大孔吸附树脂的性质及作用原理修订版
ab8大孔吸附树脂原理

ab8大孔吸附树脂原理大孔吸附树脂是一种具有大孔结构的高分子吸附剂,主要用于有机物的分离、纯化和富集。
AB8大孔吸附树脂是其中的一种,其原理主要包括以下几个方面:1. 分子筛作用:大孔吸附树脂具有较大的孔径和孔隙率,这使得它能够根据分子的大小进行选择性吸附。
当待分离物质通过树脂柱时,较小的分子可以进入树脂的大孔内部,而较大的分子则被排斥在外。
这种基于分子大小的差异实现分离的过程被称为分子筛作用。
2. 物理吸附:AB8大孔吸附树脂主要通过物理吸附的方式实现对有机物的吸附。
物理吸附是指吸附剂与吸附质之间通过范德华力、静电引力等非化学键作用力形成的吸附。
这种吸附力较弱,容易受温度、压力等外界条件的影响,因此可以通过改变这些条件来实现对吸附和解吸的控制。
3. 化学吸附:在某些情况下,AB8大孔吸附树脂还可以通过化学吸附的方式实现对有机物的吸附。
化学吸附是指吸附剂与吸附质之间通过化学键作用力形成的吸附。
这种吸附力较强,不易受外界条件的影响,因此可以实现对吸附物的高选择性和高稳定性。
4. 动态平衡:在AB8大孔吸附树脂的吸附过程中,吸附和解吸是同时进行的。
当溶液中的有机物浓度较低时,吸附速率大于解吸速率,树脂上的吸附量逐渐增加;当溶液中的有机物浓度较高时,解吸速率大于吸附速率,树脂上的吸附量逐渐减少。
当达到动态平衡时,树脂上的吸附量不再发生变化,此时溶液中的有机物浓度称为平衡浓度。
5. 洗脱:为了实现对有机物的分离和纯化,需要将已经吸附在AB8大孔吸附树脂上的有机物从树脂上洗脱下来。
洗脱的方法主要有以下几种:a) 增加溶液中的有机溶剂浓度:通过增加溶液中的有机溶剂浓度,降低溶液的极性,从而减弱有机物与树脂之间的范德华力和静电引力,实现对有机物的洗脱。
b) 改变溶液的pH值:通过改变溶液的pH值,影响有机物的离子化程度,从而改变有机物与树脂之间的相互作用力,实现对有机物的洗脱。
c) 使用盐析剂:通过添加盐析剂,改变溶液的离子强度,从而影响有机物与树脂之间的相互作用力,实现对有机物的洗脱。
大孔吸附树脂的分离原理

大孔吸附树脂的分离原理
大孔吸附树脂是一类不含交换基团且有大孔结构的高分子吸附树脂。
大孔吸附树脂的分离原理主要基于物理吸附、极性吸附、官能团吸附以及配位基团吸附。
1.物理吸附
物理吸附是大孔吸附树脂最主要的分离原理。
树脂内部的孔径和比表面积提供了大量的吸附位点,使得大孔吸附树脂可以通过范德华力(如色散力、诱导力和共价键力)有效地吸附分子。
这种物理吸附的特点是吸附速度快、选择性高,且不受介质条件的影响。
2.极性吸附
大孔吸附树脂的极性吸附原理主要是由于树脂本身的极性以及被吸附物的极性。
极性基团如羟基、酰胺基等,能与极性化合物产生氢键作用,从而实现选择性吸附。
这种吸附方式主要应用于极性物质的分离。
3.官能团吸附
大孔吸附树脂可以负载不同的官能团,这些官能团能够与特定的化合物进行结合,从而实现分离。
例如,带有羧基、磺酸基等阴离子的树脂可以与阳离子物质结合;带有胺基、吡啶基等的树脂可以与阴离子物质结合。
这种官能团吸附的方式具有高度的选择性。
4.配位基团吸附
部分大孔吸附树脂含有配位基团,如螯合树脂。
这些树脂可以通过配位键与具有特定金属离子的物质结合,从而实现分离。
这种吸附
方式的选择性非常高,常用于复杂混合物中微量组分的分离。
总结:大孔吸附树脂因其独特的物理结构和多种吸附机制,在分离和纯化领域中发挥着重要作用。
深入理解其分离原理,有助于更有效地利用大孔吸附树脂进行各种分离操作。
化学实验中大孔吸附树脂的性质及使用..

一、 大孔树脂的结构、组成、原理、类型与规格
1. 结构
大孔吸附树脂是近20余年发展起来的,它是一 种新型非离子型高分子聚合物吸附剂,一般为白色 球形颗粒,粒度为20~60目。大孔树脂的宏观小球 系由许多彼此间存在孔穴的微观小球组成。如果把 一个宏观小球比做远看的一簇葡萄,那么每一个微 观小球就相当于近看的一颗小葡萄,小葡萄间存在 孔穴的总体积与一簇葡萄体积之比,称为孔度,小 葡萄之间的距离称孔径。所有小葡萄的面积之和就 是一簇葡萄的表面积,亦即树脂的表面积。如果以 单位质量计算,将此表面积除以一簇葡萄的质量, 即得比表面积(m2/g)。
(3)极性大孔树脂 含硫氧、酰胺基团,如丙烯酰胺。
5 规格
大孔吸附树脂用于医药的规格品种,如美国 Rohm和Haas公司生产的Amberlite XAD系列,日 本三菱化成工业公司生产的 DiaionHP-10 、 HP-20 、 HP-30 、 HP-40 、 HP-50 ,以及中国南开大学生产 的D2、D6、D8,沧州宝恩HPD系列,天津制胶厂 生产Dl0l型等。它们的规格及物理特性见表
不同于以往使用的离子交换树脂,大孔吸附树 脂为吸附性和筛选性原理相结合的分离材料。由 于其本身具有吸附性,能吸附液体中的物质,故 称之为吸附剂。树脂吸附的实质是一种物体高度 分散或表面分子受作用力不均等而产生的表面吸 附现象。大孔树脂的吸附力是由于范德华力或产 生氢键的结果。其中,范德华力是一种分子间作 用力,包括定向力、色散力、诱导力等。同时由 于树脂的多孔性结构使其对分子大小不同的物质 具有筛选作用。因此,有机化合物根据吸附力的 不同及分子量的大小,在树脂的吸附机理和筛分 原理作用下实现分离。
国内外对应牌号
DM130
型号
大孔吸附树脂的原理

大孔吸附树脂的原理
首先,大孔吸附树脂的结构特点是具有较大的孔径和孔容,这使得目标物质可
以较容易地进入树脂内部并与树脂表面发生作用。
树脂的大孔结构为目标物质的吸附提供了良好的条件,使得吸附过程更加高效。
与小孔吸附树脂相比,大孔吸附树脂具有更大的比表面积和更高的孔容率,能够更好地适应不同目标物质的吸附需求。
其次,大孔吸附树脂的吸附过程是通过目标物质与树脂表面之间的相互作用来
实现的。
树脂表面通常具有一定的化学性质,可以与目标物质发生吸附作用,如静电作用、疏水作用、亲和作用等。
这些作用力使得目标物质在树脂表面停留并被吸附,从而实现目标物质的分离和富集。
在吸附过程中,树脂的孔结构和表面性质共同作用,形成了一个高效的吸附系统。
总的来说,大孔吸附树脂的原理是通过其特殊的孔结构和表面性质,实现对目
标物质的吸附和分离。
这种原理使得大孔吸附树脂在生物制药、食品工业、环境保护等领域得到了广泛的应用,为目标物质的纯化和富集提供了重要的技术手段。
同时,随着大孔吸附树脂技术的不断发展和完善,相信它在未来会有更广阔的应用前景。
大孔吸附树脂的资料

大孔吸附树脂是在离子交换树脂的基础上发展起来的。
1935年英国的Adams和Holmes发表了由甲醛、苯酚与芳香胺制备的缩聚高分子材料及其离子交换性能的工作报告,从此开创了离子交换树脂领域。
20世纪50年代末合成了大孔离子交换树脂,是离子交换树脂发展的一个里程碑。
上世纪60年代末合成了大孔吸附交换树脂,并于70年代末用于中草药有效成分的分离,但我国直到80年代后才开始有工业规模的生产和应用。
大孔吸附树脂目前多用于工业废水处理、食品添加剂的分离精制、中草药有效成分、维生素和抗菌素等的分离提纯和化学制品的脱色、血液的净化等方面。
1大孔吸附树脂的特性及原理大孔吸附树脂(macroporous absorption resin)属于功能高分子材料,是近30余年来发展起来的一类有机高聚物吸附剂,是吸附树脂的一种,由聚合单体和交联剂、致孔剂、分散剂等添加剂经聚合反应制备而成。
聚合物形成后,致孔剂被除去,在树脂中留下了大大小小、形状各异、互相贯通的孔穴。
因此大孔吸附树脂在干燥状态下其内部具有较高的孔隙率,且孔径较大,在100~1000nm之间,故称为大孔吸附树脂。
大孔树脂的表面积较大、交换速度较快、机械强度高、抗污染能力强、热稳定好,在水溶液和非水溶液中都能使用。
大孔吸附树脂具有很好的吸附性能,它理化性质稳定,不溶于酸、碱及有机溶媒,对有机物选择性较好,不受无机盐类及强离子低分子化合物存在的影响,可以通过物理吸附从水溶液中有选择地吸附有机物质。
大孔树脂是吸附性和筛选性原理相结合的分离材料,基于此原理,有机化合物根据吸附力的不同及分子量的大小,在大孔吸附树脂上经一定的溶剂洗脱而分开。
由于大孔吸附树脂的固有特性,它能富集、分离不同母核结构的药物,可用于单一或复方的分离与纯化。
但大孔吸附树脂型号很多,性能用途各异,而中药成分又极其复杂,尤其是复方中药,因此必须根据功能主治明确其有效成分的类别和性质,根据“相似相溶”的原则,即一般非极性吸附剂适用于从极性溶液(如水)中吸附非极性有机物;而高极性吸附剂适用于从非极性溶液中吸附极性溶质;中等极性吸附剂,不但能够从非水介质中吸附极性物质,同时它们具有一定的疏水性,所以也能从极性溶液中吸附非极性物质。
大孔阳离子吸附树脂

大孔阳离子吸附树脂1. 引言大孔阳离子吸附树脂是一种常见的固相吸附材料,广泛应用于水处理、环境保护、化学工业等领域。
它具有高效的吸附性能和良好的选择性,能够去除水中的阳离子污染物,提高水质。
2. 原理大孔阳离子吸附树脂基于静电作用原理,通过树脂表面上的功能基团与溶液中的阳离子发生化学反应,实现对阳离子的吸附和去除。
大孔结构使得树脂具有较大的表面积和孔隙体积,提供了更多的吸附位点,增强了吸附能力。
3. 材料特性3.1 大孔结构大孔阳离子吸附树脂具有较大的孔径和孔隙体积,使其具有更好的承载能力和质量传递性能。
这种结构可以增加有效接触面积,并提高物质传递速率。
3.2 功能基团大孔阳离子吸附树脂表面上的功能基团通常是带正电荷的官能团,如胺基、羧基等。
这些功能基团能够与溶液中的阴离子发生静电作用,实现对阳离子的吸附。
3.3 选择性大孔阳离子吸附树脂具有一定的选择性,它可以根据不同的功能基团和溶液中阳离子的特性来调整吸附效果。
通过选择合适的功能基团和优化操作条件,可以实现对特定阳离子的高效去除。
4. 应用领域4.1 水处理大孔阳离子吸附树脂在水处理中广泛应用。
它可以去除水中的重金属离子、放射性物质、有机污染物等。
通过调整树脂类型和操作条件,可以实现对不同污染物的高效去除。
4.2 环境保护大孔阳离子吸附树脂在环境保护领域也有重要应用。
它可以去除工业废水中的有害物质,减少水体污染。
此外,它还可以应用于土壤修复、废气处理等方面,提高环境质量。
4.3 化学工业大孔阳离子吸附树脂在化学工业中有多种应用。
例如,它可以用于分离和纯化有机化合物,提高产品的纯度和质量。
此外,它还可以用于催化剂的固定和回收,提高反应效率和资源利用率。
5. 实例分析以水处理为例,说明大孔阳离子吸附树脂的应用。
在水处理过程中,大孔阳离子吸附树脂可以去除水中的重金属离子。
通过选择合适的功能基团和优化操作条件,可以实现对特定重金属离子的高效去除。
6. 结论大孔阳离子吸附树脂是一种具有高效吸附性能和良好选择性的固相吸附材料。
大孔吸附树脂应用的原理

大孔吸附树脂应用的原理1. 简述大孔吸附树脂的概念大孔吸附树脂,又称大孔吸附剂,是一种具有特殊孔径大小和分布的吸附材料。
与传统的小孔吸附树脂相比,大孔吸附树脂具有更大的孔径,提供更高的表面积和更快的吸附速度。
大孔吸附树脂在吸附分离、催化反应、脱色和脱盐等方面具有广泛的应用。
2. 大孔吸附树脂的基本结构大孔吸附树脂的基本结构由树脂颗粒和孔道组成。
树脂颗粒是吸附树脂的主体,具有良好的化学稳定性和物理强度。
孔道分布于树脂颗粒内部,形成一种网状结构。
孔道的大小和分布对树脂的吸附性能具有重要影响。
3. 大孔吸附树脂的应用原理大孔吸附树脂的应用原理基于其孔径和表面积的特点。
树脂颗粒的大孔径提供了较大的表面积,使其能够吸附更多的目标物质。
同时,孔道的分布和连通性使得目标物质可以进入树脂颗粒内部,并在内部表面上发生吸附作用。
大孔吸附树脂的应用可以通过以下几个方面来解释其原理:3.1 吸附分离大孔吸附树脂可以对液态或气态的目标物质进行吸附分离。
当目标物质进入树脂颗粒的孔道中时,会与树脂表面上的吸附位点发生相互作用,形成吸附层。
吸附层的形成使得目标物质与溶液或气体分离,从而实现了吸附分离的效果。
3.2 催化反应大孔吸附树脂可以作为催化剂的载体,用于催化反应。
在催化反应中,树脂颗粒的大孔径可以提供更多的催化活性位点,并增加反应物的接触面积。
同时,孔道的连通性使得反应物可以在树脂内部扩散,提高反应效率和选择性。
3.3 脱色和脱盐大孔吸附树脂可以通过吸附色素或离子的方式实现脱色和脱盐。
树脂颗粒的大孔径可以容纳大分子的目标物质,并与之发生吸附作用。
吸附后,目标物质会从溶液中被树脂吸附,实现脱色和脱盐的效果。
4. 大孔吸附树脂的优势和应用领域大孔吸附树脂相较于传统的小孔吸附树脂具有以下优势:•更高的吸附速度:大孔吸附树脂具有更大的孔径,提供更大的表面积,使得吸附速度更快。
•更好的化学稳定性:大孔吸附树脂通常采用高分子材料制备,具有较好的化学稳定性。
大孔吸附树脂

2大孔吸附树脂(Macro absorption resin)2·1性质及原理我国对大孔吸附树脂的研究从20世纪70年代由天津南开大学何炳林教授开始,相继在北京、上海、四川等科研单位研制开发了各类产品[8]。
其特点是吸附容量大、再生简单、效果可靠,尤其适用于苷类、黄酮类、皂苷类、生物碱类等成分的提取分离及大规模生产,例如大孔吸附树脂分离技术在银杏提取物和大豆提取物中的应用[9]。
大孔吸附树脂是一类不含离子交换基团的交联聚合物,多为白色球状颗粒,粒度为20~60目,化学性质稳定,不溶于酸、碱及有机溶媒,对有机物有浓缩、分离作用且不受无机盐类及强离子、低分子化合物的干扰。
其化学结构不带或带有不同极性的功能基。
根据树脂的表面性质,可分为非极性、弱极性、极性3种类型,其中非极性吸附树脂适宜从极性溶剂中吸附非极性物质;极性吸附树脂适宜从非极性溶剂中吸附极性物质。
原理:大孔吸附树脂为吸附和筛选原理相结合的分离材料,它的吸附性是由于范德华引力或生成氢键的结果;筛选原理是由于其本身多孔性结构所决定。
由于同时具吸附和筛选原理,有机化合物根据吸附力的不同及分子量的大小,在大孔吸附树脂上经一定的溶剂洗脱而分开,使得有机化合物尤其是水溶性化合物的提纯得以大大简化。
2·2吸附作用的影响因素2·2·1树脂本身的化学结构:大孔吸附树脂是一种表面吸附剂,其吸附力与树脂的比表面积、表面电性、能否与被吸附物形成氢键等有关。
引入极性基团可以改变表面电性或使其与某些被分离的化合物形成氢键,影响吸附作用。
一般而言,非极性化合物在水中可以被非极性树脂吸附;极性化合物在水中被极性树脂吸附。
2·2·2溶剂:被吸附的化合物在溶剂中的溶解度对吸附性能也有很大的影响。
通常一种物质在某种溶剂中溶解度大,树脂对其吸附力就弱。
如有机酸盐及生物碱盐在水中的溶解度大,树脂对其吸附就弱。
含有大量无机盐的中药水提取物被分离时,由于无机盐在水中的溶解度很大,无机盐很快随溶剂前沿被排出,故可用大孔吸附树脂代替半透膜脱盐。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大孔吸附树脂的性质及
作用原理
集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]
大孔吸附树脂为具有立体结构的多孔性海绵状聚合物,外观为白色或微黄色球形颗粒,粒度多为20~60目。
大孔吸附树脂的吸附性是由于范德华引力或产生氢键的结果,分子筛性是由于其本身多孔性结构的性质所决定。
大孔吸附树脂以范德华力从很低浓度的溶液中吸附有机物,其吸附性能主要取决于吸附剂的表面性质,根据树脂的表面性质,可分为非极性(苯乙烯型)、中极性(含酯基)和极性(含酰胺基、腈基、酚羟基等)。
非极性吸附树脂是由偶极矩很小的单体聚合制得,不带任何功能基,孔表面的疏水性较强,可通过与小分子内的疏水部分的作用吸附溶液中的有机物;中极性的吸附树脂是含酯基的吸附树脂,其表面兼有疏水和亲水两部分;极性吸附树脂是指含酰胺基氰基、酚羟基等含氮、氧、硫极性功能基的吸附树脂。
它的物理化学性质稳定,不受无机盐及强离子低分子化合物存在的影响,不溶于任何酸碱及有机溶剂,对有机物选择吸附性能好;使用寿命长,可反复再生使用。
大孔树脂的多孔性,使其具有巨大的比表面积,能够依靠和被吸附分子之间的范德华力或氢键进行物理吸附;同时,其多孔性还对分子量大小不同的化合物具有筛分作用。
因此,大孔树脂为吸附性和筛分性相结合的分离材料,根据有机化合物吸附力的不同及分子量的大小,在大孔树脂上经一定的溶剂洗脱而分开。
目前国内常用的大孔吸附树脂按其极性大小可分为:非极性树脂(D101、LX-11、LX-68等);弱极性树脂(LSA-21、LX-28、LSA-10等);极性树脂(XDA-8、LX-17、LSA-7等)。
而不同型号树脂的比表面积、平均孔径、分离选择性都有所不同,在购买时应根据实际需要进行选择。