昆虫运动仿生研究

合集下载

仿生昆虫研究王金新20121340011041.ppt

仿生昆虫研究王金新20121340011041.ppt

二、昆虫形态的仿生
LOGO
应用于 军事和 航空航 天领域
应用方面
应用于 建筑设 计方面
二、军事和航空航天领域的应用
LOGO
1
2
3 模仿蝴蝶翅面上 的鳞片随阳光照 射方向自动变换 角度而调节体温 的原理成功实现 对人造卫星由于 位置不断变化而 引起温度骤然变 化 的控制
模仿蝴蝶色 彩和花纹的 军事伪装设 施

LOGOΒιβλιοθήκη 模仿蜻蜒翅膀 上的翅痣在飞 机的两翼加上 平衡重锤解决 飞机因高速飞 行而引起振动 的棘手问题
二、建筑设计方面的应用
LOGO
在一些大型建筑中,经常 模仿蜜蜂巢穴的六角形 的架构设计,使建筑物 具有高强度力学支撑结 构,既坚固、美观,又节 省建材
三、昆虫体表微观结构与功能的仿生
LOGO
模仿蝴蝶翅膀 表面细微结构 开发新型防伪 技术(如防伪纸 币或信用卡)
四、听觉方面的应用
LOGO
模仿昆虫听觉结构,研究其对声发射、接收、听信 息加工及运动调控的感觉神经生物学与神经行为 学原理,可望开发先进的“反声纳”装置。
四、视觉方面的应用
LOGO
昆虫(特别是家蝇)具有快速、准确地处理视觉信 息的能力,能实时计算出前面飞行物的方位与速度 同时发出指令控制并校正自己的飞行方向和速度 以便跟踪和拦截目标。对昆虫复眼这一定向导航 系统的研究已得到广泛重视各国都在加紧昆虫视 觉仿生研究,试图模仿昆虫复眼成像机理以及昆虫 视觉信息处理过程,研制新型靶标自动制导系统
五、昆虫运动功能的仿生
LOGO
微小昆虫则是大自然 创造的“微型飞行 器”,经过上亿年的 进化和环境适应,在 形态、运动方式以及 利用“新型”空气动 力学原理 等方面,达 到了近乎完美的程度 这是 各国发展MFI技 术加以仿生借鉴的核 心

昆虫翅膀实验报告

昆虫翅膀实验报告

一、实验目的通过本次实验,旨在了解昆虫翅膀的结构特点、运动原理及其在飞行中的作用。

通过对昆虫翅膀的解剖观察、力学分析以及模拟实验,加深对昆虫飞行机制的理解。

二、实验原理昆虫翅膀是昆虫飞行的主要器官,其结构复杂、功能独特。

昆虫翅膀的运动主要依靠肌肉收缩和骨架的支撑。

通过研究昆虫翅膀的结构和运动原理,可以为仿生学研究和飞行器设计提供借鉴。

三、实验材料与仪器1. 实验材料:昆虫翅膀标本(甲虫、蝴蝶等)、解剖工具、放大镜、显微镜、游标卡尺、胶水、酒精、扫描电镜等。

2. 实验仪器:实验台、显微镜、计算机、高速摄像机、风力试验台等。

四、实验方法1. 解剖观察:对昆虫翅膀进行解剖,观察其结构特点,如翅脉、翅膜、翅骨等。

2. 力学分析:通过实验测量昆虫翅膀在不同飞行状态下的受力情况,分析翅膀的受力特性。

3. 模拟实验:利用计算机模拟昆虫翅膀的运动过程,研究翅膀的运动规律。

五、实验步骤1. 解剖观察(1)将昆虫翅膀标本放在解剖台上,用解剖刀小心地切开翅膀。

(2)用放大镜观察翅脉、翅膜、翅骨等结构特点。

(3)用显微镜观察翅脉、翅膜的细微结构。

2. 力学分析(1)将昆虫翅膀标本固定在实验台上,利用游标卡尺测量翅脉、翅膜的长度和宽度。

(2)利用高速摄像机拍摄昆虫翅膀在不同飞行状态下的受力情况。

(3)将拍摄到的数据输入计算机,进行力学分析。

3. 模拟实验(1)利用计算机软件模拟昆虫翅膀的运动过程。

(2)通过调整参数,观察翅膀在不同飞行状态下的运动规律。

(3)将模拟结果与实际实验数据进行对比,验证模拟结果的准确性。

六、实验结果与分析1. 解剖观察通过解剖观察,发现昆虫翅膀由翅脉、翅膜、翅骨等组成。

翅脉为翅膜的支撑结构,翅膜为翅膀的主要飞行部分,翅骨为翅脉的连接部分。

2. 力学分析力学分析结果表明,昆虫翅膀在飞行过程中主要受到升力和阻力的作用。

升力与阻力之比决定了昆虫的飞行稳定性。

3. 模拟实验模拟实验结果显示,昆虫翅膀在飞行过程中具有以下特点:(1)翅膀的振动频率与飞行速度有关,飞行速度越快,振动频率越高。

仿生扑翼飞行机理的分析研究与技术发展

仿生扑翼飞行机理的分析研究与技术发展

徐州工程学院学报2007年第4期膀各个部分的协调动作来产生有效的升力和前进力.图1鸟类内翼模型剖面图Fig.1Sectionplaneofinnerwingmodelofbirds1.2昆虫飞行机理昆虫的翅膀是类似的平面薄体结构,不能伸缩变形,不具滑翔能力,与鸟类的飞行相比有着本质的区别,只能通过高频振动和灵巧的扑翅运动产生足够升力.Wooton认为昆虫飞行能力和飞行技巧的多样性大半来自于翅型多样性和微妙复杂的翅运动模式[1].其翅膀在拍动过程中伴随着快速且多样性的运动,会产生不同于周围大气的局部不稳定气流,这种非定常空气动力学效应是研究和理解昆虫和小鸟飞行机理及其空气动力学特性进而实现仿生飞行的重要基础.随着对非定常流理论认识的加深,研究者们开始探讨非定常效应在昆虫飞行升力产生中发挥的重要作用,并采用非定常空气动力学理论解释昆虫飞行的机理.分析表明,昆虫一个周期内的扑动大体可分解为四个阶段:翅膀在上扑至顶点时翅膀旋转、下扑、下扑至最低点时翅膀旋转、上扑,图2为蜂鸟悬停飞行时的扑翼轨迹.通过探索各个运动中所涉及到的空气动力学理论,可得到几种比较具有代表性的解释昆虫扑翼产生升力的机理.图2蜂鸟扑翅过程Fig.2Flappingprocessofwoodnymph图3合拢与分开机制Fig.3Clap—Flingmechanism1.2.1合拢与分开(Clap--Fling)1973年,Weis—Fogh通过观察小黄蜂生物资料,并在仔细研究了昆虫振翅飞行生物学资料的基础上,提出了拍飞(Clap--Fling)机理[2].拍飞机理可通过图3所示的模型来解释,两翅前缘在顶点处合拢,然后两翅逐渐旋转并从前缘处分开,这时两翅问夹角增大,空气流入两翅空隙中,随着两翅间夹角增大,空气流动使得翅周围形成两个旋转涡,翅表面很快形成环流.当两翅张开到一定角度时,两翅分开,各自平动,这时两翅表面各有一个边界涡,使得下拍开始时产生尽可能大的升力.该机理可以解释一部分小型昆虫产生大升力的原因,但不适用于所有昆虫,没能从根本上揭开昆虫高升力的奥秘,却促使人们真正开始用非定常效应来解释昆虫的飞行.1.2.2延时失速(DelayedStall)随着流体实验技术的完善,人们开始观察吊飞昆虫的翅尖轨迹及其翅膀周围的流场,发现在下拍过程中·28·端义霞,等:仿牛扑翼飞行机理的分析研究与技术发展翅前缘产生分离的流场,称为前缘涡(LEV),见图4.涡快速转动,造成翅上方低压,从而产生较大的升力;涡逐渐由前缘向后缘流去,升力就会迅速减小.图4下拍过程中的前缘涡Fig.4Leading--edgevortexesproduced图5上拍产生新的前缘涡Fig.5Newleading--edgeproducedbydownstrokebyupstroke如果前缘涡流出,失速现象将会发生.实际卜,在一个扑动周期结束前缘涡脱落时,下一周期翅膀旋转后上拍又将产生新的前缘涡,见图5.1996年,英国剑桥大学的Ellington等通过对飞蛾动态比例模型的流体观察实验研究‘3“i,发现翅前缘背面产生的前缘涡在昆虫翅膀下拍得整个平动过程中都不脱落,使高升力得以保持,从而揭示了延时失速(DelayedStall)机理.1.2.3旋转环流(RotationalCirculation)和尾流捕获(WakeCapture)1999年,美国加州大学伯克利分校的Dickinson等为了能进一步解释昆虫产生大升力的机理,用果蝇翅的比例放大模型进行了实验研究口],发现在翅上拍和下拍过程的开始时刻和结束时刻,分别有一个升力峰.这样,Dickinson将昆虫的翅拍动周期分为四个部分,两个平动部分(上拍和下拍)和两个转动部分(翅翻转),并认为昆虫飞行的高升力是通过“延迟失速”,“旋转环流”(Rotationcirculation)和“尾流捕获”(wakecapture)三个机理相互作用获得的.“延迟失速”是翅平动时产生升力的机理,“旋转环流”和“尾流捕获”则是翅转动时产生升力的机理[51:.旋转环流产生升力的机制可用马格纳斯效应(Magnuseffect)阐述.翅膀在流体中同时作平动和转动,将产生类似于棒球旋转的马格纳斯效应。

蟋蟀的弹跳运动及其仿生分析

蟋蟀的弹跳运动及其仿生分析

硕士学位论文开题报告及论文工作计划书
课题名称蟋蟀的弹跳运动及其仿生分析
学号1000491
姓名狄俊平
专业机械设计及理论
学院机械工程与自动化学院
导师肖平阳
副导师陈述平
选题时间2011 年6 月日
东北大学研究生院
年月日
填表说明
1、本表一、二、三、四、五项在导师指导下如实填写。

2、学生在通过开题后一周内将该材料交到所在学院、研究所。

3、学生入学后第三学期应完成论文开题报告,按有关规定,没有完成开题报告的学生不能申请论文答辩。

图1 Raibert单腿跳跃模型图2 二维弹跳机器人
(a)第一代弹跳机器人(b)第二代弹跳机器
(c)第三代弹跳机器人(d)菱形蓄能装置原理图
的三代弹跳机器人
图8 “T”型弹跳机
东北大学硕士研究生学位论文选题报告评分表。

昆虫生物力学和仿生学的研究进展

昆虫生物力学和仿生学的研究进展

昆虫生物力学和仿生学的研究进展昆虫是地球上最为多样化和适应性最强的生物之一,而其身体结构的精细和功能的多样性也让昆虫生物力学和仿生学成为了重要的研究领域。

近年来,随着技术和方法的不断进步,昆虫生物力学和仿生学取得了许多令人瞩目的成果。

一、昆虫运动的生物力学机制昆虫的运动主要靠肌肉的收缩和伸长来实现,而肌肉收缩的驱动系统是神经系统。

昆虫的神经系统分为中央神经系统和周围神经系统。

中央神经系统相当于昆虫的“大脑”,它主要由一些神经元组成,能够执行各种信息处理,包括感觉、反射、控制肌肉的运动等;周围神经系统由神经节和神经纤维组成,它们的主要作用是传递中央神经系统的信号,并控制昆虫肌肉的运动。

昆虫的运动受控于神经系统的调节,其运动速度、力量和协调性等都与神经的反应速度有关。

昆虫运动的性能也与其体型有很大关系,比如体型较小的昆虫如蚂蚁和蜜蜂,可能会跑得更快、飞得更高,而体型较大的昆虫如飞蛾,可能会飞得更稳、更远。

二、昆虫结构的仿生学应用昆虫的身体结构极其精细,其身体和器官的结构、功能和生理机制都具有很高的复杂性和多样性。

因此,昆虫的结构和功能也成为了仿生学的研究对象。

昆虫的翅膀、鸟的翅膀,还有飞机上的机翼,它们的形状非常相似,这是因为它们都是按照气动学原理来设计的。

通过仿生学的技术,人们可以将动物的结构和功能转化为技术的设计,为航空、航天等领域的研究带来了很大的启示。

比如,仿照蜜蜂的羽翼,研究者们制造出了一种叫做“蘑菇马达”的微型机器人,其翅膀可以像蜜蜂一样高速振动,具有很高的操控性和稳定性,可以被广泛应用于微型机器人领域。

再比如,仿照昆虫的身体表面结构,人们也研制出了一种超级润滑材料,具有优良的防污、防水性能,可以在很多领域中大量使用。

三、未来的前景和挑战昆虫生物力学和仿生学作为交叉学科,正吸引着越来越多的科学研究者的关注。

随着技术和方法的不断进步,我们可以预料到这个领域将会取得更多的突破性成果。

然而,在研究昆虫生物力学和仿生学的过程中,也面临着很大的挑战。

昆虫仿生发明

昆虫仿生发明

昆虫仿生发明是指从昆虫的生理结构、行为习性和生存策略中获取灵感,设计出新的科技产品或解决方案。

昆虫是自然界中最多样化的生物群体之一,它们的生存策略和生理结构具有很高的适应性和创新性。

以下是一些昆虫仿生发明的例子:
1. 蜻蜓翅膀:蜻蜓的翅膀非常薄,但强度却非常高。

科学家受到启发,研发出了一种名为“超轻型材料”的材料,这种材料既轻又强,可以用于制造飞机、汽车等交通工具。

2. 蜜蜂蜂巢:蜜蜂蜂巢的结构非常复杂,但却非常坚固。

科学家受到启发,研发出了一种名为“蜂巢结构”的新型建筑材料,这种材料既轻又强,可以用于建造高层建筑。

3. 蜘蛛丝:蜘蛛丝是一种非常坚韧的材料,但其重量却非常轻。

科学家受到启发,正在研发一种名为“蜘蛛丝蛋白”的新型纤维材料,这种材料既轻又强,可以用于制造防弹衣、运动鞋等。

4. 蚊子的吸血机制:蚊子的吸血机制是通过一根细长
的针状器官穿透皮肤。

科学家受到启发,正在研发一种名为“微针贴片”的新型医疗设备,这种设备可以通过微针将药物直接输送到皮肤下,减少药物的副作用。

5. 蚂蚁的社会结构:蚂蚁的社会结构非常复杂,每个蚂蚁都有其特定的角色和任务。

科学家受到启发,正在研发一种名为“蚁群算法”的新型计算机算法,这种算法可以模拟蚂蚁的社会行为,用于解决复杂的优化问题。

以上就是一些昆虫仿生发明的例子。

蝴蝶仿生飞行器原理

蝴蝶仿生飞行器原理

蝴蝶仿生飞行器原理蝴蝶,作为一种翅膀轻盈的昆虫,其独特的飞行方式一直以来都引起了人们的好奇和探究。

蝴蝶仿生飞行器正是受到了蝴蝶的飞行原理的启发而设计的一种飞行器。

本文将介绍蝴蝶仿生飞行器的原理及其应用。

蝴蝶的翅膀是其飞行的关键,它们的翅膀由许多小而薄的鳞片组成,这些鳞片可以灵活地移动和改变角度。

当蝴蝶飞行时,它们通过调整翅膀的角度和振动频率来产生升力和推力,从而实现飞行的目的。

蝴蝶仿生飞行器利用了蝴蝶的飞行原理,通过模拟蝴蝶的翅膀结构和运动方式来实现飞行。

首先,仿生飞行器的翅膀采用了类似于蝴蝶翅膀的鳞片结构,这种结构可以使飞行器的重量减轻,并且具有一定的柔韧性。

其次,仿生飞行器的翅膀可以通过机械装置调整角度和振动频率,从而产生升力和推力。

这种设计使得仿生飞行器能够在空中保持平衡并实现稳定的飞行。

蝴蝶仿生飞行器的应用非常广泛。

首先,在军事领域,仿生飞行器可以用于进行侦查和监视任务。

其翅膀的柔韧性和稳定性使得飞行器可以在复杂的环境中自由飞行,并收集情报信息。

其次,在科研领域,仿生飞行器可以用于进行气象观测和环境监测。

它可以携带各种传感器,对大气中的温度、湿度、气压等参数进行实时监测,从而为气象预测和环境保护提供数据支持。

此外,在救援行动中,仿生飞行器也可以发挥重要作用。

它可以飞入灾区进行搜救和救援,为受灾群众提供帮助。

蝴蝶仿生飞行器的原理虽然简单,但是其应用却十分广泛。

它不仅可以模拟蝴蝶的飞行方式,还可以结合现代科技,实现更多的功能。

随着科技的不断发展,相信蝴蝶仿生飞行器会在更多领域展现出其独特的价值和优势。

总结起来,蝴蝶仿生飞行器利用了蝴蝶的翅膀结构和运动方式来实现飞行,其翅膀的鳞片结构和机械装置使得飞行器可以产生升力和推力,并保持平衡和稳定。

蝴蝶仿生飞行器的应用广泛,包括军事侦查、科学研究和救援行动等领域。

相信随着科技的发展,蝴蝶仿生飞行器将会展现出更多的潜力和价值。

蜻蜓仿生学的例子

蜻蜓仿生学的例子

蜻蜓仿生学的例子蜻蜓是常见的昆虫之一,也是生物仿生学中经典的研究对象。

蜻蜓的身体构造十分特殊,其独特的翅膀结构和身体组织被许多科学家所借鉴,开发出了许多实用的应用,如超轻的飞行器和绿色能源风轮等。

首先,蜻蜓的翅膀结构十分独特,它们具有网状的纵横交错的表面结构,这种结构使蜻蜓在飞行时能够减少空气阻力,同时增加翼表面积。

科学家通过仿生学研究,在人工航空器中采用了类似的网状结构设计,以提高飞行效率。

此外,蜻蜓的翅膀上有许多类似于“拇指”和“拇指爪”的微型结构,这些结构可以在翅膀运动时改变翼面的形状,使得蜻蜓在飞行时能够调整速度和姿态。

研究人员通过仿生技术,将类似的微型结构应用于仿生机器人中,改善了机器人的运动控制能力。

另外,蜻蜓身体的轻巧和纤细也激发了科学家的研究灵感。

科学家们发现蜻蜓的身体结构非常轻盈,这不仅使它们在飞行过程中非常敏捷迅速,而且还使得它们的飞行距离更长。

于是,仿生学研究人员利用蜻蜓的身体结构开发出了各种轻巧的飞行器和机器人,例如鸟类、昆虫等,这使得这些机器人的性能更加出色。

此外,蜻蜓的眼睛也成为了仿生学研究的重要对象。

蜻蜓的眼睛被分成了几千个小眼睛,每个小眼睛只能看到一个像素大小的区域,而且它们的眼睛能够实现360度全景视角。

这种眼睛结构被称为复眼,因为它们可以在瞬间捕捉到周围的大量信息,并将其整合成一个图像。

科研人员通过仿生学技术,开发出了使用复眼技术的摄像头,可以用于监控或拍摄飞机、无人机等高速运动物体。

综上所述,通过对蜻蜓的研究,我们可以发现许多生物进化的智慧和优越性能,并将这些智慧和优越性能应用到人工设备中,来提高它们的性能和功能。

未来,仿生学研究将在人工智能、材料科学、飞行器等多个领域取得更多的成果,从而改善人类的生活质量并为保护地球环境做出贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

XW '/ S
YW
'
/
S

ani
1
形 与 角
-Z
XW
XW S
'
(ZW
)

X

YW
YW S
'
(ZW
)

W(XW,YW,ZW)
精密测试技术与仪器国家重点实验室
梳状条纹投影法数据处理



取 :
A1’ E1’

A1
E2’
形 与
A D1 E1
K1 K2
EN-1’

D2 E2
KN-1
B1’


Science, Vol.300, 495-498, 2003 (Dickinson) 精密测试技术与仪器国家重点实验室
J. Exp. Biol.(C.Schilstra & J.H. van Hateren)
数 据
身体姿态测量:

传感器:三维正交线圈


测量原理:磁场变化
自 由
测量参数:姿态,位置
研究现状
精密测试技术与仪器国家重点实验室
国内外研究现状:

究 东京大学(力学):旋涡作用;翼形与升力的关系 趋 剑桥大学(动物学):扇翅模型,能量,自由飞行 势 UC Berkeley(微机械):仿昆虫三维翅膀,扑翼飞机
清华大学:昆虫运动测量 北京航空航天大学:扇翅运动计算流体研究 中国科学院研究生院:力学分析 西北工业大学,南航等:小飞机


测角精度:0.5度,位置精度 1mm 测量范围:40 cm3,采样频率1kHz 线圈重:0.8-1.6mg, 线重.6.7mg/m
精密测试技术与仪器国家重点实验室
双条纹跟踪测量方法,解决了形状测量时位置的不连
续性,可同时测量游鱼某瞬间的位置与身体形状。 数

Water tank
Background light
直飞
40 30 20 10
0 -10 -20 -30
0
right posterior wing left posterior wing right anterior wing left anterior wing
5
10
15
20
25
30
35
Time (ms)
转弯 40 30 20 10 0 -10 -20 -30 -40 -50 0
Nature, Vol.384, 626-630, 1996 (Ellington) 扇翅机构 :2维 测量:发烟
精密测试技术与仪器国家重点实验室
扇翅机构:2维 测量:DPIV,
应变片 介质:油
Nature, Vol.412, 729-733. 2001 (Dickinson) 精密测试技术与仪器国家重点实验室


固定扇翅测量
扇翅机构研制

(力、变形、流场)
(翼形与机构优化)

自由飞行测量
(姿态、动态范围)
自由飞行机理
(控制,协调等)
小飞机
精密测试技术与仪器国家重点实验室
国际水平 变形与角度测量:

高精度,弓形变形,跟踪测量

扇翅、扭转角,身体姿态,速度、加速度
的 位
测量范围小,昆虫引导

力与流场测量:
高灵敏度激光测力,
流场测量与显示
扇翅机构: 真实翅膀用二维扇翅机构 翅膀模型用二维扇翅机构, 有限元分析
精密测试技术与仪器国家重点实验室
精密测试技术与仪器国家重点实验室
数 据 获 取 : 扇 翅 力 测 量
昆虫扇翅力测量
测量风洞中昆虫翅膀扇动力 高固有频率,高检测灵敏度
Voltage (V)
Beating force (mN)
-0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9
0
N S+N S
20
获 取
•流线型设计,减
: 飞
小对流场的影响
行 诱
•蛾飞行速度由风

洞的 吹风强度决

Willmott & Ellington
精密测试技术与仪器国家重点实验室
数 据
•闪动紫外灯
获 取
使蜜蜂起飞
: 飞
•柱子转动
行 诱
控制飞行方向

•改变吹风强度
控制飞行速度
Dudley & Ellington
精密测试技术与仪器国家重点实验室
W1
M
W4 45º
Laser
P y
60 W2
W3 S
B o
Box W5 x
C1 z
Cover glass
Camera 1
W6 S1
=60º H
z (mm)
x (mm)
9.2 8.8 8.4 8.0 -7 -6 -5 -4 -3
42
41
40
39 38 37
用点阵光测量自由飞行昆虫身体姿态,提高测 量精度,有利于分析飞行时各器官的协调性

FPP-A

A
Detector


B Reference fringe


Lamp B
C
Laser
Lamp A
精密测试技术与仪器国家重点实验室
数 据 获 取 : 变 形 与 角 度 测 量
Flapping angle (deg.)
0 -5 -10 -15 -20 -25 -30
0.8 0.4 0.0
数 据 获 取 : 跟 踪 方 法
精密测试技术与仪器国家重点实验室
电磁跟踪+图像跟踪 数 据 获 取 : 跟 踪 方 法
• 跟踪速度 • 跟踪电机的稳定性 • 离焦
精密测试技术与仪器国家重点实验室
y (mm)
数 据 获 取 : 姿 态 测 量
身体姿态测量
Camera 2 C2
Screen W7

摄像机B
据 获
灌木丛
取 :
摄像机A
8.9m
1.3m

水和水草


0.7m

• 根据拍摄,测量蜻蜓扇翅频率,飞行速度,加速度, 研究升力和推进力。 • 比较了两类蜻蜓的不同扇翅模式。
Ellington
精密测试技术与仪器国家重点实验室

测量:

用3台高速摄

像机从不同角

度拍一个周期中下扇的升力 远大于上扇时向下的力
精密测试技术与仪器国家重点实验室
蓟马自由飞行



析 : 计
小雷诺数时 毛状翅膀更有利





精密测试技术与仪器国家重点实验室
翅膀变形有限元分析
数 据 分 析 : 有 限 元
精密测试技术与仪器国家重点实验室
蜻蜓扇翅翅膀根运动与扇翅机构 数 据 分 析 : 有 限 元
精密测试技术与仪器国家重点实验室

扇翅机构上的蜻蜓翅膀与人造翅膀







精密测试技术与仪器国家重点实验室
扑翼飞机
精密测试技术与仪器国家重点实验室








Vanderbilt大

学研制的扑翼
微型飞机。翅
膀用碳纤维材
料加工,用柔
性5杆机构驱
动,靠共振原
理扇翅。
美国加利福尼亚大学Nick等人研制的 扑翼微型飞机:重量6.5克,翅膀用 MEMS技术加工。由两个1F 的电容提供 能量。扇翅时间1分钟
t = 21.106ms
20
1.2 0.8
0.4 0.0
-2
02
46
8 10 12 14 16 18
t = 24.121ms
25
前缘带动后缘运动
精密测试技术与仪器国家重点实验室
Torsion angle (deg.) Flapping angle (deg.)

Torsion Angle at 25% of the wing
right posterior wing left posterior wing right anterior wing left anterior wing
5
10
15
20
25
30
Time (ms)
蜻蜓的飞行控制主要由前翅完成 而后翅主要用于产生升力
精密测试技术与仪器国家重点实验室


吸引蛾的喂食器:
15

Torsion Angle at 50% of the wing
140
Torsion Angle at 75% of the wing
10

Flapping angle
5

120

0

100
-5

80
-10

-15

60
-20
度 测 量
40 0
-25
-30
5
10
15
20
25
后翅
Time (ms)
-2 0 2 4 6 8 10 12 14 16
t = 15.075ms
后翅
0.8 0.4 0.0
-2 0 2 4 6 8 10 12 14 16
相关文档
最新文档