现代控制理论(第四章)
现代控制理论习题解答(第四章)

第四章 控制系统的稳定性3-4-1 试确定下列二次型是否正定。
(1)3123212322212624)(x x x x x x x x x x v --+++= (2)232123222126410)(x x x x x x x x v ++---= (3)312321232221422410)(x x x x x x x x x x v --+++= 【解】: (1)04131341111,034111,01,131341111<-=---->=>⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=P 二次型函数不定。
(2)034101103031,0110331,01,4101103031<-=--->=--<-⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=P二次型函数为负定。
(3)017112141211003941110,010,1121412110>=---->=>⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=P 二次型函数正定。
3-4-2 试确定下列二次型为正定时,待定常数的取值范围。
312321231221211242)(x x x x x x x c x b x a x v --+++=【解】:312321231221211242)(x x x x x x x c x b x a x v --+++=x c b a x T ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=1112121110212111,011,0111111>---->>c b a b aa 满足正定的条件为:⎪⎩⎪⎨⎧++>+>>1111111114410ca b c b a b a a3-4-3 试用李亚普诺夫第二法判断下列线性系统的稳定性。
;1001)4(;1111)3(;3211)2(;1110)1(x x x x x x x x ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡---=⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--=【解】: (1)设22215.05.0)(x x x v +=⎩⎨⎧≠≤==-=--=+=)0(0)0(0222221212211)(x x x x x x x x x x x x x v为半负定。
《现代控制理论》第三版课件_第4章

e λ1t z10 λ2t e z 20 z (t ) = λnt e z n0
ˆ C11 ˆ C 21 y (t ) = ˆ C m1 ˆ C12 ˆ C
λt ˆ C1n e 1 z10 ˆ e λ2t z 20 C2n ˆ e λnt z n 0 C mn
J = diag{λ1 , λ2 , , λn }
[ p1
p2
λ1 0 pn ] 0
0 λ2 0
0 0 = A [p 1 λn
p2 pn ]
J1 0 J = P −1 AP = 0
0 J2 0
λ j 0 0 0
零空间(核空间)
n
4-5 状态向量的线性变换
x = Ax + Bu y = Cx + Du
x = Pz
ˆ ˆ = P −1 APz + P −1 Bu = Az + Bu z ˆ y = CPz + Du = Cz + Du
状态向量的线性变换不影响系统的状态能控 性、能观性和传递函数阵,也不影响系统矩 阵的特征值和系统平衡状态的稳定性。
[
p j 2 p jq
]
( λ j I − A) p j1 = 0
Pj = p j1
[
p j2
p jq
]
( λ j I − A) p j 2 = − p j1 ( λ j I − A) p j 3 = − p j 2 ( λ j I − A) p jq = − p j ( q −1)
( λ j I − A) p j1 = 0 ( λ j I − A) p j 2 = − p j1 ( λ j I − A) p j 3 = − p j 2
现代控制理论讲义4

2)最小实现实现步骤。
现.即为W(s)的最小实),C ,B ,A (能观部分ΣC)找出既能控又B,(A,(2)对初选ΣC);B,(A,Σ:或能观实现(1).先选能控:最小实现步骤分式阵时,W(s)为严格真有理111c.o ~~~===举例:[][][];611s 6s s 13s 11611s 6s s 1)(s 3)(s 3)2)(s 1)(s (s 1s 3)2)(s 1)(s (s 3s 2)3)(s (s 12)1)(s (s 1W(s)2323++++=+++++=⎥⎦⎤⎢⎣⎡++++++++=⎥⎦⎤⎢⎣⎡++++= 1)首先确定维数:W 为1*2维的传递函数阵,因此输入维数m=1,输出维数r=2.2)确定D 和beta 系数阵。
3)实现为能控I 型或者能观II 型。
若实现为能控I 型:A 的矩阵维数实现为:n*m=3;实现为能控I 型,再判断是否能观;若实现为能观II 型:A 的矩阵维数实现为: n*r=3*2=6; 实现为能观II 型,再进行能观性分解。
Section 10:传递函数中零极相消与状态能控性和能观性间关系前面的最小实现的状态变量维数与系统阶数的关系。
1、 单输入单输出系统能控能观的充要条件是:⎩⎨⎧=+==cx y bu Ax x :c)b,(A,Σ&的传递函数不出现零极相消.2、 多输入多输出系统传递函数不出现零极相消,只是系统能控能观的充分条件,非必要条件.3、 单输入单输出系统传递函数若出现零极相消,是不能控还是不能观?例子:既不能保证是能控的,也不能保证是能观的。
第四章 稳定性与李雅普诺夫方法提问:1、个人所理解的系统稳定性是指什么?2、自控原理中,曾经学过的系统稳定性含义是什么?如何判定的?本章学习内容:李雅普诺夫关于稳定性的定义和判定系统是否是李雅普诺夫稳定的?一、系统的运动状态和平衡状态。
1、系统的运动状态:外界输入为0,从初始点X 0开始,系统的状态存在唯一解 X(t)=Φ(t, x0, t)。
现代控制理论-复习第四章

即可能有多个平衡状态.
例4.1 x1 x1 x2 x1 x2 x23
x1 0
x1
x2
x23
0
因此该系统有三个平衡状态
0 xe1 0
0
xe2
1
0 xe3 1
在n维状态空间中,向量x的长度称为向量x的范数,用 ‖x‖表示,则:
S( )
x1
x
若平衡状态xe是稳定的,即当t无限增大时,状态轨迹不超
过 ,s(且 最) 终收敛于xe,则称平衡状态xe渐近稳定。
3.大范围渐近稳定
x f (x,t)
在整个状态空间中,对所有初始状态x0出发的轨迹都 具有渐近稳定,则系统的平衡状态xe是大范围渐近稳定的 。
注: (1)由于从状态空间中的所有点出发的轨迹都要收 敛于xe,因此系统只能有一个平衡状态,这也是大 范围渐近稳定的必要条件。
3、二次型标量函数v(x)的定号性判据
(1)v(x)正定的充要条件是:P阵的所有各阶主子行
列式均大于零,即
1 p11 0,
2
p11 p21
p12 0, p22
,
p11 n
pn1
p1n 0
pnn
(2)v(x)负定的充要条件是:P阵的各阶主子式满足
(2)对于线性定常系统,当A为非奇异的,系统只 有一个唯一的平衡状态xe = 0。所以若线性定常系 统是渐近稳定的,则一定是大范围渐近稳定的。
(3)对于非线性系统,由于系统通常有多个平衡 点,因此非线性系统通常只能在小范围内渐近稳定 。
4. 不稳定
如果对于某个实数ε> 0和任一实数δ> 0,在球 域S(δ)内总存在一个初始状态x0,使得从这一初始 状态出发的轨迹最终将超出球域S(ε),则称该平衡 状态是不稳定的。
现代控制理论 第四章 稳定性理论

这里 Φ ( t ) = e At ,当系统满足内部稳定性时,由式(5-7)有
lim Φ ( t ) = lim e At = 0
t →∞ t →∞
这样, ( t ) 的每一个元g ij ( t )( i = 1, 2,⋯ , q, j = 1, 2,⋯ , p ) 均是由一些指 G 数衰减项构成的,故满足
其中
Qi =
( s − λ i ) adj ( s I − A ) ( s − λ i )( s − λ 2 )⋯ ( s − λ n )
s = λi
显然,当矩阵 A 的一切特征值满足
R e λ i ( A ) < 0 i = 1, 2 , ⋯ , n
则式(4-7)成立。 内部稳定性描述了系统状态的自由运动的稳定性。
∫
∞ 0
g ij ( t ) d t ≤ k < ∞
这里 k 为有限常数。这说明系统是BIBO稳定的。证毕。
定理4.4 定理4.4 线性定常系统如果是BIBO稳定的,则 系统未必是内部稳定的。
证明 根据线性系统的结构分解定理知道,任一线性定常系
统通过线性变换,总可以分解为四个子系统,这就是能控能 观测子系统,能控、不能观测子系统,不能控、能观测子系 统和不能控不能观测子系统。系统的输入-输出特性仅能反映 系统的能控能观测部分,系统的其余三个部分的运动状态并 不能反映出来,BIBO稳定性仅意味着能控能观测子系统是渐 近稳定的,而其余子系统,如不能控不能观测子系统如果是 发散的,在BIBO稳定性中并不能表现出来。因此定理的结论 成立。
y ( t1 ) =
∫
t1 t0
g ( t1 , τ )u (τ ) d τ =
武汉大学《现代控制理论》数学知识回顾 第四章 矩阵的范数-特征值矩阵分解法

现代控制理论讲义第四章矩阵范数和奇异值分解4.1 引言在这一讲中,我们将引入矩阵范数的概念。
之后会介绍矩阵的奇异值分解或者叫SVD。
SVD 揭示了矩阵的2范数,它的值意义更大:它使一大类矩阵扰动问题得以解决,同时也为后面稳定鲁棒性的概念打下基础;它还解决了所谓的完全最小二乘问题,该问题是我们前面讲的最小二乘问题的推广;还帮我们澄清在矩阵求逆计算中碰到的态性的概念。
在下一讲中,我们会花更大的篇幅来叙说SVD的应用。
例 4.1 为了提高大家对矩阵范数研究和应用的兴趣,我们首先从一个例子开始,该例子提出了与矩阵求逆有关的矩阵态性问题。
我们所感兴趣的问题是矩阵求逆对矩阵扰动的敏感程度。
考虑求下列矩阵的逆马上就可以求得现在我们假设对一个受到扰动的矩阵求逆求逆后,结果就成了在这里表示A中的扰动,表示中的扰动。
显然中一项的变化会导致中的变化。
如果我们解,其中,得到,加入扰动后,解得。
在这个结果中,我们仍然可以清楚的看到开始数据仅有的变化,却导致解产生的变化。
以上例子中我们看到的要比在标量情况下差的多。
如果是标量,那么,所以的倒数中小数部分的变化和的变化在同一量级上。
因此,在上例中的现象完全是在矩阵的时候才出现的。
看上去好像和是近似奇异的事实有关——因为它的列几乎不独立,且它的行列式值要比它的最大元素小很多,等等。
随后(见下一讲),我们会找到衡量奇异程度的合理方法,同时还要说明在求逆情况下,这种方法和灵敏度的关系如何。
在理解这种灵敏度和扰动的细节关系之前,我们首先要找到度量向量和矩阵量级的方法。
在第一讲中我们已经引入了向量范数的概念,所以我们现在来看一下矩阵范数的定义。
4.2 矩阵范数一个维复数矩阵可以看成(有限维)赋范向量空间中的一个算子:其中,这里的范数指的是标准欧氏范数。
定义的归纳2-范数如下:术语“归纳”是指在向量和的范数的基础上,使得以上矩阵范数的定义有意义。
该定义中,归纳范数表示矩阵在中单位圆上向量扩大的倍数,也就是说,它表示矩阵的增益。
现代控制理论第4章答案

现代控制理论第四章习题答案4-1判断下列二次型函数的符号性质:(1)222123122313()31122Q x x x x x x x x x x =---+-- (2)222123122313()4262v x x x x x x x x x x =++---解:(1)由已知得[]11231231232311232311()31122111113211112x Q x x x x x x x x x x x x x x x x x x ⎡⎤⎡⎤⎢⎥=-+------⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎡⎤⎢⎥--⎡⎤⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥---⎣⎦110∆=-<,2112013-∆==>-,31111711302411112--∆=--=-<--- 因此()Q x 是负定的 (2)由已知得[][]112312312323112323()433111143131x Q x x x x x x x x x x x x x x x x x x ⎡⎤⎢⎥=---+---+⎢⎥⎢⎥⎣⎦--⎡⎤⎡⎤⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦110∆=>,2113014-∆==>-,3111143160131--∆=--=-<--因此()Q x 不是正定的 4-2已知二阶系统的状态方程:11122122a a xx a a ⎛⎫= ⎪⎝⎭试确定系统在平衡状态处大范围渐进稳定的条件。
解:方法(1):要使系统在平衡状态处大范围渐进稳定,则要求满足A 的特征值均具有负实部。
即:111221222112211221221()0a a I A a a a a a a a a λλλλλ---=--=-++-= 有解,且解具有负实部。
即:1122112212210a a a a a a +<>且方法(2):系统的原点平衡状态0e x =为大范围渐近稳定,等价于T A P PA Q +=-。
现代控制理论第四章-李雅普诺夫稳定性

0s
0
1
s
0 1 1 1 1
(s
s 1 1)(s 1)
s
1 1
可见传递函数的极点 s 1位于s的左半平面,故系统
输出稳定。这是因为具有正实部的特征值2 1 被系统的零
点 s 1 对消了,所以在系统的输入输出特性中没被表现出
来。由此可见,只有当系统的传递函数W(s)不出现零、极
点对消现象,并且矩阵A的特征值与系统传递函数W(s)的
2020/3/22
6
现代控制理论
第4章 李亚普诺夫稳定性分析
4.2 李亚普诺夫第二法的概述
1892年俄国学者李亚普诺夫发表了《运动稳定性一般 问题》,最早建立了运动稳定性的一般理论,并把分析常 微分方程组稳定性的全部方法归纳为两类。第一类方法先 求出常微分方程组的解,而后分析其解运动的稳定性,称 为间接方法;第二类方法不必求解常微分方程组,而是提 供出解运动稳定性的信息,称为直接方法,它是从能量观 点提供了判别所有系统稳定性的方法。
即Xe f ( X e ,t) ,0 则把 叫X e做系统的平衡状态。
对于线性定常系统 X AX而言,其平衡状态满足
Xe AX e ,0 若A是非奇异矩阵,则只有 X e ,0 即对线性系 统而言平衡状态只有一个,在坐标原点;反之,则有无限
多个平衡状态。
对于非线性系统而言,平衡状态不只一个。
2020/3/22
9
现代控制理论
第4章 李亚普诺夫稳定性分析
3、李亚普诺夫第二法
李亚普诺夫第二法建立在这样一个直观的物理事实上:
如果一个系统的某个平衡状态是渐近稳定的,即
im
t
X
X,e 那么随着系统的运动,其储存的能量将随时间
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
lt i m x(t;x0,t0)xe 0
x 则称系统的平衡状态 e 是渐近稳定的。
EAST CHINA INSTITUTE OF TECHNOLOgy
几何意义:
x 当 t时,从S( ) 出发的轨迹不仅不超出 S( ),而且最终收敛于 e,则
称系统的平衡状态是渐近稳定的。
x2
初始状态有界,随时间推移, 状态向量距平衡点的距离可 以无限接近,直至到达平衡 点后停止运动。
S( )
xe
x1
S( )
EAST CHINA INSTITUTE OF TECHNOLOgy
3、大范围渐近稳定
当初始条件扩展到整个状态空间,且平衡状态均具有渐近稳定性时,称此平 衡状态是大范围渐近稳定的。
,
同理,若方程式(1)的解
位于球
EAST CHINA INSTITUTE OF TECHNOLOgy
(7) 式(7)表明齐次方程式(1)内初态 或短暂扰动所引起的自由响应是有界 的。李雅普诺夫根据系统自由响应是否有界把系统的稳定性定义为四种情况。
1.李雅普诺夫意义下稳定 2.渐近稳定 3.大范围渐近稳定 4.不稳定
几何意义:
当 t时,从状态空间任意一点出发的轨迹都
x 收敛于 e 。
初始状态在整个状态空间时,平衡状态都渐近稳定。
EAST CHINA INSTITUTE OF TECHNOLOgy
4、不稳定
如果对于某个实数 0 和任一个实数 0,不管这 有多小,在 S( )
x 内 出发的状态轨迹,至少有一个轨线超出 S ( ), 则称此平衡状态 e 是不稳定的。
4.2.1 线性系统的稳定判据 线性定常系统
(1)
平衡状态 实部。
渐近稳定的充要条件是矩阵A的所有特征值均具有负
以上讨论的都是指系统的状态稳定性,或称内部稳定性。但从工程意义
上看,往往更重视系统的输出稳定性。
如果系统对于有界输入 稳定。
线性定常系统
所引起的输出 是有界的,则称系统为输出 输出稳定的充要条件是其传递函数:
4.1 李雅普诺夫关于稳定性的定义 4.2 李雅普诺夫第一法 4.3 李雅普诺夫第二法 4.4 李雅普诺夫方法在线性系统中的应用 4.5 李雅普诺夫方法在非线性系统中的应用
EAST CHINA INSTITUTE OF TECHNOLOgy
系统稳定性的定义与李雅普诺夫方法
控制系统本身处于平衡状态。受到扰动,产生偏差。扰动消失后,偏差 逐渐变小,能恢复到原来的平衡状态,则稳定。偏差逐渐变大,不能恢复到 原来的平衡状态,则不稳定。 李雅普诺夫第一法:求解微分方程,根据解的方法判断稳定性
EAST CHINA INSTITUTE OF TECHNOLOgy
1、李雅普诺夫意义下稳定
设系统对于任意选定的 0 ,都对应的存在另一实数 (,t0)0使当
x0xe tt0
时,从任意初始状态出发的解都满足
x (t;x 0,t0) x e, t t0
x 则称系统的平衡 状态
在李雅普诺夫意义下稳定。------简称为稳定
元素
和时间 的函数。一般地,为时变的非线性函数。
如果不显含 ,则为定常的非线性系统。
设方程式(1)在给定初始条件
下,有唯一解:
式中,
为表示 在初始时刻
(2) 时的状态; 是从
EAST CHINA INSTITUTE OF TECHNOLOgy
开始观察的时间变量。
式(2)实际上描述了系统式(1)在n 维状态空间中从初始条件
出
发的一条状态运动的轨迹,简称系统的运动或状态轨线。
若系统式(1)存在状态矢量 ,对所有 ,都使:
(3)
成立,则称 为系统的平衡状态。
对于一个任意系统,不一定都存在平衡状态,有时即使存在也未必是唯
一的,例如对线性定常系统:
(4)
当A为非奇异矩阵时,满足
的解
是系统唯一存在的一个
平衡状态。而当A为奇异矩阵时,则系统将有无穷多个平衡状态。
EAST CHINA INSTITUTE OF TECHNOLOgy
对非线性系统,通常可有一个或多个平衡状态。它们是由方程式(3)所 确定的常值解.例加系系统:
就有三个平衡状态:
稳定性都是相由于平衡点而言,任意一个已知的平衡状态,都可以通过坐
标变换将其 移到坐标原点
处。所以今后将只讨论系统在坐标原点处的
李雅普诺夫第二法:构造李雅普诺夫标量函数判定稳定性,在最优控制、滤 波、自适应控制等方面有广泛应用。
EAST CHINA INSTITUTE OF TECHNOLOgy
4.1 李雅普诺夫关于稳定性的定义
4.1.1 系统状态的运动及平衡状态 设所研究系统的齐次状态方程为
(1)
式中, 为 维状态矢量; 为与 同维的矢量函数,它是x的各
初始状态有界,随时间推移,状 态向量距平衡点的距离可以维持在一 个确定的数值内,而到达不了平衡点。
x2
S( )
xe
x1
S( )
EAST CHINA INSTITUTE OF TECHNOLOgy
2、渐近稳定
x 设系统初始状态位于以平衡状态 e 为球心, 为半径的闭球域 S( )内,即
x0xe tt0
e
t 其中 与 有关,一般情况下也与 0 有关。
如果 与初始时间无关,称为一致稳定。
EAST CHINA INSTITUTE OF TECHNOLOgy
几何意义:
任给一个从球域 S(,) 出发的若存在一个球域 S ( )使得当 t时,从S( ) 出发的轨迹不离开 S ( ,) 则称系统的平衡状态是李雅普诺夫意义下的稳定。
几何意义:
初始状态有界,随时间推 移,状态向量距平衡点越 来越远。
x2
S( )
xe
x1
S( )
注:在经典控制理论中,渐近稳定系统才称作稳定系统,而李雅普诺夫意义下的 稳定但不是渐近稳定的系统(临界稳定),在工程上属于不稳定系统。
EAST CHINA INSTITUTE OF TECHNOLOgy
4.2 李雅普诺夫第一法
稳定性就可以了。
EAST CHINA INSTITUTE OF TECHNOLOgy
4.1.2 稳定性的几个定义
若用
表示状态矢量 与平衡状态 的距离,用点集
以 为中心 为半径的超球体,那么
,则表示:
式中,
为欧几里德范数。
在n维状态空间中,有:
(5)
表示
当 很小时,则称
则意味着
域
内,便有:
(6)
为 的邻域。因此,若有