与三角形有关的线段练习题(含答案)

合集下载

人教版 八年级数学上册 11.1 与三角形有关的线段 同步训练 (含答案)

人教版 八年级数学上册 11.1 与三角形有关的线段 同步训练 (含答案)

2020-2021 八年级数学上册11.1 与三角形有关的线段同步训练(含答案)一、选择题(本大题共10道小题)1. 如图所示,在△ABC中,D,E,F是BC边上的三点,且∠1=∠2=∠3=∠4,则AE是哪个三角形的角平分线()A.△ABE B.△ADFC.△ABC D.△ABC,△ADF2. 如图,在△ABC中,AC边上的高是()图A.线段DA B.线段BAC.线段BC D.线段BD3. 若a、b、c为△ABC的三边长,且满足|a-4|+b-2=0,则c的值可以为()A. 5B. 6C. 7D. 84. 若三角形的两边长分别为3和6,则它的第三边长可以为()A.3 B.4C.9 D.105. 如图,为估计池塘岸边A,B两地之间的距离,小明在池塘的一侧选取一点O,测得OA=10米,OB=8米,那么A,B两地之间的距离可能是()A.2米B.15米C.18米D.28米6. 下列关于三角形的分类,有如图K-1-4所示的甲、乙两种分法,则()A.甲、乙两种分法均正确B.甲分法正确,乙分法错误C.甲分法错误,乙分法正确D.甲、乙两种分法均错误7. 有长度分别为4 cm,5 cm,9 cm,13 cm的四根木条,以其中三根为边,制作一个三角形框架,那么这个三角形框架的周长可能是()A.18 cm B.26 cm C.27 cm D.28 cm8. 将一个三角形纸片剪开分成两个三角形,这两个三角形不可能()A.都是直角三角形B.都是钝角三角形C.都是锐角三角形D.是一个直角三角形和一个钝角三角形9. 下列长度的三条线段能组成钝角三角形的是()A. 3,4,4B. 3,4,5C. 3,4,6D. 3,4,710. 试通过画图来判断,下列说法正确的是()A.一个直角三角形一定不是等腰三角形B.一个等腰三角形一定不是锐角三角形C.一个钝角三角形一定不是等腰三角形D.一个等边三角形一定不是钝角三角形二、填空题(本大题共6道小题)11. 如图,以点A为顶点的三角形有________个,它们分别是_______________.12. 如图,D是△ABC的边BC上的一点,则在△ABC中,∠C所对的边是________;在△ACD中,∠C所对的边是________.13. 如图,AD为△ABC的角平分线,DE∥AB交AC于点E.若∠BAC=100°,则∠ADE=________°.14. 若一个等腰三角形两边的长分别为2 cm,5 cm,则它的周长为________cm.15. 设三角形三边之长分别为3,7,1+a,则a的取值范围为__________.16. 如图,将△ABC沿直线DE折叠,使点C与点A重合,已知AB=7,BC=6,则△BCD的周长为________.三、解答题(本大题共4道小题)17. 等面积法如图,BE,CF均是△ABC的中线,且BE=CF,AM⊥CF于点M,AN⊥BE于点N.求证:AM=AN.18. 在平面内,分别用相同的3根、5根、6根……火柴首尾顺次相接,能搭成什么形状的三角形呢?通过尝试,列表如下:(1)4根火柴能搭成三角形吗?(2)12根火柴能搭成几种不同形状的三角形?请画出它们的示意图.(提示:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形)19. 数学活动课上,老师让同学们用长度分别是20 cm,90 cm,100 cm的三根木棒搭一个三角形的木架,小明不小心把100 cm的木棒折去了35 cm,他发现:用折断后剩下的木棒与另两根木棒怎么也搭不成三角形.(1)你知道为什么吗?(2)100 cm长的木棒至少折去多长后剩余的部分就不能与另两根木棒搭成三角形?20. 观察探究观察并探求下列各问题.(1)如图①,在△ABC中,P为边BC上一点,则BP+PC________AB+AC(填“>”“<”或“=”);(2)将(1)中的点P移到△ABC内,如图②,试观察比较△BPC的周长与△ABC的周长的大小,并说明理由;(3)将(2)中的点P变为两个点P1,P2,如图③,试观察比较四边形BP1P2C的周长与△ABC的周长的大小,并说明理由.2020-2021 八年级数学上册11.1 与三角形有关的线段同步训练(含答案)-答案一、选择题(本大题共10道小题)1. 【答案】D2. 【答案】D3. 【答案】A【解析】∵|a-4|≥0,b-2≥0,∴a=4,b=2,∵三角形的两边之和大于第三边,两边之差小于第三边,故c的取值范围为:2<c<6,故本题选A.4. 【答案】B5. 【答案】B[解析] 设A,B两地之间的距离为x米.依据题意,得10-8<x <10+8,即2<x<18,所以A,B两地之间的距离可能是15米.6. 【答案】C7. 【答案】C8. 【答案】C[解析] 如图①,沿虚线剪开即可得到两个直角三角形.如图②,钝角三角形沿虚线剪开即可得到两个钝角三角形.如图③,直角三角形沿虚线剪开即可得到一个直角三角形和一个钝角三角形.因为剪开的边上的两个角互补,故这两个三角形不可能都是锐角三角形.9. 【答案】C【解析】①∵32+42=52,∴三条线段3、4、5组成直角三角形,∴B选项不正确;②当把斜边5变成7时,3+4=7,不满足三角形两边之和大于第三边,不能构成三角形,∴D选项不正确;③当把斜边5稍微变小一点为4时,三条线段为3、4、4组成锐角三角形,∴A选项不正确;④当把斜边5稍微变大一点为6时,三条线段为3、4、6组成钝角三角形,∴C选项正确.10. 【答案】D[解析] 等腰直角三角形既是直角三角形,也是等腰三角形,故选项A错误;等边三角形既是等腰三角形,也是锐角三角形,故选项B错误;顶角是120°的等腰三角形,既是钝角三角形,也是等腰三角形,故选项C错误;因为一个等边三角形的三个角都是60°,所以等边三角形是锐角三角形.故选项D正确.二、填空题(本大题共6道小题)11. 【答案】4△ABC,△ADC,△ABE,△ADE12. 【答案】AB AD13. 【答案】50[解析] ∵AD为△ABC的角平分线,∠BAC=100°,∴∠BAD=∠CAD=12×100°=50°.∵DE∥AB,∴∠ADE=∠BAD=50°.14. 【答案】12[解析] 分两种情况讨论:①当腰长为5 cm时,三边长分别为5 cm,5 cm,2 cm,满足三角形三边关系,周长=5+5+2=12(cm).②当腰长为2 cm 时,三边长分别为5 cm ,2 cm ,2 cm.∵2+2=4<5, ∴5 cm ,2 cm ,2 cm 不满足三角形的三边关系. 综上,它的周长为12 cm.15. 【答案】3<a <9[解析] 由题意,得7-3<1+a <7+3,解得3<a <9.16. 【答案】13【解析】由折叠的性质可得:CD =AD ,∴△BCD 的周长=BC+CD +BD =BC +AD +BD =BC +BA =6+7=13.三、解答题(本大题共4道小题)17. 【答案】83证明:∵BE ,CF 均是△ABC 的中线,∴S △ABE =S △ACF =12S △ABC .∵BE =CF ,AM ⊥CF 于点M ,AN ⊥BE 于点N , ∴12AM·CF =12AN·BE. ∴AM =AN.18. 【答案】解:(1)4根火柴不能搭成三角形.(2)12根火柴能搭成3种不同形状的三角形. 示意图如下:19. 【答案】解:(1)把100 cm 的木棒折去了35 cm 后还剩余65 cm. ∵20+65<90,∴20 cm,65 cm,90 cm长的三根木棒不能构成三角形.(2)设折去x cm后剩余的部分不能与另两根木棒搭成三角形.根据题意,得20+(100-x)≤90,解得x≤30,∴100 cm长的木棒至少折去30 cm后剩余的部分就不能与另两根木棒搭成三角形.20. 【答案】解:(1)<(2)△BPC的周长<△ABC的周长.理由:如图①,延长BP交AC于点M.在△ABM中,BP+PM<AB+AM.在△PMC中,PC<PM+MC.两式相加,得BP+PC<AB+AC,∴△BPC的周长<△ABC的周长.(3)四边形BP1P2C的周长<△ABC的周长.理由:如图②,分别延长BP1,CP2交于点M.由(2)知,BM+CM<AB+AC.又∵P1P2<P1M+P2M,∴BP1+P1P2+P2C<BM+CM<AB+AC.∴四边形BP1P2C的周长<△ABC的周长.。

八年级上册数学第十一章三角形11.1与三角形有关的线段配套练习

八年级上册数学第十一章三角形11.1与三角形有关的线段配套练习

八年级上册数学第十一章三角形11.1与三角形有关的线段配套练习题一、选择题(本大题共8小题,共24.0分)1.已知三条线段的长度比如下: ①2:3:4; ②1:2:3; ③2:4:6; ④3:3:6; ⑤6:6:10; ⑥6:8:10,其中能构成三角形的有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】此题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边即可求解.【解答】解: ①设三条线段的长分别为2x,3x,4x,则2x+3x>4x,故能构成三角形; ②设三条线段的长分别为x,2x,3x,则x+2x=3x,故不能构成三角形; ③设三条线段的长分别为2x,4x,6x,则2x+4x=6x,故不能构成三角形; ④设三条线段的长分别为3x,3x,6x,则3x+3x=6x,故不能构成三角形; ⑤设三条线段的长分别为6x,6x,10x,则6x+6x>10x,故能构成三角形; ⑥设三条线段的长分别为6x,8x,10x,则6x+8x>10x,故能构成三角形.故选C.2.已知三角形的两边长分别为3cm和4cm,则该三角形第三边的长不可能是()A. 1cmB. 3cmC. 5cmD. 6cm【答案】A【解析】解:∵三角形的两边长分别为3cm和4cm,∴1<第三边的长<7,故该三角形第三边的长不可能是1cm.故选:A.直接利用三角形三边关系得出第三边长的取值范围进而得出答案.此题主要考查了三角形三边关系,正确得出第三边长的取值范围是解题关键.3.如图,AD,BE,CF依次是△ABC的高、中线和角平分线,下列各式中错误的是()A. AE=CEB. ∠ADC=90∘C. ∠CAD=∠CBED. ∠ACB=2∠ACF【答案】C【解析】略4.下列说法正确的是()A. 所有的等腰三角形都是锐角三角形B. 等边三角形属于等腰三角形C. 不存在既是钝角三角形又是等腰三角形的三角形D. 一个三角形里有两个锐角,则一定是锐角三角形【答案】B【解析】解:A、错误,内角为30°,30°,120°的等腰三角形是钝角三角形;B、正确,等边三角形属于等腰三角形;C、错误,内角为30°,30°,120°的三角形既是钝角三角形又是等腰三角形的三角形;D、错误,内角为30°,30°,120°的三角形有两个锐角,是钝角三角形.故选:B.根据锐角三角形、钝角三角形、等腰三角形的定义一一判断即可.本题考查三角形的一个概念,解题的关键是搞清楚锐角三角形、钝角三角形、等腰三角形的定义,属于基础题,中考常考题型.5.画△ABC中AB边上的高,下列画法中正确的是()A. B.C. D.【答案】C【解析】略6.如图,工人师傅做了一个长方形窗框ABCD,E,F,G,H分别是四条边上的中点,为了使它更加稳固,需要在窗框上钉一根木条,这根木条不应钉在()A. A,C两点之间B. E,G两点之间C. B,F两点之间D. G,H两点之间【答案】B【解析】选项A,C,D中都构成了三角形,增加了稳定性;选项B中,木条钉在E,G两点之间,没有构成三角形.故选B.7.将一张三角形纸片剪开分成两个三角形,这两个三角形不可能()A. 都是直角三角形B. 都是钝角三角形C. 都是锐角三角形D. 是一个直角三角形和一个钝角三角形【答案】C【解析】【分析】本题主要考查了三角形的分类,理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.分三种情况讨论,即可得到这两个三角形不可能都是锐角三角形.【解答】解:如图,沿三角形一边上的高剪开即可得到两个直角三角形.,如图,钝角三角形沿虚线剪开即可得到两个钝角三角形.,如图,直角三角形沿虚线剪开即可得到一个直角三角形和一个钝角三角形.,因为剪开的边上的两个角互补,故这两个三角形不可能都是锐角三角形.故选C.8.如图,△ABC的三边长均为整数,且周长为22,AM是边BC上的中线,△ABM的周长比△ACM的周长大2,则BC长的可能值有()A. 4个B. 5个C. 6个D. 7个【答案】A【解析】【分析】本题主要考查了三角形三边关系的运用,解题时注意:三角形两边之和大于第三边,三角形的两边差小于第三边.依据△ABC的周长为22,△ABM的周长比△ACM的周长大2,可得2<BC<11,再根据△ABC的三边长均为整数,即可得到BC=4,6,8,10.【解答】解:∵△ABC的周长为22,△ABM的周长比△ACM的周长大2,∴2<BC<22−BC,解得2<BC<11,又∵△ABC的三边长均为整数,△ABM的周长比△ACM的周长大2,∴AC=22−BC−22=10−12BC,为整数,∴BC边长为偶数,∴BC=4,6,8,10,故选:A.二、填空题(本大题共2小题,共6.0分)9.三角形的三条中线相交于一点,这个点一定在三角形的________,这个点叫做三角形的__________.【答案】内部;重心【解析】略10.如图,在△ABC中,D是BC边上一点,E是AD边上一点.(1)以AC为边的三角形共有个,它们是;(2)∠1是△和△的内角;(3)在△ACE中,∠CAE的对边是.【答案】3△ACE,△ACD,△ACBBCECDECE【解析】略三、解答题(本大题共5小题,共40.0分)11.在如图所示的方格纸中,每个小正方形的边长均为1,点A,点B,点C均在小正方形的顶点上.(1)画出△ABC中BC边上的高AD;(2)画出△ABC中AC边上的中线BE;(3)直接写出△ABE的面积为.【答案】解:(1)如图所示,线段AD即为所求.(2)如图所示,线段BE即为所求.(3)4.【解析】(3)解:∵S△ABC=12BC⋅AD=12×4×4=8,∴△ABE的面积=12S△ABC=4.12.已知a、b、c为△ABC的三边长,且b、c满足(b−5)2+(c−7)2=0,a为方程|a−3|=2的解,求△ABC的周长,并判断△ABC的形状.【答案】解:∵(b −5)2+(c −7)2=0,∴{b −5=0,c −7=0,解得{b =5,c =7,∵a 为方程|a −3|=2的解,∴a =5或1,当a =1,b =5,c =7时,三边长分别为1,5,7,1+5<7,不能组成三角形,故a =1不符合题意;当a =5,b =5,c =7时,三边长分别为5,5,7,5+5>7,能组成三角形,故a =5符合题意,∴△ABC 的周长=5+5+7=17.∵a =b =5,∴△ABC 是等腰三角形.【解析】要注意检验三边长能否构成三角形.13. 若△ABC 的三边长分别为m −2,2m +1,8.(1)求m 的取值范围;(2)若△ABC 的三边均为整数,求△ABC 的周长.【答案】解:(1)根据三角形的三边关系,{2m +1−(m −2)<82m +1+m −2>8, 解得:3<m <5;(2)因为△ABC 的三边均为整数,且3<m <5,所以m =4.所以,△ABC 的周长为:(m −2)+(2m +1)+8=3m +7=3×4+7=19.【解析】(1)直接利用三角形三边关系得出不等式组求出答案;(2)利用m 的取值范围得出m 的值,进而得出答案.此题主要考查了三角形三边关系,正确得出不等式组是解题关键.14.如图,已知P是△ABC内一点.求证:PA+PB+PC>1(AB+BC+AC).2【答案】证明:在△ABP中,PA+PB>AB; ①在△PBC中,PB+PC>BC; ②在△PAC中,PA+PC>AC. ③ ①+ ②+ ③,得2(PA+PB+PC)>AB+BC+AC,(AB+BC+AC).即PA+PB+PC>12【解析】见答案15.在平面内,分别用3根、5根、6根⋯⋯火柴棒首尾顺次相接,能搭成什么形状的三角形呢?通过尝试,列表如下:火柴棒根数356示意图形状等边三角形等腰三角形等边三角形(1)用4根火柴棒能搭成三角形吗?(2)用8根、12根火柴棒分别能搭成几种不同形状的三角形?并画出它们的示意图.【答案】解:(1)用4根火柴棒不能搭成三角形.(2)用8根火柴棒能搭成一种三角形,示意图如图 ①所示;用12根火柴棒能搭成三种不同形状的三角形,即:(4,4,4),(5,5,2),(3,4,5),示意图如图 ②所示.【解析】见答案。

专题11.6 与三角形有关的线段—三角形的稳定性(拓展提高)(解析版)

专题11.6 与三角形有关的线段—三角形的稳定性(拓展提高)(解析版)

专题11.6 与三角形有关的线段—三角形的稳定性(拓展提高)一、单选题1.下列图形中不具备稳定性的是()A.B.C.D.【答案】C【分析】三角形具有稳定性,只要选项中的图形可以分解成三角形,则图形就有稳定性,据此即可确定.【详解】解:A、可以看成两个三角形,而三角形具有稳定性,则这个图形一定具有稳定性,故本选项错误;B、可以看成三个三角形,而三角形具有稳定性,则这个图形一定具有稳定性,故本选项错误;C、可以看成一个三角形和一个四边形,而四边形不具有稳定性,则这个图形一定不具有稳定性,故本选项正确;D、可以看成7个三角形,而三角形具有稳定性,则这个图形一定具有稳定性,故本选项错误.故选:C.【点睛】本题主要考查了三角形的稳定性,正确理解各个图形具有稳定性的条件是解题的关键.2.如图,工人师傅砌门时,常用一根木条EF来固定长方形门框ABCD,使其不变形,这样做的根据是()A.两点之间线段最短B.长方形的四个角都是直角C.长方形是轴对称图形D.三角形具有稳定性【答案】D【分析】根据三角形具有稳定性解答.【详解】用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是三角形具有稳定性,故选:D.【点睛】此题考查三角形的稳定性,正确理解题意即可解决实际问题.3.盖房子时,木工师傅常常先在窗框上斜钉一根木条,利用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短【答案】A【分析】用木条固定矩形门框,即是组成三角形,故可用三角形的稳定性解释.【详解】解:加上木条后,原不稳定的四边形中具有了稳定的三角形,故这种做法根据的是三角形的稳定性.故选:A.【点睛】本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.4.要使四边形木架不变形,至少要再钉几根木条()A.4B.2C.1D.3【答案】C【分析】根据三角形具有稳定性可得:沿对角线钉上1根木条即可.【详解】解:根据三角形的稳定性可得,至少要再钉上1根木条.故选:C.【点睛】此题主要考查了三角形具有稳定性,当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性,而四边形不具有稳定性.5.王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?().A.0根B.1根C.2根D.3根【答案】B【解析】三角形具有稳定性,连接一条对角线,即可得到两个三角形,故选B6.下列生产和生活:①用人字架来建筑房屋;②用窗钩来固定窗扇;③在栅栏门上斜钉着一根木条;④商店的推拉活动防盗门等.其中,用到三角形的稳定性的有( )A.1种B.2种C.3种D.4种【答案】C【详解】解:①用“人”字梁建筑屋顶,是利用三角形具有稳定性;②用窗钩来固定窗扇,是利用三角形具有稳定性;③在栅栏门上斜钉着一根木条,是利用三角形具有稳定性;④商店的推拉防盗铁门,不是利用三角形具有稳定性;综上所述:用到三角形稳定性的是①②③.故选C.7.小明用螺栓将两端打有孔的5根长度相等的木条,首尾连接制作了一个五角星,他发现五角星的形状不稳定,稍微一动五角星就变形了。

初二数学上册:与三角形有关的线段常考题型专练(含答案)

初二数学上册:与三角形有关的线段常考题型专练(含答案)

初二数学上册:与三角形有关的线段常考题型专练(含答案)专题一:三角形个数的确定1.如图,图中三角形的个数为(D)A.2B.18C.19D.20解析:线段AB上有5个点,线段AB与点C组成5×(5-1)÷2=10个三角形;同样,线段DE上也有5个点,线段DE与点C组成5×(5-1)÷2=10个三角形,图中三角形的个数为20个.故选D.2.如图所示,第1个图中有1个三角形,第2个图中共有5个三角形,第3个图中共有9个三角形,依此类推,则第6个图中共有三角形 21 个.解析:根据前边的具体数据,再结合图形,不难发现:后边的总比前边多4,若把第一个图形中三角形的个数看作是1=4-3,则第n个图形中,三角形的个数是4n-3.所以当n=6时,原式=21.3.阅读材料,并填表:在△ABC中,有一点P1,当P1、A、B、C 没有任何三点在同一直线上时,可构成三个不重叠的小三角形(如图).当△ABC内的点的个数增加时,若其他条件不变,三角形内互不重叠的小三角形的个数情况怎样?完成下表:△ABC内点的个数123 (1007)构成不重叠的小三角形的个数357 (2015)解析:当△ABC内有1个点时,构成不重叠的三角形的个数是3=1×2+1;当△ABC内有2个点时,构成不重叠的三角形的个数是5=2×2+1;参考上面数据可知,三角形的个数与点的个数之间的关系是:三角形内有n个点时,三角形内互不重叠的小三角形的个数是2n+1,故当有3个点时,三角形的个数是3×2+1=7;当有1007个点时,三角形的个数是1007×2+1=2015.专题二:根据三角形的三边不等关系确定未知字母的范围4.三角形的三边分别为3,1-2a,8,则a的取值范围是(B)A.-6<a<-3B.-5<a<-2C.2<a<5D.a<-5或a>-2解析:根据题意,得8-3<1-2a<8+3,即5<1-2a<11,解得-5<a<-2.故选B.5.在△ABC中,三边长分别为正整数a、b、c,且c≥b≥a>0,如果b=4,则这样的三角形共有 10 个.解析:∵在△ABC中,三边长分别为正整数a、b、c,且c≥b≥a>0,∴c<a+b.∵b=4,∴a=1,2,3,4.a=1时,c=4;a=2时,c=4或5;a=3时,c=4,5,6;a=4时,c=4,5,6,7.∴这样的三角形共有1+2+3+4=10个.6.若三角形的三边长分别是2、x、8,且x是不等式>的正整数解,试求第三边x的长.原不等式可化为3(x+2)>-2(1-2x),解得x<8.∵x是它的正整数解,∴x可取1,2,3,5,6,7.再根据三角形三边关系,得6<x<10,∴x=7.。

人教版数学 八年级上册11.1与三角形有关的线段 练习 (含答案)

人教版数学 八年级上册11.1与三角形有关的线段 练习 (含答案)

11.1与三角形有关的线段一.选择题1.已知三角形两边的长分别为1cm、5cm,则第三边的长可以为()A.3cm B.4cm C.5cm D.6cm2.下列各组图形中,表示AD是△ABC中BC边的高的图形为()A.B.C.D.3.如图,AD⊥BC于点D,GC⊥BC于点C,CF⊥AB于点F,下列关于高的说法中正确的是()A.△ABC中,AD是BC边上的高B.△ABC中,GC是BC边上的高C.△GBC中,CF是BC边上的高D.△GBC中,GC是BG边上的高4.下列说法正确的是()A.三角形的角平分线是射线B.过三角形的顶点,且过对边中点的直线是三角形的一条中线C.锐角三角形的三条高交于一点D.三角形的高、中线、角平分线一定在三角形的内部5.若AD是△ABC的中线,则下列结论正确的是()A.AD⊥BC B.BD=CD C.∠BAD=∠CAD D.AD=BC 6.下列各组长度的三条线段能组成三角形的是()A.4cm,5cm,9cm B.4cm,4cm,8cmC.5cm,6cm,7cm D.3cm,5cm,10cm7.如果a、b、c分别是三角形的三条边,那么化简|a﹣c+b|+|b+c﹣a|的结果是()A.﹣2c B.2b C.2a﹣2c D.b﹣c8.如图,在△ABC中,AB=2020,AC=2018,AD为中线,则△ABD与△ACD的周长之差为()A.1B.2C.3D.49.如图,△ABC的BC边上的高是()A.BE B.AF C.CD D.CF10.设三角形三边之长分别为3,8,1﹣2a,则a的取值范围为()A.3<a<6B.﹣5<a<﹣2C.﹣2<a<5D.a<﹣5或a>2二.填空题11.如图,根据“两点之间线段最短”,可以判定AC+BC AB(填“>”“<”或“=”).12.从长度分别为3cm,4cm,5cm,6cm,9cm的线段中任意取3条,能构成的三角形个数为.13.△ABC的两边长分别是2和7,且第三边为奇数,则第三边长为.14.如图,AD是△ABC的一条中线,若BD=3,则BC=.15.如图所示,第1个图中有1个三角形,第2个图中共有5个三角形,第3个图中共有9个三角形,依此类推,则第6个图中共有三角形个.三.解答题16.在△ABC中,已知AB=3,AC=7,若第三边BC的长为偶数,求△ABC的周长.17.已知a=m2+n2,b=m2,c=mn,且m>n>0.(1)比较a,b,c的大小;(2)请说明以a,b,c为边长的三角形一定存在.18.如图,在三角形ABC中,AB=10cm,AC=6cm,D是BC的中点,E点在边AB上,三角形BDE与四边形ACDE的周长相等.(1)求线段AE的长.(2)若图中所有线段长度的和是53cm,求BC+DE的值.参考答案一.选择题1.解:设第三边的长为xcm,则5﹣1<x<1+5,即4<x<6.故选:C.2.解:△ABC的高AD是过顶点A与BC垂直的线段,只有D选项符合.故选:D.3.解:∵AD⊥BC于点D,∴△ABC中,AD是BC边上的高,故A选项正确,B选项错误;∵CF⊥AB于点F,∴△GBC中,CF是BG边上的高,故C选项错误,D选项错误.故选:A.4.解:A.三角形的角平分线是线段,故A不符合题意;B.三角形的中线是线段,故B不符合题意;C.锐角三角形的三条高交于一点说法正确,故C符合题意;D.锐角三角形的三条高都在三角形内部;直角三角形有两条高与直角边重合,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部.故D不符合题意;故选:C.5.解:∵AD是△ABC的中线,∴BD=DC,故选:B.6.解:根据三角形的三边关系,A、4+5=9,不能组成三角形,不符合题意;B、4+4=8,不能够组成三角形,不符合题意;C、5+6>7,能组成三角形,符合题意;D、3+5=8<10,不能组成三角形,不符合题意.故选:C.7.解:∵a、b、c分别是三角形的三条边,∴a﹣c+b>0,b+c﹣a>0,∴|a﹣c+b|+|b+c﹣a|=a﹣c+b+b+c﹣a=2b.故选:B.8.解:∵AD为中线,∴DB=DC,∴△ABD与△ACD的周长之差为:(AB+AD+BD)﹣(AD+DC+AC)=AB+AD+BD﹣AD﹣DC﹣AC=AB﹣AC=2020﹣2018=2,故选:B.9.解:△ABC的BC边上的高是AF,故选:B.10.解:由题意得:8﹣3<1﹣2a<8+3,解得:﹣5<a<﹣2,故选:B.二.填空题11.解:如图,根据“两点之间线段最短”,可以判定AC+BC>AB,故答案为:>.12.解:其中的任意三条组合有:3cm、4cm、5cm;3cm、4cm、6cm;3cm、4cm、9cm;3cm、5cm、6cm;3cm、5cm、9cm;3cm、6cm、9cm;4cm、5cm、6cm;4cm、5cm、9cm;4cm、6cm、9cm;5cm、6cm、9cm十种情况.根据三角形的三边关系,其中的3cm、4cm、5cm;3cm、4cm、6cm;3cm、5cm、6cm;4cm、5cm、6cm;4cm、6cm、9cm;5cm、6cm、9cm能搭成三角形.故答案为:6.13.解:∵7﹣2=5,7+2=9,∴5<第三边<9,∵第三边为奇数,∴第三边长为7.故答案为:7.14.解:∵AD是△ABC的一条中线,BD=3,∴BC=2BD=2×3=6.故答案为:6.15.解:第n个图形中,三角形的个数是1+4(n﹣1)=4n﹣3.所以当n=6时,原式=21,故答案为:21.三.解答题16.解:∵在△ABC中,AB=3,AC=7,∴第三边BC的取值范围是:4<BC<10,∴符合条件的偶数是6或8,∴当BC=6时,△ABC的周长为:3+6+7=16;当BC=8时,△ABC的周长为:3+7+8=18.∴△ABC的周长为16或18.17.解:(1)∵a=m2+n2,b=m2,c=mn,且m>n>0,∴m2+n2>m2>mn,∴a>b>c;(2)∵m>n>0,∴mn>n2,∴m2+mn>m2+n2,∴a,b,c为边长的三角形一定存在.18.解:(1)∵三角形BDE与四边形ACDE的周长相等,∴BD+DE+BE=AC+AE+CD+DE,∵BD=DC,∴BE=AE+AC,设AE=x cm,则BE=(10﹣x)cm,由题意得,10﹣x=x+6.解得,x=2,∴AE=2cm;(2)图中共有8条线段,它们的和为:AE+EB+AB+AC+DE+BD+CD+BC=2AB+AC+2BC+DE,由题意得,2AB+AC+2BC+DE=53,∴2BC+DE=53﹣(2AB+AC)=53﹣(2×10+6)=27,∴BC+DE=(cm).。

初一数学第七章 三角形有关的练习题(含答案)

初一数学第七章 三角形有关的练习题(含答案)

与三角形有关的线段习题精选习题一一、选择题:1.已知三条线段的比是:①1:3:4;②1:2:3;③1:4:6;④3:3:6;⑤6:6:10;⑥3:4:5.其中可构成三角形的有( )A.1个 B.2个 C.3个 D.4个2.如果三角形的两边长分别为3和5,则周长L的取值范围是( )A.6<L<15 B.6<L<16 C.11<L<13 D.10<L<163.现有两根木棒,它们的长度分别为20cm和30cm,若不改变木棒的长度,要钉成一个三角形木架,应在下列四根木棒中选取 ( )A.10cm的木棒 B.20cm的木棒C.50cm的木棒 D.60cm的木棒4.已知等腰三角形的两边长分别为3和6,则它的周长为( )A.9 B.12 C.15 D.12或155.已知三角形的三边长为连续整数,且周长为12cm,则它的最短边长为( )A. 2cm B. 3cm C. 4cm D. 5cm6.已知三角形的周长为9,且三边长都是整数,则满足条件的三角形共有( )A.2个 B.3个 C.4个 D.5个二、填空题:1.若三角形的两边长分别是2和7,则第三边长c的取值范围是_______;当周长为奇数时,第三边长为________;当周长是5的倍数时,第三边长为________.2.若等腰三角形的两边长分别为3和7,则它的周长为_______;若等腰三角形的两边长分别是3和4,则它的周长为_____.3.若等腰三角形的腰长为6,则它的底边长a的取值范围是________;若等腰三角形的底边长为4,则它的腰长b的取值范围是_______.4.若五条线段的长分别是1cm,2cm,3cm,4cm,5cm,则以其中三条线段为边可构成______个三角形.5.已知等腰三角形ABC中,AB=AC=10cm,D为AC边上一点,且BD=AD,△BCD的周长为15cm,则底边BC的长为__________.6.已知等腰三角形的两边长分别为4cm和7cm,且它的周长大于16cm,则第三边长为_____.三、基础训练:1.如图所示,已知P是△ABC内一点,试说明PA+PB+PC>(AB+BC+AC).2.已知等腰三角形的两边长分别为4,9,求它的周长.四、提高训练:设△ABC的三边a,b,c的长度都是自然数,且a≤b≤c,a+b+c=13,则以a,b,c为边的三角形共有几个?五、探索发现:若三角形的各边长均为正整数,且最长边为9,则这样的三角形的个数是多少?六、中考题与竞赛题:1.(2001.南京)有下列长度的三条线段,能组成三角形的是( )A. 1cm, 2cm, 3cm B. 1cm, 2cm, 4cm; C. 2cm, 3cm, 4cm D. 2cm, 3cm,6cm2.(2002.青海)两根木棒的长分别是8cm,10cm,要选择第三根木棒将它们钉成三角形,那么第三根木棒的长x的取值范围是________;如果以5cm为等腰三角形的一边,另一边为10cm,则它的周长为________.答案:一、1.B 2.D 3.B 4.C 5.B 6.B二、1.5<c<9 6或8 6 2.17 10或11 3.0<a<12 b>2 4.3 5. 5cm 6. 7cm三、1.解:在△APB中,AP+BP>AB,同理BP+PC>BC,PC+AP>AC,三式相加得2(AP+BP+PC)>AB+AC+BC,∴AP+BP+CP>(AB+AC+BC).2.22四、5个五、25个六、1. C 2. 2cm<x< 18cm 25cm.习题二一、选择题:1.如图1所示,在△ABC中,∠ACB=90°,把△ABC沿直线AC翻折180°,使点B落在点B′的位置,则线段AC具有性质( )A.是边BB′上的中线 B.是边BB′上的高C.是∠BAB′的角平分线 D.以上三种性质合一2.如图2所示,D,E分别是△ABC的边AC,BC的中点,则下列说法不正确的是( )A.DE是△BCD的中线 B.BD是△ABC的中线C.AD=DC,BD=EC D.∠C的对边是DE3.如图3所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE 的中点,且S△ABC= 4cm2,则S阴影等于( )A. 2cm2 B. 1cm 2 C.cm2 D.cm24.在△ABC,∠A=90°,角平分线AE、中线AD、高AH的大小关系为( )A.AH<AE<AD B.AH<AD<AE C.AH≤AD≤AE D.AH≤AE≤AD5.在△ABC中,D是BC上的点,且BD:DC=2:1,S△ACD=12,那么S△ABC等于( )A.30 B. 36 C.72 D.246.不是利用三角形稳定性的是( )A.自行车的三角形车架 B.三角形房架C.照相机的三角架 D.矩形门框的斜拉条二、填空题:1.直角三角形两锐角的平分线所夹的钝角为_______度.2.等腰三角形的高线、角平分线、中线的总条数为________.3.在△ABC中,∠B=80°,∠C=40°,AD,AE分别是△ABC的高线和角平分线,则∠DAE 的度数为_________.4.三角形的三条中线交于一点,这一点在_______,三角形的三条角平分线交于一点,这一点在__________,三角形的三条高线所在直线交于一点,这一点在_____.三、基础训练:1.如图所示,在△ABC中,∠C-∠B=90°,AE是∠BAC的平分线,求∠AEC的度数.2.在△ABC中,AB=AC,AD是中线,△ABC的周长为34cm,△ABD的周长为30cm,求AD的长.四、提高训练:在△ABC中,∠A=50°,高BE,CF所在的直线交于点O,求∠BOC的度数.五、探索发现:如图所示的是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n(n>1)盆花,每个图案花盆的总数为s.按此规律推断s与n有什么关系,并求出当n=13时,s的值.六、中考题与竞赛题:(2000.杭州)AD,AE分别是等边三角形ABC的高和中线,则AD 与AE 的大小关系为____.答案:一、1.D 2.D 3.B 4.D 5.B 6.C二、1.135 2.3条或7条 3.20°4.三角形内部三角形内部三角形内部、边上或外部三、1.∠AEC=45° 2.AD= 13cm四、∠BOC=50°或130°五、s=3n-3,当n=13时,s=36.六、AD=AE.。

初中数学八年级上册与三角形有关的线段练习题含答案

初中数学八年级上册与三角形有关的线段练习题含答案

初中数学八年级上册与三角形有关的线段练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 下列选项中的图形都是小强用三根火柴棒组成的,其中符合三角形概念的是()A. B.C. D.2. 在▱ABCD中,∠C=120∘,CD=2,以点B为圆心,以1为半径画弧,交AB于点G,交BC于点H,再分别以G和H为圆心,以1为半径画弧,交于点M,作射线BM交AD于点E,连结AM,则AM的长为()A.1B.√3C.2D.123. P为△ABC内一点,PA、PB、PC把△ABC的面积分成三等分,则P点是△ABC的()A.内心B.外心C.垂心D.重心4. 试通过画图来判定,下列说法正确的是()A.一个直角三角形一定不是等腰三角形B.一个等腰三角形一定不是锐角三角形C.一个钝角三角形一定不是等腰三角形D.一个等边三角形一定不是钝角三角形5. 如图,工人师傅做了一个长方形窗框ABCD,E,F,G,H分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条应钉在()A.E,H两点之间B.E,G两点之间C.F,H两点之间D.A,B两点之间6. 如图,已知△ABC的周长是30,BO,CO分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=4,△ABC的面积是( )A.60B.120C.26D.347. 在Rt△ABC中,∠ACB=90∘,点G是△ABC的重心,且CG=2,则AB长为()A.2B.3C.4D.68. 三角形两边长分别为2、6,第三边为偶数,则第三边可以是()A.4B.6C.8D.109. 如图,网格中小正方形的边长均为1,△ABC的三个顶点都在格点上,则△ABC的面积为()A.5B.3.5C.2.5D.210. 如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=5,则AE的长为()A.4B.8C.6D.1011. 用120根火柴,首尾相接围成一个三条边互不相等的三角形,已知最大边是最小边的3倍,则最小边最少用了________根火柴.12. 三角形按角的不同分类,可分为________三角形,________三角形和________三角形.13. 为了使做好的木门窗在运输、安装过程中不变形,木工师傅在木门窗上斜着加钉了一根木条.其原理是________.14. 已知:直线AB和AB外一点C.求作:AB的垂线,使它经过点C.作法:(1)任意取一点K,使点K和点C在________的两旁;(2)以点C为圆心,________长为半径作弧,交AB于点D和E;(3)分别以点D和点E为圆心,大于________的长为半径作弧,两弧相交于点F;(4)作直线CF.直线CF就是所求作的垂线.15. 如图所示,AB=29,BC=19,AD=20,CD=16,若AC=x,则x的取值范围为________.16. 如图,△ABC中,点D、E、F分别为边BC、AD、CE的中点,且△ABC的面积是4,则面积是1的三角形有________个.17. 如图,在△ABC中,BC边上的高是________;在△BCE中,BE边上的高是________;在△ACD中,AC边上的高是________.18. 在Rt△ABC中,AB=3,AC=4,BC=5,现记A、B、C到某一直线l的距离分别是d A、d B、d C,若d A:d B:d C=1:2:3,则满足此条件的直线l共有________条.19. △ABC中,AB=15,AC=13,高AD=12,则△ABC的周长是________.20. 要使五边形木架(用5根木条钉成)不变形,至少要再钉________根木条.21. 如图,在△ABC中,AD是BC边上的中线,△ABD的周长比△ADC的周长多3,且AB与AC的和为11.(1)求AB,AC的长;(2)求BC边的取值范围.22. 如图,在7×6的方格中,△ABC的顶点均在格点上.试按要求画出线段EF(E,F 均为格点),各画出一条即可.23. 在△ABC中,AB=8,BC=2,并且AC为偶数,求△ABC的周长.24. 如图,在正方形网格上有一个△ABC.(1)若网格上的最小正方形边长为1,△ABC的面积为________.(2)在网格中以BC为一边作格点△BCD(顶点在小正方形的顶点处的三角形称为格点三角形),使它的面积是△ABC的2倍.备注:画出一个即可.25. 如图,已知AD、AE分别是△ABC的高和中线,AB=9cm,AC=12cm,BC= 15cm,∠BAC=90∘.试求:(1)△ABE的面积;(2)AD的长度;(3)△ACE和△ABE的周长的差.26. 在△ABC中,AB=6,BC=2,并且AC为偶数,那么△ABC的周长为多少?27. 如图,在△ABC中,AD,AE分别是边BC上的中线和高,AE=3cm,S△ABC=12cm2.求BC和DC的长.28. 已知△ABC,BE、CF、AD分别是△ABC的三条中线,证明:三条中线交于一点G.AC的29. 如图,在等腰直角三角形ABC中,∠BAC=90∘,AB=AC,以点C为圆心、13长为半径作圆,点E为⊙C上一点,连接CE,AE,将△CEA绕点E逆时针旋转90∘,得到△GEF,连结BF,AG, CG.(1)如图(1),当点E在BC上时,求证:四边形GABF是矩形;(2)当点E在如图(2)所示的位置上时,判断四边形CABF的形状,并说明理由;(3)当四边形GABF是菱形时,求∠CEA的度数.30. 如图1、2,点E为正方形ABCD边DC的中点,依据正方形的对称性,请仅用一把无刻度的直尺(仅用于过任意两点作直线、连接任意两点、延长任意线段)按要求画图.(不写画法,保留作图痕迹).(1)在图1中,画出∠B的平分线和AD边的中点F;(2)在图2中,画出EF⊥AB,垂足为点F.31. 已知a,b,c分别为△ABC的三边,且满足a+b=2c−3,a−b=2c−6,a>b.(1)求c的取值范围;(2)若△ABC的周长为12,求c的值.32. 如图,△ABC中,点D、E分别为AB、AC的中点,连接DE,线段BE、CD相交于点O,若OD=2,求OC的长.33. 如图,AD、CE是△ABC的高,且AB=2BC.则AD与CE有怎样的数量关系?为什么?34. 现有一长度为30cm的铁条,张师傅欲把它截开,焊接成各边长度顺次相差相等自然数的三角形铁架,可以有多少种截法?35. 如图,点E是△ABC的内心,AE的延长线与△ABC的外接圆相交于点D.(1)若∠BAC=70∘,求∠CBD的度数;(2)求证:DE=DB.36. 如图,在三角形ABC中,AD是BC边上的中线,三角形ABD的周长比三角形ACD的周长小5,求AC−AB的值.37. 如图,在△ABC中,点D,E,F分别为BC,AD,CE的中点,且SΔABC=8cm2,则阴影部分的面积为________.38. 已知:如图,∠MON及边ON上一点A.在∠MON内部求作:点P,使得PA⊥ON,且点P到∠MON两边的距离相等.39. 如图是边长为1的小正方形网格,已知点A(0, 1),B(2, 1),C(3, 2).(1)请在网格中画出平面直角坐标系和△ABC;(2)若平面内有一点D,使△ABD与△ABC全等,则点D的坐标是________;(3)若在x轴上存在一点P,且S△PBC=S△ABC,则点P的坐标是________.40. 三角形三边长a,b,c都是正整数,且满足a>b>c,a=8,且满足条件的三角形有多少个?参考答案与试题解析初中数学八年级上册与三角形有关的线段练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】C【考点】三角形【解析】【解答】解:∵由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形,∴选项C符合三角形的概念.故选C.2.【答案】A【考点】作角的平分线平行四边形的性质含30度角的直角三角形角平分线的性质【解析】【知识点】四边形、三角形性质,尺规作图.【解答】解:在平行四边形ABCD中,∵ ∠C=120∘,CD=2,BE为∠ABC的平分线,∴ ∠ABM=30∘,∵ BG=GM=AG=1,∴ ∠AMB=90∘,AB=1,∴ AM=12故选A.3.【答案】D【考点】三角形的重心【解析】根据三角形的中线把三角形分成两个面积相等的三角形,三角形的重心到顶点的距离等于到对边中点的距离的2倍求解即可.【解答】解:P点是△ABC的重心.理由如下:如图,∵AD是△ABC的中线,∴S△ABD=12S△ABC,∵P是△ABC的重心,∴PA=2PD,∴S△ABP=22+1S△ABD=23×12S△ABC=13S△ABC,同理S△ACP=13S△ABC,S△BCP=13S△ABC.故选D.4.【答案】D【考点】三角形三角形的分类【解析】根据三角形的分类方法进行分析判断.三角形按角分为锐角三角形、直角三角形和钝角三角形;三角形按边分为不等边三角形和等腰三角形(等边三角形).【解答】解:A,如等腰直角三角形,既是直角三角形,也是等腰三角形,故该选项错误;B,如等边三角形,既是等腰三角形,也是锐角三角形,故该选项错误;C,如顶角是120∘的等腰三角形,是钝角三角形,也是等腰三角形,故该选项错误;D,一个等边三角形的三个角都是60∘.故该选项正确.故选D.5.【答案】A【考点】三角形的稳定性【解析】根据三角形的稳定性进行判断逐一判断即可.【解答】解:A.若钉在E、H两点处则构成了三角形,能固定窗框,故符合题意;B.若钉在E、G两点处则构成了两个四边形,不能固定窗框,故不符合题意;C.若钉在FH两点处则构成了两个四边形,不能固定窗框,故不符合题意;D.若钉在A、B两点处则未改变形状,不能固定窗框,故不符合题意;故答案为:A.6.【答案】A【考点】三角形的角平分线三角形的面积【解析】此题暂无解析【解答】解:作OE⊥AB于E,OF⊥AC于F,∵BO,CO分别平分∠ABC和∠ACB,OD⊥BC,OE⊥AB,OF⊥AC,∴OE=OF=OD=4,∴△ABC的面积=12×AB×OE+12×AC×OF+12×BC×OD=12×(AB+AC+BC)×4=60.故选A.7.【答案】D【考点】三角形的重心【解析】在Rt△ABC中,∠C=90∘,点G为重心,CG=2,根据重心的性质即可求出AB.【解答】解:在Rt△ABC中,∠C=90∘,∵CG=2,∴AB边上的中线是6,∵点G为重心,∴CG=AB×13=2.∴AB=6,故选:D.【答案】B【考点】三角形三边关系【解析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,求得第三边的取值范围,再进一步进行分析.【解答】解:根据三角形的三边关系,得第三边大于4,而小于8.又第三边是偶数,则应是6.故选B.9.【答案】B【考点】三角形的面积【解析】根据图形可得△ABC的面积为S四边形AEFD−S△ACE−S△ADB−S△BCF,再分别求出每部分的面积,最后进行计算即可.【解答】解:S△ABC=S四边形AEFD−S△ACE−S△ADB−S△BCF=3×3−12×1×3−12×2×3−12×1×2=9−32−3−1=3.5.故选:B.10.【答案】B【考点】作角的平分线【解析】此题暂无解析【解答】解:设AG与BF交点为O,∵ AB=AF,AG平分2AAD,AO=AO,∴可证△ABO≅△AFO∵ BO=FO=3,∠AOB=∠AOF=90∘AB=5AO=4,AFIBE,∴△AOF≅△EOB,AO=EOAE=2AO=8________,故选B.二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】18【考点】三角形边角关系三角形三边关系【解析】根据三角形的三边关系“两边之和大于第三边,两边之差小于第三边”进行分析判断.【解答】解:设三边为a(最小边),3a(最大边)、b,则a<b<3a①又∵2a<b<4a (三角形三边关系)②由①②,得2a<b<3a;又4a+b=120,则b=120−4a则6a<120<7a,即17.1<a<20,则a取值可为18或者19;最小边最少用18根火柴.故答案为18.12.【答案】锐角,直角,钝角【考点】三角形三角形的分类【解析】根据三角形的分类方法进行填空即可.【解答】解:三角形按角的不同分类,可分为锐角三角形,直角三角形和钝角三角形.故答案为:锐角;直角;钝角.13.【答案】三角形的稳定性【考点】三角形的稳定性【解析】根据安装过程中不变形,木工师傅在木门窗上斜着加钉了一根木条,是利用了三角形的稳定性.【解答】解:其原理是:三角形的稳定性.14.【答案】直线ABCK1DE2【考点】经过一点作已知直线的垂线【解析】由尺规作图的线段垂直平分线的作法得答案.【解答】解:(1)任意取一点K,使点K和点C在直线AB的两旁.故答案为:直线AB.(2)以点C为圆心,CK长为半径作弧,交AB于点D和E.故答案为:CK.(3)分别以点D和点E为圆心,大于1DE的长为半径作弧,两弧相交于点F.2DE.故答案为:1215.【答案】10<x<36【考点】三角形三边关系【解析】根据三角形的三边关系在△ABC中可得:29−19<x<29+19,在△ADC中可得:20−16<x<20+16,再求出公共解集即可.【解答】解:在△ABC中:29−19<x<29+19,解得:10<x<48,在△ADC中:20−16<x<20+16,解得:4<x<36,因此:10<x<36,故答案为:10<x<36.16.【答案】6【考点】三角形的面积【解析】根据三角形的中线把三角形分成两个面积相等的三角形解答.【解答】解:∵点D、E分别为边BC、AD的中点,∴S△ABD=S△ACD=1×4=2,2S△ABE=S△BDE=S△ACE=S△CDE=1×2=1,2∴S△BCE=S△BDE+S△CDE=1+1=2,∵点F是CE的中点,∴S△BEF=S△BCF=1×2=1,2∴面积是1的三角形有6个.故答案为:6.17.【答案】AF,CE,CD【考点】三角形的高【解析】根据三角形的高的定义即可求出答案.【解答】解:根据三角形的高的定义:三角形的一个顶点向它的对边所在的直线作垂线,这点和垂足之间的线段是三角形的这边上的高,得出:在△ABC中,BC边上的高是AF;在△BCE中,BE边上的高是CE;在△ACD中,AC边上的高是CD.故答案为:AF,CE,CD.18.【答案】4【考点】三角形边角关系【解析】由于A、B、C到直线l的距离不等,故l与AB,AC,BC均不平行.在AB上作内分点X1,外分点X2;在BC上作内分点Y1,外分点Y2;在CA上作内分点Z1,外分点Z2;可知满足条件的直线条数.【解答】解:如图,在AB上作内分点X1,外分点X2,使AX1:X1B=1:2;AX2:X2B=1:2;在BC上作内分点Y1,外分点Y2,使BY1:Y1C=2:3;BY2:Y2C=2:3;在CA上作内分点Z1,外分点Z2,使AZ1:Z1C=1:3;AZ2:Z2C=1:3;满足条件的直线l共有四条:Y2Z2X2、Y2X1Z1、Y1X1Z2、Y1Z1X1.故答案为:4.19.【答案】42或32【考点】三角形的分类勾股定理【解析】本题应分两种情况进行讨论:(1)当△ABC为锐角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相加即为BC的长,从而可将△ABC的周长求出;(2)当△ABC为钝角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD 的长求出,两者相减即为BC的长,从而可将△ABC的周长求出.【解答】解:此题应分两种情况说明:如图(1),当△ABC为锐角三角形时,在Rt△ABD中,BD=√AB2−AD2=√152−122=9,在Rt△ACD中,CD=√AC2−AD2=√132−122=5,∴BC=5+9=14,∴△ABC的周长为:15+13+14=42;如图(2),当△ABC为钝角三角形时,在Rt△ABD中,BD=√AB2−AD2=√152−122=9,在Rt△ACD中,CD=√AC2−AD2=√132−122=5,∴BC=9−5=4.∴△ABC的周长为:15+13+4=32,∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.综上所述,△ABC的周长是42或32.故答案为:42或32.20.【答案】2【考点】三角形的稳定性【解析】根据三角形的稳定性,添加的木条把五边形分成三角形即可.【解答】解:如图,至少需要2根木条.故答案为:2.三、解答题(本题共计 20 小题,每题 10 分,共计200分)21.【答案】解:(1)∵AD是BC边上的中线,∴BD=CD,∴△ABD的周长−△ADC的周长=(AB+AD+BD)−(AC+AD+CD)=AB−AC=3,即AB−AC=3①.又AB+AC=11②,①+②得:2AB=14,解得AB=7;②−①得,2AC=8,解得AC=4,∴AB和AC的长分别为AB=7,AC=4 .(2)∵AB=7,AC=4,∴ 3<BC<11 .【考点】三角形的中线三角形三边关系【解析】(1)∵AD是BC边上的中线,∴BD=CD,∴△ABD的周长−△ADC的周长= (AB+AD+BD)−(AC+AD+CD)=AB−AC=3,即AB=AC=3①,又AB+ AC=11②,①+②得.2AB=14,解得AB=7.②-①得,2AC=8,解得AC=4 . ∴AB和AC的长分别为AB=7,AC=4 .(2)∵AB=7,AC=4,∴ 3<BC<11 .【解答】解:(1)∵AD是BC边上的中线,∴BD=CD,∴△ABD的周长−△ADC的周长=(AB+AD+BD)−(AC+AD+CD)=AB−AC=3,即AB−AC=3①.又AB+AC=11②,①+②得:2AB=14,解得AB=7;②−①得,2AC=8,解得AC=4,∴AB和AC的长分别为AB=7,AC=4 .(2)∵AB=7,AC=4,∴ 3<BC<11 .22.【答案】解:如图所示即为所求.【考点】经过一点作已知直线的垂线【解析】图1,从图中可得到AC边的中点在格点上设为E,过E作AB的平行线即可在格点上找到F;图2,EC=√5,EF=√5,FC=√10,借助勾股定理确定F点;图3,根据格点特征,利用垂直平分线的判定画出图形即可.【解答】解:如图所示即为所求.23.【答案】解:在△ABC中,根据三角形三边关系得:AB−BC<AC<AB+BC.即8−2<AC<8+2,解得6<AC<10.又因为AC为偶数,所以AC=8,所以△ABC的周长为:8+2+8=18.【考点】三角形三边关系【解析】暂无【解答】解:在△ABC中,根据三角形三边关系得:AB−BC<AC<AB+BC.即8−2<AC<8+2,解得6<AC<10.又因为AC为偶数,所以AC=8,所以△ABC的周长为:8+2+8=18.24.【答案】2.5.【考点】三角形的面积【解析】(1)△ABC的面积=一个长方形的面积−3个小三角形的面积;(2)作出高是△ABC的BC边的高的2倍的三角形即可.【解答】解:(1)△ABC的面积为:3×2−1×2÷2×2−1×3÷2=2.5;(2)作图如下:25.【答案】解:(1)∵△ABC是直角三角形,∠BAC=90∘,AB=9cm,AC=12cm,∴S△ABC=12AB⋅AC=12×9×12=54(cm2).又∵AE是边BC的中线,∴BE=EC,∴12BE⋅AD=12EC⋅AD,即S△ABE=S△AEC,∴S△ABE=12S△ABC=27(cm2).∴△ABE的面积是27cm2.(2)∵∠BAC=90∘,AD是边BC上的高,∴12AB⋅AC=12BC⋅AD,∴AD=AB⋅ACBC =9×1215=7.2(cm),即AD的长度为7.2cm.(3)∵AE为BC边上的中线,∴BE=CE,∴△ACE的周长−△ABE的周长=AC+AE+CE−(AB+BE+AE)=AC−AB=12−9=3(cm),即△ACE和△ABE的周长的差是3cm.【考点】三角形的高三角形的中线三角形的面积【解析】(1)利用“面积法”来求线段AD的长度;(2)△AEC与△ABE是等底同高的两个三角形,它们的面积相等;(3)由于AE是中线,那么BE=CE,于是△ACE的周长−△ABE的周长=AC+AE+CE−(AB+BE+AE),化简可得△ACE的周长−△ABE的周长=AC−AB,易求其值.【解答】解:(1)∵△ABC是直角三角形,∠BAC=90∘,AB=9cm,AC=12cm,∴S△ABC=12AB⋅AC=12×9×12=54(cm2).又∵AE是边BC的中线,∴BE=EC,∴12BE⋅AD=12EC⋅AD,即S△ABE=S△AEC,∴S△ABE=12S△ABC=27(cm2).∴△ABE的面积是27cm2.(2)∵∠BAC=90∘,AD是边BC上的高,∴12AB⋅AC=12BC⋅AD,∴AD=AB⋅ACBC =9×1215=7.2(cm),即AD的长度为7.2cm.(3)∵AE为BC边上的中线,∴BE=CE,∴△ACE的周长−△ABE的周长=AC+AE+CE−(AB+BE+AE)=AC−AB=12−9=3(cm),即△ACE和△ABE的周长的差是3cm.26.【答案】解:设AC为x,由三角形三边关系得,6−2<x<6+2,解得,4<x<8,又AC为偶数,∴AC=6,∴C△ABC=AB+BC+AC=6+2+6=14.【考点】三角形三边关系【解析】解:根据三角形的三边关系,得:第三边的取值范围是>4而<8,又第三边是偶数,则第三边是6,故周长是14.【解答】解:设AC为x,由三角形三边关系得,6−2<x<6+2,解得,4<x<8,又AC为偶数,∴AC=6,∴C△ABC=AB+BC+AC=6+2+6=14. 27.【答案】解:∵AD,AE分别是边BC上的中线和高,AE=3cm,S△ABC=12cm2,∴S△ADC=6cm2,∴1×AE×CD=6,2∴1×3×CD=6,2解得:CD=4(cm),∴BC=2×4=8(cm).【考点】三角形的面积【解析】利用三角形的中线平分三角形面积得出S△ADC=6cm2,进而利用三角形面积得出CD的长,即可得出BC的长.【解答】解:∵AD,AE分别是边BC上的中线和高,AE=3cm,S△ABC=12cm2,∴S△ADC=6cm2,∴1×AE×CD=6,2∴1×3×CD=6,2解得:CD=4(cm),∴BC=2×4=8(cm).28.【答案】证明:如图,延长AG与BC相交于点D′,过点B作BH // CF交AG的延长线于H,∵CF是△ABC的中线,∴G是AH的中点,∵BE是△ABC的中线,∴GE是△ACH的中位线,∴GE // CH,∴四边形BHCG是平行四边形,∴BD′=CD′,∵AD是△ABC的中线,∴点D′与点D互相重合,∴AD经过BE、CF的交点G,即三条中线交于一点G.【考点】三角形的重心【解析】延长AG与BC相交于点D′,过点B作BH // CF交AG的延长线于H,根据三角形的中位线平行于第三边并且等于第三边的一半可得G是AH的中点,再根据三角形的中位线平行于第三边并且等于第三边的一半可得GE // CH,从而得到四边形BHCG是平行四边形,根据平行四边形对角线互相平分可得BD′=CD′,从而得到点D′与点D重合.【解答】证明:如图,延长AG与BC相交于点D′,过点B作BH // CF交AG的延长线于H,∵CF是△ABC的中线,∴G是AH的中点,∵BE是△ABC的中线,∴GE是△ACH的中位线,∴GE // CH,∴四边形BHCG是平行四边形,∴BD′=CD′,∵AD是△ABC的中线,∴点D′与点D互相重合,∴AD经过BE、CF的交点G,即三条中线交于一点G.29.【答案】(1)证明:由旋转的性质可得AC=GF,EC=EG,∠CEG=90∘.∵AC=AB,∴GF=AB.∵△ABC为等腰直角三角形,∠C=45∘,∴∠EGF=∠C=45∘.又EC=EG,且∠CEG=90∘,∴点G在AG上,且∠EGC=∠C=45∘,∴∠CGF=90∘=∠CAB,∴GF//AB,∴四边形GABF是平行四边形.又∠GAB=90∘,∴四边形GABF是矩形.(2)解:四边形GABF是平行四边形.理由:由旋转的性质可得AC=GF,∠EGF=∠ACE,∠CEG=90∘.∵AC=AB,∴GF=AB.∵∠EGF+∠AGF+∠EGA=360∘,∠ACE+∠CEG+∠EGA+∠CAG=360∘,∠EGF=∠ACE,∴∠AGF=∠CEG+∠CAG,∴GF//AB,∴四边形GABF是平行四边形.(3)解:∵四边形GABF是菱形,∴AG=AB=AC.又EC=EG,AE=AE,∴△ACE≅△ABE,∴∠CEA=∠GEA.∠CEG=45∘;如图(1),当点E在⊙C的右半边时,∠CEA=12(360∘−∠CEG)=135∘.如图(2),当点E在⊙C的左半边时,∠CEA=12【考点】三角形的高【解析】此题暂无解析【解答】(1)证明:由旋转的性质可得AC=GF,EC=EG,∠CEG=90∘.∵AC=AB,∴GF=AB.∵△ABC为等腰直角三角形,∠C=45∘,∴∠EGF=∠C=45∘.又EC=EG,且∠CEG=90∘,∴点G在AG上,且∠EGC=∠C=45∘,∴∠CGF=90∘=∠CAB,∴GF//AB,∴四边形GABF是平行四边形.又∠GAB=90∘,∴四边形GABF是矩形.(2)解:四边形GABF是平行四边形.理由:由旋转的性质可得AC=GF,∠EGF=∠ACE,∠CEG=90∘.∵AC=AB,∴GF=AB.∵∠EGF+∠AGF+∠EGA=360∘,∠ACE+∠CEG+∠EGA+∠CAG=360∘,∠EGF=∠ACE,∴∠AGF=∠CEG+∠CAG,∴GF//AB,∴四边形GABF是平行四边形.(3)解:∵四边形GABF'是菱形,∴AG=AB=AC,又EC=EG,AE=AE,∴△ACE≅△ABE,∴∠CEA=∠GEA,∠CEG=45∘;如图(1),当点E在⊙C的右半边时,∠CEA=12(360∘−∠CEG)=135∘.如图(2),当点E在⊙C的左半边时,∠CEA=1230.【答案】解:(1)如图①所示;(2)如图②所示:①②【考点】三角形的中线作角的平分线经过一点作已知直线的垂线【解析】此题暂无解析【解答】解:(1)如图①所示;(2)如图②所示:①②31.【答案】解:(1)∵a,b,c分别为△ABC的三边,a+b=2c−3,a−b=2c−6,∴{2c−3>c2c−6<c,解得:3<c<6.(2)∵△ABC的周长为12,a+b=2c−3,∴a+b+c=3c−3=12,解得c=5.【考点】三角形三边关系【解析】此题暂无解析【解答】解:(1)∵a,b,c分别为△ABC的三边,a+b=2c−3,a−b=2c−6,∴{2c−3>c2c−6<c,解得:3<c<6.(2)∵△ABC的周长为12,a+b=2c−3,∴a+b+c=3c−3=12,解得c=5.32.【答案】解:解法一:∵点D、E分别为AB、AC的中点,线段BE、CD相交于点O,∴O点为△ABC的重心,∴OC=2OD=4;解法二:∵点D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE // BC,DE=1BC,2∴∠ODE=∠OCB,∠OED=∠OBC,∴△ODE∽△OCB,∴OD:OC=DE:BC=1:2,∴OC=2OD=4.故OC的长为4.【考点】三角形的重心【解析】解法一:由题意,知O点为△ABC的重心,根据重心的性质可得出OC=2OD;解法二:由题意,知DE为△ABC的中位线,则DE // BC,DE=12BC,再证明△ODE∽△OCB,由相似三角形对应边成比例即可得出OC=2OD.【解答】解:解法一:∵点D、E分别为AB、AC的中点,线段BE、CD相交于点O,∴O点为△ABC的重心,∴OC=2OD=4;解法二:∵点D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE // BC,DE=12BC,∴∠ODE=∠OCB,∠OED=∠OBC,∴△ODE∽△OCB,∴OD:OC=DE:BC=1:2,∴OC=2OD=4.故OC的长为4.33.【答案】解:AD=2CE.理由如下:S△ABC=12AB⋅CE=12BC⋅AD,∵AB=2BC,∴12⋅2BC⋅CE=12BC⋅AD,整理得,AD=2CE.【考点】三角形的面积【解析】根据三角形的面积公式列式整理即可得解.【解答】解:AD=2CE.理由如下:S△ABC=12AB⋅CE=12BC⋅AD,∵AB=2BC,∴12⋅2BC⋅CE=12BC⋅AD,整理得,AD=2CE.34.【答案】解:∵一长度为30cm的铁条,焊接成各边长度顺次相差相等自然数的三角形铁架,∴中间的一条边是10cm,由三角形三边关系可知,最小边的长度是6cm,∴可以截成6cm,10cm,14cm;7cm,10cm,13cm;8cm,10cm,12cm;9cm,10cm,11cm,共4种情况的三角形铁架.【考点】三角形三边关系【解析】根据题意可以确定中间的一条边是10cm,根据各边长度顺次相差相等自然数,由三角形三边关系可知,最小边的长度是6cm,依此即可求解.【解答】解:∵一长度为30cm的铁条,焊接成各边长度顺次相差相等自然数的三角形铁架,∴中间的一条边是10cm,由三角形三边关系可知,最小边的长度是6cm,∴可以截成6cm,10cm,14cm;7cm,10cm,13cm;8cm,10cm,12cm;9cm,10cm,11cm,共4种情况的三角形铁架.35.【答案】(1)35∘(2)证明见解析.【考点】三角形的角平分线【解析】(1)由点E是△ABC的内心,∠BAC=70∘,易得∠CAD=35∘,进而得出∠CBD=2CAD=35∘(2)由点E是△ABC的内心,可得E点为△ABC角平分线的交点,可得∠ABE=∠CBE&nbsp∠BAD=∠CAD,可推导出∠DBE=∠BED,可得DE=DB.【解答】(1)点E是△ABC的内心,∠BAC=70∘2CBD=∠CAD=35∘(2):E是内心,△ABE=∠CBE,∠BAD=∠CAD∠CBD=∠CAD∠CBD=∠BAD2AD+∠ABE=∠BED,,CBE++∠BD==DBB∠DBE=∠BEDDE=DB.36.【答案】解:由题意知:△ABD的周长=AB+BD+AD,△ACD的周长=AC+CD+AD,又因为AD是BC边上的中线,所以BD=CD.∵△ABD的周长比△ACD的周长小5,∴AC+CD+AD−(AB+BD+AD)=AC−AB=5.【考点】三角形的中线【解析】AD是BC边上的中线,可得BD=CD,分别求出△ABD的周长和△ACD的周长,根据三角形ABD的周长比△ACD的周长小5列方程求出.【解答】解:由题意知:△ABD的周长=AB+BD+AD,△ACD的周长=AC+CD+AD,又因为AD是BC边上的中线,所以BD=CD.∵△ABD的周长比△ACD的周长小5,∴AC+CD+AD−(AB+BD+AD)=AC−AB=5.37.【答案】2cm2【考点】三角形的中线【解析】此题暂无解析【解答】此题暂无解答38.【答案】解:如图,作∠MON的平分线,过点A作ON的垂线,两线交于点P,点P即为所求.【考点】作角的平分线经过一点作已知直线的垂线【解析】本题考查了基本作图,作一个角的平分线和过直线上一点作已知直线的垂线,解题关键是掌握基本作图并能正确作出来,根据这两个基本作图来解答即可.【解答】解:如图,作∠MON的平分线,过点A作ON的垂线,两线交于点P,点P即为所求.39.【答案】直角坐标系如图所示,△ABC即为所求作:(−1, 2)或(−1, 0)或(3, 0)(3, 0)或(−1, 0)【考点】三角形的面积【解析】(1)根据所给的已知点的坐标画直角坐标系;(2)根据题意画出符合条件的图形,根据图形结合A、B、C的坐标即可得出答案(3)分两种情形,利用4PBC所在的正方形面积减去周围的直角三角形的面积分别构建方程解决问题即可.【解答】(2)如图所示,共有3个符合条件的点,________x当AB=AB,BC=AD1AC=BD1时,△ABD1=△BAC 此时D1的坐标是(−1,2)当AB=AB,BC=AD2AC=BD2时△ABD2=ΔBC此时D2的坐标是(−1,0)当AB=AB,BC=BD3AC=AD3时,△ABD3≅△ABC 此时D3的坐标是(3,0)故答案为:(−1,2)或(−1,0)或(3,0)(3)设P(m,0)S△ABC=12×2×1=1当点P在直线BC的右侧时,2(m−2)−12×1×1−12(m−2)×1−12(m−3)×2=1解得:m=3当点P在直线BC的左侧时,2(3−m)−12(2−m)×1−1×1−12×1×1−12(3−m)×2=1解得:m=−1:满足条件的点P的坐标为(3,0)或(−1,0)故答案为:(3,0)或(−1,0)40.【答案】解:根据三角形的三边关系可得b+c>a,∵b>c,∴b>4,∵a>b,a=8,∴4<b<8,∵b为整数,∴b=5,6,7,∴a=8,b=5,c=4,a=8,b=6,c=5或4或3,a=8,b=7,c=6或5或4或3或2.因此满足条件的三角形共有1+3+5=9(个).【考点】三角形三边关系【解析】首先根据三角形的三边关系可得b+c>a,再根据条件b>c可确定b>4,再由a>b 可得4<b<8,进而可确定b的值,然后再确定c的值即可.【解答】解:根据三角形的三边关系可得b+c>a,∵b>c,∴b>4,∵a>b,a=8,∴4<b<8,∵b为整数,∴b=5,6,7,∴a=8,b=5,c=4,a=8,b=6,c=5或4或3,a=8,b=7,c=6或5或4或3或2.因此满足条件的三角形共有1+3+5=9(个).。

(完整版)与三角形有关的线段测试题及答案

(完整版)与三角形有关的线段测试题及答案

与三角形有关的线段测试题一、选择题1、△ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( )A .a +b=cB .a +b>cC .a +b<cD .a 2+b 2=c 22、以长为13cm 、10cm 、5cm 、7cm 的四条线段中的三条线段为边,可以画出三角形的个数是()A .1个B .2个C .3个D .4个3、已知△ABC 的三边长为a ,b ,c ,化简|a +b -c|-|b -a -c|的结果是( )A .2aB .-2bC .2a +2bD .2b -2c4、已知三角形的周长为15cm ,其中的两边长都等于第三边长的2倍,则这个三角形的最短边长是( )A .3cmB .4cmC .5cmD .6cm5、如图,∠ACB>90°,AD ⊥BC ,BE ⊥AC ,CF ⊥AB ,△ABC 中BC 边上的高是( )A .FCB .BEC .AD D .AE6、三角形的三条高在( )A .三角形内部B .三角形外部C .三角形的边上D .三角形的内部、外部或与边重合7、如图,一扇窗户打开后,用窗钩AB 可将其固定,这里所运用的几何原理是( )A .三角形的稳定性B .两点之间线段最短C .两点确定一条直线D .垂线段最短8、如图,△ABC中,∠C=90°,D、E为AC上的两点,且AE=DE,BD平分∠EBC,则下列说法中不正确的是()A.BC是△ABE边AE上的高B.BE是△ABD的中线C.BD是△EBC的角平分线D.∠ABE=∠EBD=∠DBC 9、下列判断正确的是()(1)平分三角形内角的射线叫三角形的角平分线;(2)三角形的中线、角平分线都是线段;(3)一个三角形有三条角平分线和三条中线;(4)三角形的中线是经过顶点和对边中点的直线.A.(1)(2)(3)(4)B.(2)(3)(4)C.(3)(4)D.(2)(3)10、如图,工人师傅砌门时,常用木条EF固定矩形门框ABCD,使其不变形,这种做法的根据是()A.两点之间线段最短B.矩形的对称性C.矩形的四个角都是直角D.三角形的稳定性二、填空题11、已知BD、CE是△ABC的高,直线BD、CE相交的成的角中有一个角是50°,则∠BAC 等于________度.12、如图,在图(1)中,互不重叠的三角形共有4个,在图(2)中,互不重叠的三角形共有7个,在图(3)中,互不重叠的三角形共有10个,……,则在第(n)个图形中,互不重叠的三角形共有________个(用含n的代数式表示).13、如图,在△ABC中,已知点D、E、F分别为BC、AD、CE的中点,且S△ABC=4cm2,则S阴影=________.二、解答题14、如图,△ABC中,AB=AC,D为AC的中点,△ABD的周长比△BDC的周长大2,且BC 的边长是方程的解,求△ABC三边的长.15、已知△ABC的三边长为5,12,3x-4,周长为偶数,求整数x及周长.16、如图,草原上有4口油井,位于四边形ABCD的4个顶点,现在要建立一个维修站H,问H建在何处,才能使它到4口油井的距离之和最小?17、已知△ABC的周长为45cm,(1)若AB=AC=2BC,求BC的长;(2)若AB:BC:AC=2:3:4,求△ABC三条边的长.18、如图,在△ABC中,AB=AC,AC上的中线把三角形的周长分为24cm和30cm的两个部分,求三角形各边的长.19、如图,在△ABC中,D是BC上一点,试说明下列不等式成立的理由.AB+BC+AC>2CD.20、平面上有n个点(n≥3),且任意三点不在同一条直线上,过任意三点作三角形,一共能作出多少个不同的三角形?(1)分析:当平面上仅有3个点时,可作________个三角形;当有4个点时,可作________个三角形;当有5个点时,可作________个三角形;…(2)归纳:考察点的个数n和可作出的三角形的个数S n发现:点的个数 3 4 5 …n 可连成三角形的个数(3)推理_______________________________________________________________答案:1--10:BCDAC DADDD 11、50或130 12、3n+1 13、1cm214、先求出k=BC=4.5,而△ABD的周长比△BDC的周长大2,所以AB比BC大2,即AB=AC=6.5.15、先求x的取值范围,∴12-5<3x-4<12+5,即,而x为整数,∴x=4、5或6.若周长12+5+3x-4=13+3x是偶数,则x为奇数,∴x=5,从而周长为5+12+3x-4=28.16、H建在段AC与BD的交点处,理由是:AC+BD<AB+BC+CD+DA.17、(1)AB+AC+BC=45,5BC=45,BC=9cm;(2)设AB=2x,BC=3x,AC=4x,则2x+3x+4x=45,x=5,∴AB=2x=10cm,BC=3x=15cm,AC=20cm.18、因为BD是中线,所以AD=DC,造成所分两部分不等的原因就在于腰与底的不等,故应分情况讨论.解:设AB=AC=2x,则AD=CD=x,(1)当AB+AD=30,BC+CD=24时,有2x+x=30,∴x=10,2x=20,BC=24-10=14,三边分别为:20cm,20cm,14cm.(2)当AB+AD=24,BC+CD=30,有2x+x=24∴x=8,BC=30-8=22,三边分别为:16cm,16cm,22cm.19、AB+BC+AC=AB+BD+CD+AC>AD+AC+CD>CD+CD=2CD.20、(1)1;4;10(2)(3)平面上有n个点,过不在同一条直线上的三点可以确定一个三角形,取第一个点A有n种取法,取第二个点B有(n-1)种取法,取第三个点C有(n-2)种取法,所以一共有n(n-1)(n-2)个三角形,但△ABC、△ACB、△BAC、△CBA、△CAB是同一个三角形,故应除以6,即.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

与三角形有关的线段练习题11.1.1 三角形的边1.下面是小强用三根火柴组成的图形,其中符合三角形概念的是()2.以下列各组线段的长为边长,能组成三角形的是()A.2,3,5 B.3,4,5C.3,5,10 D.4,4,83.下列说法正确的有()①等腰三角形是等边三角形;②三角形按边分可分为等腰三角形、等边三角形和不等边三角形;③等腰三角形至少有两边相等;④三角形按角分应分为锐角三角形、直角三角形和钝角三角形.A.①②B.①③④C.③④D.①②④4.如图,图中共有________个三角形,在△ABE中,AE所对的角是________,∠ABE所对的边是________;在△ADE中,AD是________的对边;在△ADC中,AD是________的对边.5.若a,b,c为△ABC的三边长,且a,b满足|a-3|+(b-2)2=0.(1)求c的取值范围;(2)若第三边长c是整数,求c的值.11.1.2三角形的高、中线与角平分线11.1.3 三角形的稳定性1.桥梁拉杆、电视塔底座都是三角形结构,这是利用三角形的________性.2.如图,在△ABC中,AB边上的高是________,BC边上的高是________;在△BCF中,CF边上的高是________.第2题图第3题图3.如图,在△ABC中,BD是∠ABC的平分线.已知∠ABC=80°,则∠DBC=________°. 4.若AE是△ABC的中线,且BE=4cm,则BC=________cm.5.如图,BD是△ABC的中线,AB=5,BC=3,则△ABD和△BCD的周长差是________.第5题图第6题图6.如图,在△ABC中,D是BC的中点,S△ABC=4cm2,则S△ABD=________cm2.7.如图,AD,CE是△ABC的两条高.已知AD=5,CE=4.5,AB=6.(1)求△ABC的面积;(2)求BC的长.11.2 与三角形有关的角11.2.1 三角形的内角第1课时三角形的内角和1.在△ABC中,∠A=20°,∠B=60°,则∠C的度数为()A.80° B.90° C.20° D.100°2.如图所示是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,则这块三角形木板的另一个角的度数是()A.30° B.40° C.50° D.60°第2题图第3题图3.如图,△ABC中,∠A=46°,∠C=74°,BD平分∠ABC,交AC于点D,则∠DBC的度数是________.4.根据下图填空.(1)n=________;(2)x=________;(3)y=________.5.如图,在△ABC中,点D在BA的延长线上,DE∥BC,∠BAC=65°,∠C=30°,求∠BDE 的度数.第2课时直角三角形的两锐角互余1.在Rt△ABC中,∠C=90°,∠A=61°,则∠B的度数为()A.61° B.39° C.29° D.19°2.在△ABC中,∠A=60°,∠C=30°,则△ABC是()A.直角三角形B.钝角三角形C.锐角三角形D.等边三角形3.直角三角形的一个锐角是另一个锐角的2倍,则较小锐角的度数是() A.60° B.36° C.54° D.30°4.如图,∠ACB=90°,CD⊥AB,垂足为D,则与∠A互余的角的个数是() A.1个B.2个C.3个D.4个第4题图第5题图5.如图,在△ABC中,∠A=25°,∠ACB=105°,则∠D的度数为________.6.如图,在△ABC中,CE,BF是两条高.若∠A=70°,∠BCE=30°,求∠EBF和∠FBC 的度数.7.如图,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B.求证:CD⊥AB.11.2.2三角形的外角1.如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD的大小为________.2.如图,∠2________∠1(填“>”“<”或“=”).3.如图,在△ABC中,CD是∠ACB的平分线,∠A=70°,∠ACB=60°,则∠BDC的度数为()A.80° B.90° C.100° D.110°4.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E的度数为()A.30° B.40° C.60° D.70°5.如图,在△ABC中,延长CB到D,延长BC到E,∠A=80°,∠ACE=140°,求∠1的度数.11.3多边形及其内角和11.3.1多边形1.下列图形中,凸多边形有()A.1个B.2个C.3个D.4个2.下列关于正六边形的说法错误的是()A.边都相等B.对角线长都相等C.内角都相等D.外角都相等3.四边形一共有________条对角线()A.1 B.2 C.3 D.44.已知从一个多边形的一个顶点最多可以引出3条对角线,则它是() A.五边形B.六边形C.七边形D.八边形5.若一个六边形的各条边都相等,当边长为3cm时,它的周长为________cm.6.从七边形的一个顶点出发,最多可以引________条对角线,这些对角线可以将这个多边形分成________个三角形.7.如图,请回答问题:(1)该多边形如何表示?指出它的内角;(2)作出这个多边形所有过顶点A的对角线;(3)在这个多边形的一个顶点处作出它的一个外角.11.3.2多边形的内角和1.五边形的内角和是()A.180° B.360° C.540° D.720°2.已知一个多边形的内角和为900°,则这个多边形为()A.七边形B.八边形C.九边形D.十边形3.若一个多边形的每一个外角都等于45°,则这个多边形的边数为() A.3 B.4 C.5 D.84.若正多边形的一个内角是120°,则该正多边形的边数是()A.12 B.6 C.16 D.85.如图,在四边形ABCD中,∠A=90°,∠D=40°,则∠B+∠C的度数为________.第5题图第6题图6.图中x的值为________.7.若一个多边形的内角和是外角和的3倍,则它是几边形?8.如果四边形ABCD的四个外角的度数之比为3∶4∶5∶6,那么这个四边形各内角的度数分别是多少?1.1与三角形有关的线段11.1.1三角形的边1.C 2.B 3.C 4.6∠B AE∠AED∠C5.解:(1)∵|a-3|+(b-2)2=0,∴a-3=0,b-2=0,∴a=3,b=2.由三角形三边关系得3-2<c<3+2,即1<c<5.(2)∵c为整数,1<c<5,∴c=2或3或4.11.1.2三角形的高、中线与角平分线11.1.3三角形的稳定性1.稳定 2.CE AD BC 3.40 4.8 5.2 6.27.解:(1)S△ABC=12AB·CE=12×6×4.5=13.5.(2)∵S△ABC=12BC·AD,∴BC=2S△ABCAD=2×13.55=5.4.11.2与三角形有关的角11.2.1三角形的内角第1课时三角形的内角和1.D 2.B 3.30° 4.(1)27(2)29(3)595.解:∵∠BAC=65°,∠C=30°,∴∠B=85°.∵DE∥BC,∴∠BDE=180°-∠B=180°-85°=95°.第2课时直角三角形的两锐角互余1.C 2.A 3.D 4.B 5.40°6.解:∵∠A=70°,CE,BF是△ABC的两条高,∴∠EBF=20°,∠ECA=20°.又∵∠BCE =30°,∴∠ACB=50°,∴在Rt△BCF中,∠FBC=40°.7.证明:∵∠ACB=90°,∴∠A+∠B=90°.∵∠ACD=∠B,∴∠A+∠ACD=90°,∴∠ADC =90°,∴CD⊥AB.11.2.2三角形的外角1.70° 2.> 3.C 4.A5.解:∵∠ACE=140°,∴∠ACB=40°.∵∠A=80°,∴∠1=40°+80°=120°.11.3多边形及其内角和11.3.1多边形1.A 2.B 3.B 4.B 5.18 6.457.解:(1)六边形ABCDEF,它的内角是∠A,∠B,∠C,∠D,∠E,∠F.(2)如图所示.(3)如图,∠DCG即为点C处的一个外角(答案不唯一).11.3.2多边形的内角和1.C 2.A 3.D 4.B 5.230° 6.1307.解:设该多边形是n边形.由题意可得(n-2)·180°=3×360°,解得n=8.故该多边形为八边形.8.解:根据题意,设四边形ABCD的四个外角的度数分别为3x,4x,5x,6x,则3x+4x+5x+6x=360°,解得x=20°.∴这四个外角的度数分别为60°,80°,100°,120°,则这个四边形各内角的度数分别为120°,100°,80°和60°.。

相关文档
最新文档