光模块光纤的常用知识.

合集下载

光模块知识介绍

光模块知识介绍
• 色散位移光纤虽然用于单信道、超高速传输是很理想的传输媒介,但当 它用于波分复用多信道传输时,又会由于光纤的非线性效应而对传输的 信号产生干扰。特别是在色散为零的波长附近,干扰尤为严重。为此, 人们又研制了一种非零色散位移光纤即G655光纤,将光纤的零色散点 移到1.55μm 工作区以外的1.60μm以后或在1.53μm以前,但在1.55μm 波长区内仍保持很低的色散。这种非零色散位移光纤不仅可用于现在的 单信道、超高速传输,而且还可适应于将来用波分复用来扩容,是一种 既满足当前需要,又兼顾将来发展的理想传输媒介。
1.1 光纤系统简介
• 光纤通信主要是指利用激光作为信息的载体信号并通过光导纤维来传 递信息的通信系统,有以下优点:
– 宽的传输带宽 – 低的传输损耗 – 不受电磁干扰 – 成本低,重量轻
1.1 光纤系统简介
• 基本光纤系统的构架及其功能介绍: – 发送单元:把电信号转换成光信号; – 传输单元:载送光信号的介质; – 接收单元:接收光信号并转换成电信号; – 连接器件:连接光纤到光源、光检测以及其它光纤。
内径:单模9um 多模50/62.5um
多模光纤跳线的颜色为橙色 单模光纤跳线的颜色为黄色
125 9
125 50
12 62.5 5
1.4 光纤的基本知识
• 色散(Dispersion):光脉冲沿着光纤行进一段距离后造成 的 频宽变粗。它是限制传输速率的主要因素。 – 模间色散:不同模式的光沿着不同的路径传输。 – 材料色散:不同波长的光行进速度不同。 – 波导色散:发生原因是光能量在纤芯及包层中传输时, 会以稍有不同的速度行进。在单模光纤中,通过改变光 纤内部结构来改变光纤的色散非常重要。
,务必戴上防尘帽; 3、盘纤的直径不能少于6cm,如图表9所示; 4、光纤跳线每插拔5次,需清洁1次; 5、一根光纤跳线任意一端连接器最多插拔5000次; 6、跳接线在使用和转移过程中不许有锐角弯折以及甩动; 7、对于外观已经损坏的光纤跳线不予使用。

光模块基本原理——解释

光模块基本原理——解释

光模块基本原理——解释光模块是光通信系统中的重要组成部分,它实现了光信号的调制、解调和传输功能。

光模块的基本原理是利用光学器件将电信号转换为光信号,通过光纤进行传输并最终将光信号转换为电信号进行解调。

光模块通常由光发射器和光接收器两部分组成。

光发射器负责将电信号转换为光信号发送出去,光接收器负责将接收到的光信号转换为电信号。

光发射器是光模块的核心部件,通常采用半导体激光器作为光源,将电信号转换为光信号。

这里主要有两种类型的半导体激光器,分别是直接调制激光器(DML)和外调制激光器(EML)。

直接调制激光器通过改变电流的大小来调制激光的强度,实现光信号的调制。

而外调制激光器则是通过外部电极施加的电场来改变激光的折射率,从而实现光信号的调制。

调制后的光信号进一步通过一个聚焦透镜使其聚焦到一个光纤上,并通过光纤进行传输。

另一方面,光接收器负责接收经过光纤传输的光信号,并将其转换为电信号。

光接收器通常使用光电探测器作为光到电的转换组件。

光电探测器是一种能将光能转换为电能的器件,常见的光电探测器有PIN探测器和APD探测器。

这两种探测器的主要区别在于APD探测器具有内部增益,能够增加光电转换效率和系统的传输距离。

在光模块中,光信号的传输是通过光纤进行的。

光纤是一种能够传输光信号的细长光导纤维,其核心是由高折射率材料构成,外部由低折射率材料包围。

通过内部高折射率材料的全反射作用,光信号可以沿光纤进行长距离传输。

在光模块的设计中,光纤连接的稳定性对于光信号的传输质量和系统的可靠性至关重要。

总的来说,光模块的基本原理是将电信号转换为光信号,并通过光纤进行传输。

光发射器将电信号调制成光信号,光接收器将光信号解析成电信号。

在整个光通信系统中,光模块起到了桥梁作用,实现了电信号和光信号之间的转换和传输。

光模块的设计和技术有着重要的意义,可以极大地提高光通信系统的性能和可靠性,促进信息传输的发展。

光纤基础知识简介

光纤基础知识简介

光纤简介一、光纤概述光纤是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。

微细的光纤封装在塑料护套中,使得它能够弯曲而不至于断裂。

通常,光纤一端的发射装置使用发光二极管〔light emitting diode,LED〕或一束激光将光脉冲传送至光纤,光纤另一端的接收装置使用光敏元件检测脉冲。

二、光纤工作波长光是一种电磁波。

可见光部分波长范围是:390nm—760nm(纳米),大于760nm部分是红外光,小于390nm部分是紫外光。

μμμμ,μμμm以上的损耗趋向加大。

三、光纤分类光纤的分类主要是从工作波长、折射率分布、传输模式、原材料和制造方法上作一归纳的,各种分类如下。

〔1〕工作波长:紫外光纤、可观光纤、近红外光纤μμμm〕。

〔2〕折射率分布:阶跃〔SI〕型光纤、近阶跃型光纤、渐变〔GI〕型光纤、其它〔如三角型、W型、凹陷型等〕。

〔3〕传输模式:单模光纤〔含偏振保持光纤、非偏振保持光纤〕、多模光纤。

〔4〕原材料:石英光纤、多成分玻璃光纤、塑料光纤、复合材料光纤〔如塑料包层、液体纤芯等〕、红外材料等。

按被覆材料还可分为无机材料〔碳等〕、金属材料〔铜、镍等〕和塑料等。

〔5〕制造方法:预塑有汽相轴向沉积〔VAD〕、化学汽相沉积〔CVD〕等,拉丝法有管律法〔Rod intube〕和双坩锅法等。

四、单模光纤与多模光纤光纤是一种光波导,因而光波在其中传播也存在模式问题。

所谓“模”是指以一定角速度进入光纤的一束光。

模式是指传输线横截面和纵截面的电磁场结构图形,即电磁波的分布情况。

一般来说,不同的模式有不同的的场结构,且每一种传输线都有一个与其对应的基模或主模。

基模是截止波长最长的模式。

除基模外,截止波长较短的其它模式称为高次模。

根据光纤能传输的模式数目,可将其分为单模光纤和多模光纤。

多模光纤允许多束光在光纤中同时传播,从而形成模分散〔因为每一个模光进入光纤的角度不同它们到达另一端点的时间也不同,这种特征称为模分散〕。

光模块知识(2.0)_PHOTON讲稿

光模块知识(2.0)_PHOTON讲稿

Vcc
PIN
i
Rf
A
u o =iR f
跨阻放大器原理图
在高速率光模块中,通常都是将PIN(或 者APD)光电二极管TIA组装在一个密 封的金属外壳内,这就构成了光接收组 件(ROSA)
光接收组件(ROSA)
光模块原理
激光接收—限幅放大器(LA)
TIA输出的是模拟信号,要把它转换 成数字信号才能被信号处理电 路识别
偏置电流发生器—向LD提供直流 偏置电流
自动功率控制(APC)电路—在不同 温度和LD老化的情况下, 改变IBIAS,保持PAVG不变
故障告警、保护电路 调制电流、偏置电流监控电路 输入端整形电路(D触发器)
驱动电路实质上就是一个高速电流开关
光模块原理
激光发射--模块光发射主要指标
消光比(re)的定义: re=P1/P0 其中: P1是‘1’码的光功率值 P0是‘0’码的光功率值 用对数表示: EX=10lg(P1/P2)
光模块原理
激光发射--激光二极管的温度特性
LD是半导体器件,它的特 性与半导体二极管类似 温度升高 阈值电流Ith增大 斜效率S降低 为了保持输出平均光功率 和消光比不变,在温度上升 时要增大IBIAS和IMOD
光模块原理
激光发射--激光二极管驱动电路
一个典型的激光器驱动电路包括 下列部分:
差分电流开关电路—向LD输出调 制电流
无源光网络(PON)
PON技术特 点
在OLT到ONU 下行方向采用TDM (Time Division Multiplexing ) 方 式,以广播方式送至每一个ONU,OLT的发送部分和ONU的接收部分都是 连续工作方式 ONU到OLT 的上行信号的传输采用TDMA (Time Division Multiple Access)技术; OLT的接收部分和ONU的发送部分都是突发模式工作 OLT光接收机必须能够适应不同ONU 信号的不同光功率,接收机需要 有一个很大的动态范围,并设定判决门限,以最快的速度来判决; OLT 光接收机必须能够迅速恢复从不同节点传来的每个突发信号的正确 时钟,在上行信元到达OLT 的前几个bits内实现快速突发比特同步 ONU光发送机必须能够快速开/关; 当发送机不发送时只能“泄漏” 极小的光功率—比接收灵敏度低10dB

全面讲解光纤、光模块、光纤交换机、光模块组网设计与案例

全面讲解光纤、光模块、光纤交换机、光模块组网设计与案例

全面讲解光纤、光模块、光纤交换机、光模块组网设计与案例光纤组网已是当今建筑智能化弱电行业里一种常见的组网方式,组建远距离无线、监控网络时,往往需要使用光纤进行连接通信,使用光纤收发器是经济适用型做法,尤其是在室外的使用。

其实光纤收发器不仅可以成对使用,还可以配合光纤交换机使用。

光纤、光模块、光纤交换机、光模块组网知识分享光纤由玻璃或塑料制成的纤维,用于传输光信号。

传输原理是'光的全反射’。

具有保密性好、重量轻、抗干扰能力强、距离远、数据带宽高的优点,光纤支持的传输速率包括100Mbps,1Gbps,10Gbps及更高。

光纤分类光纤传输的常用波长有:850、1310、1490、1550nm,按照光纤传输光信号模式分为单模光纤(SMF)和多模光纤(MMF):单模光纤:只能传输一种模式的光,适用于长距离传输。

多模光纤:可以传输多种模式的光,适用于机房内等短距离传输。

光纤的常见接口类型光模块光模块分类按封装:1*9 、GBIC、SFF、SFP、XFP、SFP+、X2、XENPARK、300pin等。

按速率:155M、622M、1.25G、2.5G、4.25G、10G、40G等。

按波长:常规波长、CWDM、DWDM等。

按模式:单模光纤(黄色)、多模光纤(橘红色)。

按使用性:热插拔(GBIC、SFP、XFP、XENPAK)和非热插拔(1*9、SFF)。

封装形式是光模块基本原理光收发一体模块(Optical Transceiver)光收发一体模块是光通信的核心器件,完成对光信号的光-电/电-光转换。

由两部分组成:接收部分和发射部分。

接收部分实现光-电变换,发射部分实现电-光变换。

发射部分:输入一定码率的电信号经内部的驱动芯片处理后驱动半导体激光器(LD)或发光二极管(LED)发射出相应速率的调制光信号,其内部带有光功率自动控制电路(APC),使输出的光信号功率保持稳定。

接收部分:一定码率的光信号输入模块后由光探测二极管转换为电信号,经前置放大器后输出相应码率的电信号,输出的信号一般为PECL电平。

光模块光纤的常用知识.

光模块光纤的常用知识.

光模块/光纤的常用知识以太网交换机常用的光模块有SFP,GBIC,XFP,XENPAK:SFP: Small Form-factor Pluggable transceiver ,小封装可插拔收发器GBIC :GigaBit Interface Converter,千兆以太网接口转换器XFP: 10-Gigabit small Form-factor Pluggable transceiver 万兆以太网接口小封装可插拔收发器XENPAK: 10 Gigabit EtherNet Transceiver PAcKage万兆以太网接口收发器集合封装光纤连接器光纤连接器由光纤和光纤两端的插头组成,插头由插针和外围的锁紧结构组成。

根据不同的锁紧机制,光纤连接器可以分为FC型、SC型、LC型、ST型和MTRJ型。

FC连接器采用螺纹锁紧机构,是发明较早、使用最多的一种光纤活动连接器。

SC是一种矩形的接头,由NTT研制,不用螺纹连接,可直接插拔,与FC连接器相比具有操作空间小,使用方便。

低端以太网产品非常常见。

LC是由LUCENT开发的一种Mini型的SC连接器,具有更小的体积,已广泛在系统中使用,是今后光纤活动连接器发展的一个方向。

低端以太网产品非常常见。

ST连接器是由AT&T公司开发的,用卡口式锁紧机构,主要参数指标与FC和SC连接器相当,但在公司应用并不普遍,通常都用在多模器件连接,与其它厂家设备对接时使用较多。

MTRJ的插针是塑料的,通过钢针定位,随着插拔次数的增加,各配合面会发生磨损,长期稳定性不如陶瓷插针连接器。

光纤知识光纤是传输光波的导体。

光纤从光传输的模式来分可分为单模光纤和多模光纤。

在单模光纤中光传输只有一种基模模式,也就是说光线只沿光纤的内芯进行传输。

由于完全避免了模式射散使得单模光纤的传输频带很宽因而适用与高速,长距离的光纤通迅。

在多模光纤中光传输有多个模式,由于色散或像差,这种光纤的传输性能较差,频带窄,传输速率较小,距离较短。

光模块知识(2.0)_PHOTON讲稿

光模块知识(2.0)_PHOTON讲稿
0.4
0.35
0.3
minimum
0.25
0.2
1200
1300
1400
1500
1600
1700
Wavelength (nm)
G.652A and B
传输距离的计算(Tranceiver )
1,对单模光纤( 不考虑色散) 传输距离=(总光功率预算-插损-传输代价)/衰减系数
总光功率预算= Transmitter最坏光功率-Receiver接收最坏灵敏度 插 损 = 光路系统决定 传输代价 = Transceiver所决定
2.材料色散
含有不同波长的光脉冲通过光纤传输时,不同波长的电磁波会导致玻璃折射率不相同,传 输速度不同就会引起脉冲展宽,导致色散。
3.波导色散
它是由光纤的几何结构决定的色散,其中光纤的横截面积尺寸起主要作用。光在光纤中通 过芯与包层界面时,受全反射作用,被限制在纤芯中传播。但是,如果横向尺寸沿光纤轴发 生波动,除导致模式间的模式变换外,还有可能引起一少部分高频率的光线进入包层,在包 层中传输,而包层的折射率低、传播速度大,这就会引起光脉冲展宽,从而导致色散。
G.984.2 规定的上行 光信号的眼图模板
−y10
x1 x2
x3 x4 1
1UI
155.52Mbps
622.08Mbps
1244.16Mbps
x1/x.28/0.72
x2/x3 x3-x2 y1/y2
0.36/0.65 --
0.20/0.80
0.40/0.60 --
Vcc
PIN
i
Rf
A
u o =iR f
跨阻放大器原理图
在高速率光模块中,通常都是将PIN(或 者APD)光电二极管TIA组装在一个密 封的金属外壳内,这就构成了光接收组 件(ROSA)

SFP,TOSA,BOSA,光纤,Rosa,光模块,GB_Link光通信模块基础培训教材

SFP,TOSA,BOSA,光纤,Rosa,光模块,GB_Link光通信模块基础培训教材

常规光纤损耗随波长变化曲线图


dB/km5

4


3


2
1
O波段 E波段 S C L U OH-
850~900nm
) 900
波长不同,损耗不同
1200 1300 1400 1500 1600
1380nm附近由于氢氧根粒子吸收,光纤损耗急剧加大,俗称水峰
ITU-T将单模光纤在1260nm以上的频带划分了O、E、S、C、L、U几个波段
TOSA 生产工艺流程
领料
金属件清洗 组装
压配
耦合
端面清洗
功率调整
初测
温循
激光打标
终测
目检焊点 外观目检
每款TOSA的生产至少需要15道工 序,1000pcs/3天,其中温循工序占用16小时.
激光焊接 品检 入库
BOSA 生产工艺流程
领料
端面清洗 接收耦合 终测发射
金属件清洗 组装
功率调整 接收初测
色散:G.653的零色散波长在1550nm附近,在 1525-1575nm范围内,最大色散系数是
3.5ps/nm-km,在1550nm窗口,特别是在
C_band,色散位移光纤的色散系数太小或可能
为零;
非零色散位移光纤
SDH/DWDM系 衰减:1310nm波段:ITU-T无规定。1550nm波
(NZDSF),将色散零点 统均可,但更适 段:<0.35dB/km,目前一般在0.19-0.25dB/km。
G.655
的位置从1550nm附近移开 合DWDM系统的 色散:当1530nm <λ< 1565nn,0.1ps/nm-km <
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光模块/光纤的常用知识以太网交换机常用的光模块有SFP,GBIC,XFP,XENPAK:SFP: Small Form-factor Pluggable transceiver ,小封装可插拔收发器GBIC :GigaBit Interface Converter,千兆以太网接口转换器XFP: 10-Gigabit small Form-factor Pluggable transceiver 万兆以太网接口小封装可插拔收发器XENPAK: 10 Gigabit EtherNet Transceiver PAcKage万兆以太网接口收发器集合封装光纤连接器光纤连接器由光纤和光纤两端的插头组成,插头由插针和外围的锁紧结构组成。

根据不同的锁紧机制,光纤连接器可以分为FC型、SC型、LC型、ST型和MTRJ型。

FC连接器采用螺纹锁紧机构,是发明较早、使用最多的一种光纤活动连接器。

SC是一种矩形的接头,由NTT研制,不用螺纹连接,可直接插拔,与FC连接器相比具有操作空间小,使用方便。

低端以太网产品非常常见。

LC是由LUCENT开发的一种Mini型的SC连接器,具有更小的体积,已广泛在系统中使用,是今后光纤活动连接器发展的一个方向。

低端以太网产品非常常见。

ST连接器是由AT&T公司开发的,用卡口式锁紧机构,主要参数指标与FC和SC连接器相当,但在公司应用并不普遍,通常都用在多模器件连接,与其它厂家设备对接时使用较多。

MTRJ的插针是塑料的,通过钢针定位,随着插拔次数的增加,各配合面会发生磨损,长期稳定性不如陶瓷插针连接器。

光纤知识光纤是传输光波的导体。

光纤从光传输的模式来分可分为单模光纤和多模光纤。

在单模光纤中光传输只有一种基模模式,也就是说光线只沿光纤的内芯进行传输。

由于完全避免了模式射散使得单模光纤的传输频带很宽因而适用与高速,长距离的光纤通迅。

在多模光纤中光传输有多个模式,由于色散或像差,这种光纤的传输性能较差,频带窄,传输速率较小,距离较短。

光纤的特性参数光纤的结构预制的石英光纤棒拉制而成,通信用的多模光纤和单模光纤的外径都为125μm。

纤体分为两个区域:纤芯(Core)和包层(Cladding layer)。

单模光纤纤芯直径为8~10μm,多模光纤纤芯径有两种标准规格,芯径分别为62.5μm(美国标准)和50μm(欧洲标准)。

我们在用户资料<安装手册>中经常看到对接口光纤规格有这样的描述:62.5μm/125μm多模光纤,其中62.5μm就是指光纤的芯径,125μm就是指光纤的外径。

单模光纤使用的光波长为1310nm或1550 nm。

多模光纤使用的光波长多为850 nm。

从颜色上可以区分单模光纤和多模光纤。

单模光纤外体为黄色,多模光纤外体为橘红色。

千兆光口自协商千兆光口可以工作在强制和自协商两种模式。

802.3规范中千兆光口只支持1000M速率,支持全双工(Full)和半双工(Half)两种双工模式。

自协商和强制最根本的区别就是两者再建立物理链路时发送的码流不同,自协商模式发送的是/C/码,也就是配置(Configuration)码流,而强制模式发送的是/I/码,也就是idle码流。

千兆光口自协商过程一、两端都设置为自协商模式双方互相发送/C/码流,如果连续接收到3个相同的/C/码且接收到的码流和本端工作方式相匹配,则返回给对方一个带有Ack应答的/C/码,对端接收到Ack信息后,认为两者可以互通,设置端口为UP状态二、一端设置为自协商,一端设置为强制自协商端发送/C/码流,强制端发送/I/码流,强制端无法给对端提供本端的协商信息,也无法给对端返回Ack应答,故自协商端DOWN。

但是强制端本身可以识别/C/码,认为对端是与自己相匹配的端口,所以直接设置本端端口为UP状态三、两端均设置为强制模式双方互相发送/I/码流,一端接收到/I/码流后,认为对端是与自己相匹配的端口,直接设置本端端口为UP状态。

光模块主要参数1、光模块传输数率:百兆、千兆、10GE 等等;2、光模块发射光功率和接收灵敏度。

发射光功率指发射端的光强。

接收灵敏度指可以探测到的光强度。

两者都以dBm 为单位,是影响传输距离的重要参数。

光模块可传输的距离主要受到损耗和色散两方面受限。

损耗限制可以根据公式:损耗受限距离=(发射光功率-接收灵敏度)/光纤衰减量来估算。

光纤衰减量和实际选用的光纤相关。

一般目前的G.652单模光纤可以做到1310nm波段0.5dB/km,1550nm波段 0.3dB/km 甚至更佳。

50um 多模光纤在850nm 波段4dB/km,1310nm 波段2dB/km。

对于百兆、千兆的光模块色散受限远大于损耗受限,可以不作考虑。

3、10GE 光模块遵循802.3ae 的标准,传输的距离和选用光纤类型、光模块光性能相关。

4、饱和光功率值指光模块接收端最大可以探测到的光功率,一般为-3dBm。

当接收光功率大于饱和光功率的时候同样会导致误码产生。

因此对于发射光功率大的光模块不加衰减回环测试会出现误码现象。

光模块功能失效重要原因光模块功能失效分为发射端失效和接收端失效,分析具体原因,最常出现的问题集中在以下几个方面:1、光口污染和损伤由于光接口的污染和损伤引起光链路损耗变大,导致光链路不通。

产生的原因有:A、光模块光口暴露在环境中,光口有灰尘进入而污染;B、使用的光纤连接器端面已经污染,光模块光口二次污染;C、带尾纤的光接头端面使用不当,端面划伤等;D、使用劣质的光纤连接器。

2、ESD 损伤ESD 是ElectroStatic Discharge 缩写即"静电放电",是一个上升时间可以小于1ns(10 亿分之一秒)甚至几百ps(1ps=10000 亿分之一秒)的非常快的过程,ESD 可以产生几十Kv/ m甚至更大的强电磁脉冲。

静电会吸附灰尘,改变线路间的阻抗,影响产品的功能与寿命; ESD 的瞬间电场或电流产生的热,使元件受伤,短期仍能工作但寿命受到影响;甚至破坏元件的绝缘或导体,使元件不能工作(完全破坏)。

ESD 是不可避免,除了提高电子元器件的抗ESD 能力,重要的是正确使用,引起ESD 损伤的因素有:A、环境干燥,易产生ESD;B、不正常的操作,如:非热插拔光模块带电操作;不做静电防护直接用手接触光模块静电敏感的管脚;运输和存放过程中没有防静电包装;C、设备没有接地或者接地不良。

光收发一体光模块应用注意点1、光口问题光链路上各处的损耗衰减都关系到传输的性能,因此要求:A、选择符合入网标准的光纤连接器;B、光纤连接器要有封帽,不使用时盖上封帽,避免光纤连接器污染而二次污染光模块光口;封帽不使用时应放在防尘干净处保存;C、光纤连接器插入是水平对准光口,避免端面和套筒划伤;D、光模块光口避免长时间暴露,不使用时加盖光口塞;光口塞不使用时储存在防尘干净处;清洁光模块时根据光口类型选用合适的无尘棉棒(SC 使用ф2.5mm 的无尘棉棒[如NTT 的1410 0400],LC 和MTRJ 使用ф1.25mm 的无尘棉棒[如NTT 的14100401])蘸上无水酒精插入光口内部,按同一方向旋转擦拭;然后再用干燥的无尘棉棒插入器件光口,按同一方向旋转擦拭;E、光纤连接器的端面保持清洁,避免划伤;清洁端面时使用干燥无尘棉[如:小津产业株式会社的M-3]在手指未接触部分按如图9 所示方法擦拭清洁,每次擦拭不能在同一位置;对脏污严重的接头,则将无尘棉浸无水酒精(不易过多),按相同方法进行擦拭清洁,并需更换另一干燥无尘棉按相同方法操作一次,保证接头端面干燥,再进行测试;此类清洁方法需注意擦拭长度要足够,才能保证清洁效果,并且不能在相同位置重复擦拭;此类无尘棉每张可按图示方向擦拭4 次;场地不足时可将无尘棉放在手掌上,在手指未接触部分按如图10 所示方法在手掌部位进行擦拭清洁,每次擦拭不能在同一位置;对脏污严重的接头,则将无尘棉浸无水酒精(不易过多),按相同方法进行擦拭清洁,并需更换另一干燥无尘棉按相同方法操作一次,保证接头端面干燥,再进行测试;此类清洁方法需注意擦拭长度要足够,才能保证清洁效果,并且不能在相同位置重复擦拭;此类无尘棉每张可按图示方向擦拭3 次;也可以使用清洁器如图11~13 所示。

2、ESD 损伤ESD 是自然界不可避免的现象,预防ESD 从防止电荷积聚和让电荷快速放电两方面着手:A、保持环境的湿度30~75%RH;B、划定专门的防静电区域。

选用防静电的地板或工作台;C、使用的相关设备采用并联接地的公共接地点接地,保证接地路径最短,接地回路最小,不能串联接地,应避免采用外接电缆连接接地回路的设计方式;D、在专门的防静电区域中操作,防静电工作区内禁止放置工作不必须的静电产生材料,如未作防静电处理的塑料袋、盒子、泡沫、带子、笔记本、纸片、个人用品等物品,这些材料必须距离静电敏感器件30 厘米以上;E、包装和周转的时候,采用防静电包装和防静电周转箱/车;F、禁止对非热插拔的设备,进行带电插拔的操作;G、避免用万用表表笔直接检测静电敏感的管脚;H、对光模块操作时做静电防护工作(如:带静电环或将手通过预先接触机壳等手段释放静电),接触光模块壳体,避免接触光模块PIN 脚。

简易光模块失效判断步骤1、测试光功率是否在指标要求范围之内,如果出现无光或者光功率小的现象。

处理方法:A、检查光功率选择的波长和测量单位(dBm);B、清洁光纤连接器端面,光模块光口。

C、检查光纤连接器端面是否发黑和划伤,光纤连接器是否存在折断,更换光纤连接器做互换性试验。

D、检查光纤连接器是否存在小的弯折。

E、热插拔光模块可以重新插拔测试。

F、同一端口更换光模块或者同一光模块更换端口测试。

2.光功率正常但是链路无法通,检查link 灯。

相关文档
最新文档