人教版七年级上册第三章一元一次方程3.4.1实际应用工程问题

合集下载

人教版七年级数学上册3.4.1利用一元一次方程解配套问题和工程问题

人教版七年级数学上册3.4.1利用一元一次方程解配套问题和工程问题

总产量
1200x
2000(22-x)
螺母的总产量=螺钉的总产量×2
2000(22-x)
1200x
例题讲解
x
22-x
生产螺钉的工人数+生产螺母的工人数=22
例1 某车间有22名工人,每人每天可以生产1 200个螺钉或2 000
个螺母. 1个螺钉需要配 2个螺母,为使每天生产的螺钉和螺母刚好配
套,应安排生产螺钉和螺母的工人各多少名?
相等关系呢?
例1 某车间有22名工人,每人每天可以生产1 200个螺钉或2 000个螺母. 1个
螺钉需要配 2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺
母的工人各多少名?
生产螺钉的工人数+生产螺母的工人数=22
x
22-x
产品类型 生产人数 单人产量
x
1200
螺钉
22-x
2000
螺母
B.32+x=2(22+x)
C.32-x=2(22+x)
D.32+x=2(22-x)
课堂练习
3. 某工厂男、女工人共70人,男工人调走10%,女工人调入6人,男、女工
人数正好相等,则原来男、女工人数分别有( A )
A. 40人,30人
B. 30人,40人
C. 35人,35人
D. 43人,27人
课堂练习
练习
3. 41人参加运土劳动,有30根扁担,安排多少人抬,多少人挑,可使扁
担和人数相配不多不少?若设有x人挑土,则列方程是( C )
A. 2x-(30-x)=41
C.

x+ =30


B. +(41-x)=30
D. 30-x=41-x
例题讲解

人教版七年级上册数学第三章一元一次方程应用题——工程问题

人教版七年级上册数学第三章一元一次方程应用题——工程问题

人教版七年级上册数学第三章一元一次方程应用题——工程问题1.某建筑工地计划租用甲、乙两辆车清理建筑垃圾,已知甲车单独运完需要12天,乙车单独运完需要24天.甲车先运了3天,然后甲、乙两车合作运完剩下的垃圾.(1)甲、乙两车合作还需要多少天才能运完这些垃圾?(2)已知甲车每天的租金比乙车多100元,运完这些垃圾后建筑工地共需支付租金3900元,甲、乙两车每天的租金分别为多少元?2.现有一项工程,甲队单独完成需10天,乙队单独完成需6天.(1)若甲队单独做2天后两队再合作,则甲、乙两队再合作多少天才能把该工程完成?(2)在(1)的条件下,甲队每天的施工费用为500元,乙队每天的施工费用为600元,则完成此项工程需付给甲、乙两队共多少元?3.某城市平均每天产生垃圾700吨,由甲,乙两个垃圾处理厂处理.已知甲厂每小时可以处理垃圾55吨,每吨需费用10元;乙厂每小时可以处理垃圾45吨,每吨费用9元.(1)甲,乙两厂同时处理该城市的垃圾,每天需要多少时间完成?(2)如果该城市每天用于处理垃圾的费用为6700元,那么甲厂每天处理垃圾多少吨?4.某工人原计划每天生产45个零件,到预定期限还有220个零件不能完成.若提高工效20%,则到期将超额完成140个.此工人原计划生产零件多少个?预定期限是多少天?5.列方程解应用题:某车间原计划13小时生产一批零件,技术革新提升了产能,实际每小时多生产10件,用12小时不仅完成任务,而且还较原计划多生产了60件.求:原计划每小时生产的零件数.6.一项工程,如果由甲工程队单独做需要20天完成,乙工程队单独做需要12天完成.现在由甲队单独做4天,剩下的工程由甲、乙合作完成.(1)(列方程解答)剩下的部分合作还需要几天完成?(2)若该工程的总费用为240万元,根据实际完成情况,甲乙两工程队各得多少万元?7.现有甲、乙两个工程队共同铺设一段长为1350km的天然气管道.甲工程队每天铺设5km,乙工程队每天铺设7km,甲工程队先施工30天后,乙工程队也开始一起施工,乙工程队施工多少天后能完成这项工程?8.某地为了打造风光带,将一段长为360m的河道整治任务,由甲、乙两个工程队先后接力完成,共用时20天.已知甲工程队每天整治24m,乙工程队每天整治16m.求甲、乙两个工程队分别整治了多少天完成任务?9.我县更生路正在改造地下管线,该管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天,如果由这两个工程队从两端同时施工,要多少天可以铺好这条管线?10.有一些相同的房间需要粉刷墙面,一天4名一级技工去粉刷8个房间,结果其中有20平方米墙面未来得及粉刷;同样时间内2名二级技工粉刷了3个房间之外,还多粉刷了另外的20平方米墙面.已知每名一级工比二级工一天多粉刷15平方米墙面,求每名一级技工、二级技工每天各刷墙面多少平方米.11.整理一批图书,由一个人做需要120h完成,先计划由一部分人先做12h,然后再增加5人与他们一起做8个小时,完成这项工作.假设这些人的工作效率相同,具体应安排多少人工作?12.修一条公路,甲队单独修需要10天完成,乙队单独修需要12天完成,丙队单独修需要15天完成.现在先由甲队修2.5天,再由乙队接着修,最后还剩下一段路,由三队合修2天才完成任务.求乙队在整个修路工程中工作的天数.13.开凿一个山洞,甲队单独开凿8天完成,乙队单独开凿12天完成,现甲队单独开凿若干天之后留给乙队单独开凿,两队先后共用10天完成,甲乙两队各开凿几天?14.一项工程甲单独做需要10小时,乙单独做需要8小时,现甲单独做两小时后乙加入一起做,问这项工程完成共需几个小时?15.某项工程,如果让甲工程队单独工作需75天完成,如果让乙工程队单独工作需50天完成.如果让两个工程队一起工作15天,再由乙工程队完成剩余部分,共需多少天完成?(请列方程解应用题)16.一条地下管线,若由甲工程队单独完成需要12天,由乙工程队单独完成需要24天,先由乙工程队铺设3天,剩下的甲、乙合作完成.还需多少天铺设完这条管道?17.一项工程,甲单独做需20天完成,乙单独做需10天完成,现在先由甲乙合做4天后,剩下的部分由甲单独做完成,问一共需要做多少天完成任务?(列方程解应用题)18.为了便于广大市民晚上出行,政府计划用24天的时间在徒骇河大桥至下注段公路两侧修建路灯便民设施,若此项工程由甲队单独做需要40天完成,由乙队单独做需要20天完成.在甲队单独做了一段时间后,为了加快工程进度乙队也加入了工程建设,正好按原计划完成了此项工程,问此项工程甲队单独做了多少天19.甲、乙两人的工作效率之比为3:2,某项工作甲、乙合作7天后,乙再单独工作2天可以完成任务的一半,问甲、乙单独做各需几天才能完成这项工作?20.姐、弟二人录入一批稿件,姐姐单独录入需要的时间是弟弟的38,姐姐先录入了这批稿件的25,接着由弟弟单独录入,共用24小时录入完.问:姐姐录入用了多少小时?。

人教版七年级上册第三章一元一次方程解实际问题

人教版七年级上册第三章一元一次方程解实际问题

实际问题与一元一次方程用一元一次方程解决实际问题的基本过程:知识点1. 工程问题1.挖一条1210m 的水渠,由甲、乙两队从两头同时施工,甲队每天挖130m ,乙队每天挖90m ,需几天才能挖好?设需用x 天才能挖好,则下列方程正确的是( )A .121090130=+x xB .121090130=+xC .121090130=+xD .()121090130=-x2.甲、乙两个工程队合作完成一项工程,甲队一个月可以完成总工程的121,乙队的工效是甲队的2倍.两队合作多长时间后,可以完成总工程的21?3.一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,需要几天完成?4.某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。

如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五?知识点2. 配套问题1.某车间加工机轴和轴承,一个工人每天平均可加工15个机轴或10个轴承。

该车间共有80人,一根机轴和两个轴承配成一套,问应分配多少个工人加工机轴或轴承,才能使每天生产的机轴和轴承正好配套。

2.某厂生产一批西装,每2米布可以裁上衣3件,或裁裤子4条,现有花呢240米,为了使上衣和裤子配套,裁上衣和裤子应该各用花呢多少米?3.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?4.有33名学生参加社会实践劳动,做一种配套儿童玩具.已知每个学生平均每小时可以做甲元件8个或乙元件3个或丙元件3个,而2个甲元件,1个乙元件和1个丙元件正好配成一套.问应该安排做甲、乙、丙三种元件的学生各多少名,才能使生产的三种元件正好配套?知识点3. 销售中的盈亏1.如图所示是某超市中某品牌洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚.请你帮忙算一算,该洗发水的原价为( )A.22元B.23元C.24元D.26元2.某商品的售价比原售价降低了15%,如果现在的售价是51元,那么原来的售价是( )A.28元B.62元C.36元D.60元3.某商品进价是200元,标价是300元,要使该商品的利润率为20%,则该商品销售时应打( )A.7折B.8折C.9折D.6折4.一件商品在进价基础上提价20%后,又以9折销售,获利20元,则进价是多少元?5.一件商品的标价为1100元,进价为600元,为了保证利润率不低于10%,最多可打几折销售?知识点4. 球赛积分问题与单位对比问题1.某次足球联赛的积分规则:胜一场得3分,平一场得1分,负一场得0分.一个队进行了14场比赛,其中负5场,共得19分,则这个队共胜了( )A.3场B.4场C.5场D.6场2.某班级乒乓球比赛的积分规则:胜一场得2分,负一场得-1分.一个选手进行了20场比赛,共得28分,则这名选手胜了多少场(说明:比赛均要分出胜负)?3.某校进行环保知识竞赛,试卷共有20道选择题,满分100分,答对1题得5分,答错或不答倒扣2分.如答对12道,最后得分为44分.小茗准备参加比赛.(1)如果他答对15道题,那么他的成绩为多少?(2)他的分数有可能是90分吗?为什么?知识点5. 分段计费问题1.某市出租车收费标准为3公里内起步价10元,每超过1公里加收2元,那么乘车多远恰好付车费16元?2.某超市推出如下优惠方案:①一次性购物不超过100元不享受优惠;②一次性购物超过100元但不超过300元一律九折;③一次性购物超过300元一律八折.王林两次购物分别付款80元,252元,如果王林一次性购买与上两次相同的商品,那么应付款多少元?3.请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和20个水杯,请问选择哪家商场购买更合算,并说明理由(必须在同一家购买).4.根据下表的两种移动电话计费方式,回答下列问题:计费方式全球通神州行月租费25元/月0本地通话费0.2元/min0.3元/min(1)一个月内本地通话多少时长时,两种通讯方式的费用相同?(2)若某人预计一个月内使用本地通话花费90元,则应该选择哪种通讯方式较合算?知识点6. 路程问题:1.小刚和小强从A,B两地同时出发,小刚骑自行车,小强步行,沿同一条路线相向匀速而行.出发后2h两人相遇.相遇时小刚比小强多行进24km,相遇后0.5h小刚到达B地.两人的行进速度分别是多少?相遇后经过多少时间小强到达A地?2.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

人教版七年级上册3.4实际问题与一元一次方程-产品配套问题和工程问题(教案)

人教版七年级上册3.4实际问题与一元一次方程-产品配套问题和工程问题(教案)
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一元一次方程在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
6.总结回顾环节,学生对本节课的知识点掌握情况较好。但在课后,我还需要关注学生的复习情况,及时解答他们在学习过程中遇到的疑问。
(2)工程问题:
-难点:如何根据题目中的条件找出工程总量、工作效率和时间之间的关系。
-举例:在上述例子中,需要引导学生理解甲、乙两个部分的工作效率以及合作完成工程的时间,进而得出方程。
Байду номын сангаас(3)一元一次方程的解:
-难点:理解方程解的实际意义,如何将解代入原问题检验。
-举例:在解决问题过程中,引导学生将方程解代入原问题,验证解的正确性和实际意义。
1.数学抽象:通过分析实际问题,培养学生将现实问题转化为数学模型的能力,提高数学抽象思维。
2.逻辑推理:在解决产品配套和工程问题的过程中,引导学生运用逻辑推理,分析问题,找到解决问题的方法。
3.数学建模:使学生掌握一元一次方程在实际问题中的应用,培养数学建模能力。
4.数学运算:培养学生准确、熟练地进行一元一次方程运算,提高数学运算能力。
人教版七年级上册3.4实际问题与一元一次方程-产品配套问题和工程问题(教案)
一、教学内容
人教版七年级上册3.4节“实际问题与一元一次方程”中的产品配套问题和工程问题是本节课程的核心内容。主要包括以下两部分:
1.产品配套问题:结合实际生活中的例子,引导学生理解什么是产品配套问题,掌握运用一元一次方程解决此类问题的方法。例如,某工厂生产两种产品,要求确定两种产品的生产数量,以满足市场需求。

人教版数学七年级上册3.4.1实际问题与一元一次方程-------工程问题教案

人教版数学七年级上册3.4.1实际问题与一元一次方程-------工程问题教案

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯课题:列一元一次方程解有关工程问题的应用题一、教学背景分析1、教材分析:本节内容是一元一次方程应用的延伸与拓展,它进一步让学生亲身经历将实际问题抽象成数学模型,为以后内容学习奠定了必要的数学基础,本节内容具有承上启下的作用.学生能深刻地认识到方程是刻画现实世界有效的数学模型,领悟到“方程”的数学思想方法.2、学情分析:学生刚从小学升入初中,抽象能力还比较差,习惯于用算术的方法解决问题,要用数学模型来解答一元一次方程应用题,还要教师多引导,学生多讨论,反复练习、应用和理解。

二、教学目标:1、使学生会列一元一次方程解有关工程问题的应用题。

2、养学生分析解决实际问题的能力。

三、教学重点:探索并掌握列一元一次方程解决有关工程问题的实际问题的方法四、教学难点:找出已知量与未知量之间的关系,尤其是相等关系两人合作3天完成的工作量是,此时剩余的工作量是。

2、一项工作甲独做a天完成,乙独做b天完成,那么甲每天的工作效率是,乙每天的工作效率是,两人合作3天完成的工作量是,此时剩余的工作量是。

二、例题讲解:1、整理一批图书,由一个人做要40小时完成。

现在计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作,假设这些人的工作效率相同,具体应先安排多少人工作?(1)首先由老师引导学生阅读题目、理解题意。

(2)提出问题:1:这道题目的已知条件是什么?2:这道题目要求什么问题?3:这道题目的相等关系是什么?(3)学生分组讨论,设出未知数,并列出方程,师生共同解答;同时教师在黑板上写出解题过程,形成板书。

2、一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成?(1)首先由老师引导学生阅读题目、理解题意。

(2)提出问题:1:这道题目的已知条件是什么?2:这道题目要求什么问题?3:这道题目的相等关系是什么?(3)学生分组讨论,设出未知数,并列出方程,分组解答;让各小组分别展示解答过程。

人教版初中数学七上第三章 一元一次方程 3.4 第1课时 配套问题与工程问题

人教版初中数学七上第三章 一元一次方程 3.4 第1课时 配套问题与工程问题
答:甲、乙一起做还需要2.2 h才能完成工作.
A.11人
B.12人
B C.13人
D.14人
8.某机械厂加工车间有90名工人,平均每人每天可加工大齿轮20个或小齿轮15 个.已知2个大齿轮和3个小齿轮配成一套,则一天最多可以加工 300 套这样 成套的产品. 9.整理一批图书,由一个人做需要80 h完成,假设每人的工作效率相同.若限定 32 h完成,一个人先做8 h,则需要增加多少人帮忙,才能在规定的时间内完成?
答:需要增加2人帮忙,才能在规定的时间内完成.
答:应该安排6人先做.
10.某工厂现有15 m3木料,准备制作各种尺寸的圆桌或方桌,计划用部分木料 制作桌面,其余木料制作桌腿. (1)已知一张圆桌由一个桌面和一条桌腿组成,如果1 m3木料可制作40个桌面, 或制作20条桌腿.要使制作出的桌面、桌腿恰好配套,则用多少立方米木料制作 桌面?
第三章 一元一次方程
3.4 实际问题与一元一次方程 第1课时 配套问题与工程问题
知识点一 配套问题 1.某眼镜厂车间有28名工人,每名工人每天生产镜架60个或者镜片90片,1个镜 架需要配2个镜片,为使每天生产的镜架和镜片刚好配套.若设安排x名工人生产 镜片,则可列方程( C )
A.60(28-x)=90x B.60x=90(28-x) C.2×60(28-x)=90x D.60(28-x)=2×90x
答:用12 m3木料制作桌面,3 m3木料制作桌腿能制作尽可能多的桌子.
(2)已知一张方桌由一个桌面和四条桌腿组成.根据所给条件,解答下列问题: ①如果1 m3木料可制作50个桌面或制作300条桌腿,应怎样用料才能使做好的桌 面和桌腿恰好配套? ②如果3 m3木料可制作20个桌面或制作320条桌腿,应怎样用料才能制作尽可能 多的桌子?

人教版七年级数学上册课件:3.4.1 配套问题与工程问题

人教版七年级数学上册课件:3.4.1 配套问题与工程问题
第3章 一元一次方程
3.4 实际问题与一元一次方程
第1课时 配套问题与工程问题
知识点1:配套问题 1.教室里有40套课桌椅(一把椅子配一张桌子),总价值2800元,每 把椅子20元,则每张桌子多少元?设每张桌子x元,可列方程为( B ) A.40x+20=2800 B.40x+40×20=2800 C.40(x-20)=2800 D.40x+20(40-x)=2800 2.(例题1变式)某车间有27名工人,生产某种由一个螺栓套两个螺母 的配套产品,每名工人每天平均生产螺栓16个或螺母22个,设应分配x 名工人生产螺栓,其他工人生产螺母,才能使每天生产的螺栓和螺母正 好配套,所列方程正确的是( C ) A.22x=16(27-x) B.16x=22(27-x) C.2×16x=22(27-x) D.2×22x=16(27-x)
3.某服装厂有工人54人,每人每天可加工上衣8件,或裤子10条,应怎 样分配人数,才能使每天生产的上衣和裤子配套?设x人做上衣,则做 裤子的人数为__(_5_4_-__x_)__人,根据题意,可列方程为__8_x_=__1_0_(_5_4_-__x_) , 解得x=_3_0__.
知识点2:调配问题 4.七年级(2)班学生参加绿化劳动,在甲处有32人,乙处有22人,现 根据需要,要从乙处抽调部分同学前往甲处,使甲处人数是乙处人数的 2倍,问应从乙处抽调多少人前往甲处?设从乙处抽调x人前往甲处,可 得正确方程是( D ) A.32-x=2(22-x) B.32+x=2(22+x) C.32-x=2(22+x) D.32+x=2(22-x) 5.在加固某段河坝时,需要动用15台挖土、运土机械,每台机械每 小时能挖土18 m3或运土12 m3,挖出的土要及时运走,若安排x台机械挖 土,则可列方程_1_8_x_=__1_2_(_1_5_-__x_).

七年级上册 数学 人教版 第三章 一元一次方程 3.4 第1课时 产品配套问题和工程问题 课件

七年级上册 数学 人教版 第三章 一元一次方程 3.4 第1课时 产品配套问题和工程问题 课件
温馨提示:师友进行分层次练习,基础性习题由学友直接说给师傅听,师傅指导,纠错,拓展性 习题师友自主完成。
解:设应用x立方米钢材做A部件,则应用(6-x)立方米 做B部件,根据题意,列方程
3×40x=(6-x) ×240 解方程,得
x=(6-x) ×2
3x=12
x=4 答:应用4立方米钢材做A部件,应用2立方米钢材做B部件 . 温馨提示:师友进行分层次练习,基础性习题由学友直接说给师傅听,师傅指导,纠错,拓展性 习题师友自主完成。
110-5x=6x,
x=10. 经检验, x=10符合题意
22-x=12. 答:应安排10名工人生产螺钉,12名工人生产螺母.
方法规律: 生产配套问题通常从配套后各量之间的倍、分 关系寻找相等关系,建立方程.
温馨提示:学友主讲,师傅补充和纠正,其他师友进行答疑或点评
例2 生产的这批螺钉、螺母要打包,由一个人做要40 h
完成.现计划由一部分人先做4 h,然后增加 2人与他们一起
做8 h,完成这项工作. 假设这些人的工作效率相同,具体应
该安排多少人工作? 列表分析:
工作量之和等于 总工作量1
人均效率 人数 时间
工作量
前一部 分工作
后一部 分工作
1 40
× x ×4 =
4x 40
1 40
× x2× 8 =
8(x 2) 40
温馨提示:师友典型发言时学友先回答;师傅再补充,对师友存在的共性问题进行重点强调
例1 某车间有22名工人,每人每天可以生产1 200个螺钉
或2 000个螺母. 1个螺钉需要配 2个螺母,为使每天产的
螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多
少名?
列表分析:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档