸡的脚比兔的脚多26只。

问:鸡有几只?兔有几只?练习2、第21周举一反三1第2题。

例2、有面值分别为10元、5元和2元的人民币34张,共值178元,10元的张数和5元的张数同样多。

问:三种面值的人民币各多少张?练习3、有面值分别为拾元、伍元、贰元的人民币27张,共108元。

拾元的张数比伍元的张数少7张。

那么,三种面值的人民币各有多少张?练习4、第21周举一反三2第3题。

例3、要把40个玻璃球放入一个红盒子和一个黑盒子中,每次往红盒子里必须放2个,每次往黑盒子里必须放1个。

一共放了26次,正好将40个玻璃球放完。

此时红盒子、黑盒子中各有多少个玻璃球?练习5、第21周举一反三3第2题。

练习6、学校组织春游,一共用了10辆客车,已知大客车每辆坐100人,小客车每辆坐60人,大客车比小客车一共多载520人,问:大、小客车各几辆?练习7、第21周举一反三4第3题。

例4、徒工小王雕刻红木玩具,平均每天雕刻玩具48件。

每雕刻出一件正品,可为国家创造财富12元;但如果雕刻坏了一件就要损失98元。

他平均每天为国家创造财富466元。

小王平均每天雕刻出的正品有多少件?练习8、数学竞赛中抢答题共10道题,规定答对一题得15分,答错一题倒扣10分(不答按答错计算)。

晓敏回答了所有的问题,结果共得100分,问:她答对了几题?答错了有几题?练习9、第21周举一反三5第3题。

作业:1、营业员把一张5元人民币和一张5角的人民币换成了28张票面为1元和1角的人民币,求换来这两种人民币各多少张?2、A、B两地相距8千米,小钱骑自行车从A地去B地,开始以每分钟120米的速度行驶,后改为每分钟160米的速度行驶,共用了1小时到达B地。

小钱是在离A地多少米的地方改变速度的?3、操场上有一群同学。

男生人数是女生人数的4倍,每次同时有2名男生和1名女生回教室,若干次后,男生剩下8人,女生剩下1人。

五年级奥数专题讲义-第21讲假设法解题通用版(含答案)

五年级奥数专题讲义-第21讲假设法解题通用版(含答案)

第 21 讲假设法解题基础卷1.小明有 2 元和 5 元的邮票共 100 枚,总价钱为 320 元,这两种邮票各有多少枚?5×100=500元,500-320=180元2元:180÷﹙5-2﹚=60枚5元:100-60=40枚2.松鼠妈妈采松子,晴天每天可以采 20 个,雨天每天只能采 12 个。

它一连几天采了 112 个松子,平均每天采 14 个。

问:这几天当中有几天有雨?采了:112÷14=8天假设全是晴天应该采 20×8=160个比实际少了 160-112=48个是由于把雨天也看成了晴天每天相差 20-12=8个雨天:48÷8=6天3.徒工小王雕刻红木玩具,平均每天雕刻玩具 48 件。

每雕刻出一件正品,可创造财富 12 元:但如果雕刻坏了一件就要损失 98 元。

他平均每天创造财富 466 元。

小王平均每天雕刻出的正品是多少件?可以这么列:(48×12-466)÷(12+98)=1(件)48-1=47(件)4.数学竞赛中抢答题共 10 道题,规定答对一题得 15 分,答错一题倒扣 10 分(不答按答错计算)。

晓敏回答了所有的问题,结果共得 100 分,问:答对和答错各几题?设答对x题,答错(10-x)题.15x-10(10-x)=10015x+10x-100=10025x=200x=8∴答错10-8=2题答:答对8题,答错2题.5.学校组织春游,一共用了 10 辆客车,已知大客车每辆坐 100 人,小客车每辆坐 60 人,大客车比小客车一共多载 520 人,问:大、小客车各几辆?假设大客车为x辆,小客车则为10-x ,又大客车多坐520人那么100*x-520= 60*(10-x)求得x=7所以7辆大客车,3辆小客车6.人民电影院有座位 1200 个,前排票每张 1.5 元,后排票每张 2.5 元。

已知后排票比前排票的总价多1080 元,该电影院有前排座位和后排座位各多少个?假设前排和后排的座位是相同的,那么后排票会比前排票总价多600元(1200除以2等于600, ,2.5减1.5等于1,1X600=600)而现在实际多了1080元,1080—600=480元因此相当于少算了480除以4等于120个后排的座位.(本来是后排就是2.5却被算成前排,对于后排来说就相差2.5加1.5等于4元)所以前排有600-120=480个座位,后排有600+120=720个座位.1200÷2=600(元) 1080—600=480(元)后排:480÷(2.5+1.5)+600=720(个)前排:1200-720=480(个)提高卷1.有 1 元硬币和 5 角硬币若干枚,共值 675 角。

小学数学五年级奥数——假设法解题

小学数学五年级奥数——假设法解题
2、 上学年,马村中学的学生比牛庄小学的 学生的2倍多54人,本学年马村中学增加了 20人,牛庄小学减少了8人,则马村中学的 学生比牛庄小学的学生的4倍少26人,上学 年马村中学和牛庄小学各有学生多少人?
3、小红的彩笔枝数是小刚的
1 2
,两
人各买5枝后,小红的彩笔枝数是小刚的2 3,两人原来各有彩笔多少枝?
2、王明平时积蓄下来的零花钱比陈 刚的3倍多6.40元,若两个人各买了一 本4.40元的故事书后,王明的钱就是 陈刚的8倍,陈刚原来有零花钱多少 元?
1、 甲书架上的书比乙书架上的3倍多50本, 若甲、乙两个书架上各增加150本,则甲书 架上的书是乙书架上的2倍,甲、乙两个书 架原来各有多少本书?
年1、后小小华华今的年年的龄年是龄爸是爸爸的爸14年,龄求的小16华,和四爸
爸今年的年龄各是多少岁?
3 、红小的红年今龄年是的妈年妈龄的是妈1,妈小的红今8,年1多0年少后岁小?
2
4两、人王各芳捐原给有“的希图望书工本程数”是1李0本卫后的,45则,王 芳的图书的本数是李卫的 7 ,两人原 来各有图书多少本? 10
3 4
,现在男、
1、甲车间的工人是乙车间的
2 5
,2后
来这现样甲在甲车 甲车、间间乙增的两加人个20数车人是间,乙各乙车有车间多间的少减人少79?353,人,
2、现黑有子在一是取堆白走棋子12子的粒,黑5黑子,子,现是添在白上白子1子8的粒、白2黑3子子,后, 各有多少粒? 12
两书上1、个是各甲书乙有书架书多架上架少上各上本的借的书47书出?是1,1乙2原本书来后架甲,上、甲的乙书45两架,个上从书的这架 2、小年小明各明的多今年少年龄岁的是?年爸龄爸是的爸爸49的,小明16,1和1爸0年爸前今

五年级奥数举一反三假设法解题

五年级奥数举一反三假设法解题

有关“假设法”“假设法”是解答应用题时常用到的一种方法。

在有些应用题中,要求两个或两个以上的未知量,可以先假设要求的两个或几个的未知量相等,或者先假设要求的的两个未知量是同一个量,然后按照题目里的已知条件进行推算,并对照已知条件把数量上出现的矛盾做适当的调整,最后得到答案,这就是“假设法”“鸡兔同笼”问题研究“假设法”解题的方法,必然提到“鸡兔同笼”问题。

“鸡兔同笼”的基本问题是:已知鸡、兔总头数和总脚数,求鸡、兔各有多少只。

并由此衍生出的一系列问题,形成一类典型的应用题。

解决“鸡兔同笼”问题的方法通常是用假设法。

其基本关系式是:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数)例1 在一个笼子中关有若干只鸡和兔,从上面看有50个头,从下面数有158只脚。

问:笼中鸡、兔各有多少只?拓展百个和尚百个耙,大和尚每人4个耙,小和尚4人1个耙。

问:大和尚、小和尚各有多少个?例2 学校买了两种戏票一共30张,付出200元,找回5元。

甲种票每张7元,乙种票每张6元。

学校买甲种票多少张,乙种票多少张?拓展小明去游山,他从东坡上山,每小时行2千米,到达山顶后休息了1小时;然后从西坡下山,每小时行3千米,全程共行了19千米,共用了9小时。

上山的路与下山的路各有多少千米?例3 小明买了5角、2角、1角5分三种邮票,共20张,总值5元5角。

其中5角和1角5分的邮票张数相等,求三种邮票各多少张拓展有1元、2元、5元的人民币50张面值共计116元,已知1元的人民币比2元的多2张,问:三种人民币各有多少张?小明花4元2角钱买贺年卡和明信片共10张,贺年卡每张3角,明信片每张5角,他买了几张贺年卡,几张明信片?小克林顿做家务每天可得3美元,做得特别好每天可得5美元。

有一个月(30天)他共得100美元,那么这个月他有多少天做得特别好?15元钱买5角和8角的邮票共21张,那么所买的5角邮票与8角邮票相差多少张?实验小学为奖励三好学生,共买钢笔和铅笔27盒,共计300支。

五年级奥数假设法解题答案

五年级奥数假设法解题答案

第二十一讲假设法解题例题1 有5元和10元的人民币共14张,共100元。

问5元币和10元币各多少张?练习一1,笼中共有鸡、兔100只,鸡和兔的脚共248只。

求笼中鸡、兔各有多少只?2,一堆2分和5分的硬币共39枚,共值1.5元。

问2分和5分的各有多少枚?3,营业员把一张5元人币和一张5角的人民币换成了28张票面为一元和一角的人民币,求换来这两种人民币各多少张?例题2 有一元、二元、五元的人民币50张,总面值116元。

已知一元的比二元的多2张,问三种面值的人民币各有几张?练习二1,有3元、5元和7元的电影票400张,一共价值1920元。

其中7元的和5元的张数相等,三种价格的电影票各有多少张?2,有一元、五元和十元的人民币共14张,总计66元,其中一元的比十元的多2张。

问三种人民币各有多少张?3,有1角、2角、4角、5角的邮票共26张,总计6.9元。

其中1角和2角的张数相等,4角的和5角的张数相等。

求这四种邮票各有多少张?例题3 五(1)班有51个同学,他们要搬51张课桌椅。

规定男生每人搬2张,女生两人搬1张。

这个班有男、女生各多少人?练习三1,甲、乙二人共存550元钱,当甲取出自己存款的一半,乙取出自己存款中的70元时,两人余下的钱正好相等。

求甲、乙原来各存多少元钱。

2,学校春游共用了10辆客车,已知大客车每辆坐100人,小客车每辆坐60人,大客车比小客车一共多坐520人。

大、小客车各几辆?3,班级买来50张杂技票,其中一部分是1元5角一张的,另一部分是2元一张的,总共的票价是88元。

两种票各买了多少张?例题4 用大、小两种汽车运货。

每辆大汽车装18箱,每辆小汽车装12箱。

现有18车货,价值3024元。

若每箱便宜2元,则这批货价值2520元。

大、小汽车各有多少辆?练习四1,一辆卡车运矿石,晴天每天运20次,雨天每天可运12次,它一共运了112次,平均每天运14次。

这几天中有几天是雨天?2,有鸡蛋18筐,每只大箩容180个,每只小箩容120个,这批蛋共值302.4元。

五年级奥数:假设法解题

五年级奥数:假设法解题

五年级奥数:假设法解题专题分析:假设法解题是一种常用的思维方法,在一些应用题中,要求两个或两个以上的未知量,思考时可以先假设要求的两个或几个未知数相等,或者先假设两种要求的未知量是同一种量,然后按题中的已知条件进行推算,并对照已知条件,把数量上出现的矛盾加以适当的调整,最后找到答案。

【例题】:有5元和10元的人民币共14张,共100元,问5元和10元的人民币各多少张?【思路】:先假设有14张5元的,则总数是70元,那么与实际相差30元,所以这30元就是10元人民币少出来的,因此10远人民币的张数是30÷(10-5)=6(张)。

也可以假设有14张10元的……练习一:1、笼中共有鸡兔100只,鸡和兔的脚共248只,求笼中鸡兔各多少只?2、一堆2分和5分的硬币共39枚,共值1.5元。

问2分和5分的银币各有多少枚?3、营业员把一张5元的人民币和一张5角的人民币换成了28张票面为一元和一角的人民币。

求换来的这两种人民币各多少张?【例题】:用大小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱。

现有18车货,价值3024元。

若每箱便宜2元,则这批货物价值2520元。

问大小汽车各多少辆?【思路】:根据“若每箱便宜2元,则这批货物价值2520元。

”可以知道一共便宜了504元,这样可以计算出货物有252箱。

假设18辆都是大汽车,可以装324箱,比实际多装72箱。

用一辆大汽车换一辆小汽车可少运6箱,所以有12辆小汽车。

6辆大汽车。

练习二:1、一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次。

平均每天运14次。

这几天中有几天是雨天?2、有鸡蛋18箩,每只大箩装180个,每只小箩装120个,这批蛋共值302.4元。

若将每个鸡蛋便宜2分出售,这些鸡蛋可卖252元。

问大箩、小箩各有多少个?3、运来一批西瓜,准备分两类卖,大的每千克0.4元,小的每千克0.3元,这样卖这批西瓜共值290元。

五年级奥数假设问题

五年级奥数假设问题
练习 1.鸡兔共100只,共有脚284只,鸡兔各 有多少只?
用假设法解答鸡兔同笼问题的基本 数量关系式是:
兔数=〔实际脚数-每只鸡脚数×鸡兔总数÷ 〔每只兔子脚数-每只鸡脚数
鸡数=〔每只兔子脚数×鸡兔总数-实际脚数 ÷〔每只兔子脚数-每只鸡脚数

王牌例题二
2、 王芳有2分、5分的硬币共40枚,一共是1 元2角5分.两种硬币各有多少枚?
家庭作业:
• 1、小松鼠采松果,晴天采30个,雨天采20个,它一连 几天一共采了240个,平均每天采24个,这几天中有 几个晴天?
• 2、某玻璃杯厂为商场运送1000个玻璃杯,双方商 定每个运费为1元,如果打碎一个,这个不但不给运 费,而且要赔偿3元,结果运送完结算时,玻璃杯厂共 得运费920元.求打碎了几只玻璃杯?
• 解析:小卡车比大卡车多装〔45-36辆,大 卡车比小卡车多装〔36*4吨,可以求出小 卡车每辆装16吨.
王牌例题4
• 王老师从家到学校上班,出发时他看看表, 发现如果步行,每分行80米,他将迟到5分; 如果骑自行车,每分行200米,他可以提前7 分到校.王老师出发时离上班时间有多少分?
• 解析:两次路程相等是解题关键.
假设问题
假设法是解答应用题时经常用到的 一种方法.所谓"假设法"就是依据题 目中的已知条件或结论作出某种设 想,然后按照已知条件进行推算,根 据数量上出现的矛盾,再适当调整, 从而得到正确答案.
王牌例题一
1、在同一个笼子里的,有若干鸡和兔.从笼子 上看有30个头,从笼子下数有70只脚.这个笼 子里装有鸡、兔各多少只?
• 3、鸡与兔共有100只,鸡的脚比兔的脚多80只,鸡 与兔各有多少只?
知识回顾 Knowledge Review

(最新)五年级奥数分册第21讲 假设法解题

(最新)五年级奥数分册第21讲 假设法解题

第二十一讲假设法解题专题简析假设法是解应用题时常用的一种思维方法。

在一些应用题中,要求两个或两个以上的未知量,思考时可以先假设要求的两个或几个未知数相等,或者先假设两种要求的未知量是同一种量,然后按题中的已知条件进行推算,并对照已知条件,把数量上出现的矛盾加以适当的调整,最后找到答案。

例题1 有5元和10元的人民币共14张,共100元。

问5元币和10元币各多少张?分析假设这14张全是5元的,则总钱数只有5×14=70元,比实际少了100-70=30元。

为什么会少了30元呢?因为这14张人币民币中有的是10元的。

拿一张5元的换一张10元的,就会多出5元,30元里包含有6个5元,所以,要换6次,即有6张是10元的,有14-6=8张是5元的。

练习一1,笼中共有鸡、兔100只,鸡和兔的脚共248只。

求笼中鸡、兔各有多少只?2,一堆2分和5分的硬币共39枚,共值1.5元。

问2分和5分的各有多少枚?3,营业员把一张5元人币和一张5角的人民币换成了28张票面为一元和一角的人民币,求换来这两种人民币各多少张?例题2 有一元、二元、五元的人民币50张,总面值116元。

已知一元的比二元的多2张,问三种面值的人民币各有几张?分析(1)如果减少2张一元的,那么总张数就是48张,总面值就是114元,这样一元的和二元的张数就同样多了;(2)假设这48张全是5元的,则总值为5×48=240元,比实际多出了240-114=126元,然后进行调整。

用2张5元的换一张1元和一张2元的就会减少7元,126÷7=18次,即换18次。

所以,原来二元的有18张,一元的有18+2=20张,五元的有50-18-20=12张。

练习二1,有3元、5元和7元的电影票400张,一共价值1920元。

其中7元的和5元的张数相等,三种价格的电影票各有多少张?2,有一元、五元和十元的人民币共14张,总计66元,其中一元的比十元的多2张。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五年级奥数专题--假设法解题
专题简析
假设法是解应用题时常用的一种思维方法。

在一些应用题中,要求两个或两个以上的未知量,思考时可以先假设要求的两个或几个未知数相等,或者先假设两种要求的未知量是同一种量,然后按题中的已知条件进行推算,并对照已知条件,把数量上出现的矛盾加以适当的调整,最后找到答案。

例1.有5元和10元的人民币共14张,共100元。

问5元币和10元币各多少张?
变式训练
1.笼中共有鸡、兔100只,鸡和兔的脚共248只。

求笼中鸡、兔各有多少只?
2.一堆2分和5分的硬币共39枚,共值1.5元。

问2分和5分的各有多少枚?
3.营业员把一张5元人币和一张5角的人民币换成了28张票面为一元和一角的人民币,求换来这两种人民币各多少张?
例2.有一元、二元、五元的人民币50张,总面值116元。

已知一元的比二元的多2张,问三种面值的人民币各有几张?
变式训练
1.有3元、5元和7元的电影票400张,一共价值1920元。

其中7元的和5元的张数相等,三种价格的电影票各有多少张?
2.有一元、五元和十元的人民币共14张,总计66元,其中一元的比十元的多2张。

问三种人民币各有多少张?
3.有1角、2角、4角、5角的邮票共26张,总计6.9元。

其中1角和2角的张数相等,4角的和5角的张数相等。

求这四种邮票各有多少张?
例3.五(1)班有51个同学,他们要搬51张课桌椅。

规定男生每人搬2张,女生两人搬1张。

这个班有男、女生各多少人?
变式训练
1.甲、乙二人共存550元钱,当甲取出自己存款的一半,乙取出自己存款中的70元时,两人余下的钱正好相等。

求甲、乙原来各存多少元钱。

2.学校春游共用了10辆客车,已知大客车每辆坐100人,小客车每辆坐60人,大客车比小客车一共多坐520人。

大、小客车各几辆?
3.班级买来50张杂技票,其中一部分是1元5角一张的,另一部分是2元一张的,总共的票价是88元。

两种票各买了多少张?
例4.用大、小两种汽车运货。

每辆大汽车装18箱,每辆小汽车装12箱。

现有18车货,价值3024元。

若每箱便宜2元,则这批货价值2520元。

大、小汽车各有多少辆?
变式训练
1.一辆卡车运矿石,晴天每天运20次,雨天每天可运12次,它一共运了112次,平均每天运14次。

这几天中有几天是雨天?
2.有鸡蛋18筐,每只大箩容180个,每只小箩容120个,这批蛋共值302.4元。

若将每个鸡蛋便宜2分出售,这些蛋可卖252元。

问:大箩、小箩各有几个?
3.运来一批西瓜,准备分两类卖,大的每千克0.4元,小的每千克0.3元,这样卖这批西瓜共值290元。

如果每千克西瓜降价0.04元,这批西瓜只能卖250元。

有多少千克大西瓜?
例5.甲、乙二人投飞镖比赛,规定每中一次记10分,脱靶一次倒扣6分。

两人各投10次,共得152分。

其中甲比乙多得16分,两人各中多少次?
变式训练
1.甲组工人生产一种零件,每天生产250个。

按规定每个合格记4分,生产一只不合格要倒扣15分。

该组工人4天共得了2752分,问:生产合格的零件共多少只?
2.某班42个同学参加植树,男生平均每人种3棵,女生平均每人种2棵。

已知男生共比女生多种56棵,求男、女生各多少人。

3.王师傅有2元、5元、10元的人民币共118张,共计500元。

其中5元与10元的张数相等,求三种人民币各多少张。

相关文档
最新文档