第十三章杂环化合物精品PPT课件
合集下载
第13章 杂环化合物PPT课件

ZX
CH3CO。 ON2 O
-5 ~ -30 C
Z
NO2
Z
= Z ( NH、O、S)
N+SO3ClC2HCH2Cl
H+ N
HCl
Z SO3
Z SO3H
( Z=NH、O) 噻吩可直接用H2SO4 磺化。
(CH3CO2O ) SnC4l
Z COC3H
五元杂环化合物进行亲电取代反应的特点是:使用较
为温和的试剂或反应条件。
等杂原子的环状化合物,统称为杂环化合物。
非 芳 香 性 杂 环 化 合 物 , 如 :O、 N、 内 酯 、 环 状 酸 酐 等 。
杂 环 化 合 物
H
芳 香 性 杂 环 化 合 物
本章讨论的就是那些环为平面型,环内π电子数符合
4n+2规则,具有一定芳香性的芳杂环化合物。
杂环化合物的分类:
五元杂环, 如 O
五元杂环化合物亲电取代反应发生在α-位可用共1振3
论解释:
+ E+ Z
= Z (NH、O、S)
+
E ZH
E +Z H
正电荷可在三个原子上离域
E ZH
+
E
E
H
H
+
Z
Z
+
正电荷只能在两个原子上离域
由此可见,进攻2 – 位所形成的共振杂化体比进攻3 –
N H
O
S
2. 六元杂环化合物
0.140
4
吡啶环的键长也发生了较大程度
3
0.139
N2
0.147 单
0.134 0.128 双
的平均化,C ―C键虽与苯相似,但 C ―N键变化很大,因此,其芳香11 性
第十三章 杂环化合物和生物碱ppt课件

OH N HO N CH 3
5-甲基-2,4-二羟基嘧啶 (胸腺嘧啶)
NH 2 N N
6-氨基嘌呤 (腺嘌呤)
OH
N N H
HO
N N N H
N OH
2,6,8-三羟基嘌呤 (尿酸)
N OH
8-羟基喹啉
(2)以杂环为取代基
O
CHO
O 2N
O
CHO
2-呋喃甲醛
5-硝基-2-呋喃甲醛
CH2COOH N
七、嘧啶衍生物
尿嘧啶互变异构
H N O H
O
O HN
N
O
N H
酰胺式
亚胺醇式
NH 2 N HO N
HO N N H O CH 3
NH 2 N O N H
O N H O N H CH 3
胞嘧啶 互变异构
胸腺嘧啶互变异构
八、嘌呤衍生物
腺嘌呤
NH 2 N N N H
O N N H
13
N
HO N H N N 2 N N H
但由于环上存在电负性较大的杂原子,所 以与苯不同,共轭体系中各原子电子密度不是 平均分布,键长也不是完全相等,只是趋向于 平均化,芳香性比苯小。热力学稳定性也小于 苯,其共轭能(kJ/mol)数据如下: 苯 噻吩 吡咯 呋喃 150.6 117.5 90.4 66.9 从共轭能的大小可以看出,三种五元杂环化合 物的稳定性次序为: 苯 > 噻吩 > 吡咯 > 呋喃
O
呋喃 (furan)
S
噻吩 (thiophene)
N H
N N H
1
3
N
咪唑 (imidazole)
3
S
1
有机化学精品课件——杂环化合物

理学、毒理学和临床研究等方面的内容。
05
有机化学与绿色化学
有机化学的发展趋势
1 2 3
新的合成方法
例如,定向合成、组合合成和高选择性催化等 新技术的开发和应用,极大地推动了有机化学 的发展。
新的反应性和反应机制
例如,电化学和光化学反应以及超分子和纳米 反应器等新技术的应用,为有机化学提供了新 的反应性和反应机制。
总结词
杂环化合物在分子生物学领域具有广泛的应用,涉及多种生物学实验技术。
详细描述
杂环化合物可以作为药物分子、基因治疗剂、分子探针等应用于分子生物学研究中。生物学实验技术包括细胞 培养、基因克隆和表达、蛋白质分离和分析等。这些技术可以用来研究杂环化合物在生物体内的吸收、分布、 代谢和排泄等特性。
杂环化合物的应用研究实验
合成方法
通过取代反应
杂环化合物可以通过取代反应合成,如卤代烃、醇、羧酸等 中的杂原子被其他原子取代。
通过成环反应
某些杂环化合物可以通过成环反应合成,如氨基酸、腺苷等 。
02
杂环化合物的种类与性质
含氮杂环化合物
吡啶
弱碱,碱性来自于氮原子上的孤对电子,可参与多种有机反应。
咪唑
碱性较弱,作为配体参与有机反应。
抗疟活性
青蒿素及其衍生物是具有抗疟活性的重要杂环化合物,通过干扰疟原虫的细胞膜 结构和功能,导致疟原虫死亡。
04
有机化学实验技术
杂环化合物的合成实验
总结词
有机化学实验技术中,杂环化合物的合成 实验是掌握杂环化合物性质的重要环节。
VS
详细描述
杂环化合物的合成实验涉及到多种反应类 型,如缩合反应、取代反应、加成反应等 。在实验过程中需要用到各种不同的试剂 和溶剂,如酸、碱、氧化剂、还原剂等。 实验操作也有一定难度,需要掌握一定的 实验技能和操作技巧。
05
有机化学与绿色化学
有机化学的发展趋势
1 2 3
新的合成方法
例如,定向合成、组合合成和高选择性催化等 新技术的开发和应用,极大地推动了有机化学 的发展。
新的反应性和反应机制
例如,电化学和光化学反应以及超分子和纳米 反应器等新技术的应用,为有机化学提供了新 的反应性和反应机制。
总结词
杂环化合物在分子生物学领域具有广泛的应用,涉及多种生物学实验技术。
详细描述
杂环化合物可以作为药物分子、基因治疗剂、分子探针等应用于分子生物学研究中。生物学实验技术包括细胞 培养、基因克隆和表达、蛋白质分离和分析等。这些技术可以用来研究杂环化合物在生物体内的吸收、分布、 代谢和排泄等特性。
杂环化合物的应用研究实验
合成方法
通过取代反应
杂环化合物可以通过取代反应合成,如卤代烃、醇、羧酸等 中的杂原子被其他原子取代。
通过成环反应
某些杂环化合物可以通过成环反应合成,如氨基酸、腺苷等 。
02
杂环化合物的种类与性质
含氮杂环化合物
吡啶
弱碱,碱性来自于氮原子上的孤对电子,可参与多种有机反应。
咪唑
碱性较弱,作为配体参与有机反应。
抗疟活性
青蒿素及其衍生物是具有抗疟活性的重要杂环化合物,通过干扰疟原虫的细胞膜 结构和功能,导致疟原虫死亡。
04
有机化学实验技术
杂环化合物的合成实验
总结词
有机化学实验技术中,杂环化合物的合成 实验是掌握杂环化合物性质的重要环节。
VS
详细描述
杂环化合物的合成实验涉及到多种反应类 型,如缩合反应、取代反应、加成反应等 。在实验过程中需要用到各种不同的试剂 和溶剂,如酸、碱、氧化剂、还原剂等。 实验操作也有一定难度,需要掌握一定的 实验技能和操作技巧。
《有机化学》第13章 杂环化合物和生物碱

4-甲基嘧啶
4-甲基噻唑
⑶ 连有取代基的杂环化合物命名时,也可将杂环作为取代基,以侧链为母体来命名。
4-嘧啶磺酸
β-吲哚乙酸(3-吲哚乙酸)
2-苯并咪唑甲酸乙酯
⑷ 为区别杂环化合物的互变异构体,需标明杂环上与杂原子相连的氢原子所在的位 置,并在名称前面加上标位的阿拉伯数字和大写H的斜体字。
2023/6/13
⑴ 卤代反应
在室温条件下,吡咯、呋喃和噻吩能与氯或溴发生激烈反应,得到多卤代物。将反应 物用溶剂稀释并在低温下进行反应时,可以得到一氯代物或一溴代物。碘化反应需要 在催化剂存在下进行。例如:
2023/6/13
6
(2)硝化反应
在低温条件下,吡咯、呋喃和噻吩能与比较缓和的硝化剂硝酸乙酰酯(CH3COONO2) 发生硝化反应,主要生成α-硝基化合物。例如:
3. 颜色反应
生物碱能与一些试剂发生颜色反应,比如钒酸铵的浓硫酸溶液、浓硝酸、浓硫酸、 甲醛、氨水等,利用此性质可鉴别生物碱。比如莨菪碱遇1%钒酸铵的浓硫酸溶液显 红色,可待因遇甲醛-浓硫酸试剂显紫红色等。
二、重要的生物碱 1. 烟碱 又叫尼古丁,主要以苹果酸盐及柠檬酸盐的形式存在于烟草中。其结构式
2023/6/13
13
血红素是卟啉环与Fe2+形成的配合物;叶绿素是卟啉环与Mg2+形成的配合物,它们的 结构式如下:
血红素在体内与蛋白质结合形成血红蛋白,存在于红细胞中,是人和其他哺乳动物 体内运输氧气的物质。叶绿素是植物进行光合作用不可缺少的物质。
2023/6/13
14
二、呋喃衍生物
呋喃甲醛是最常见的呋喃衍生物,又称为糠醛,它是一种无色液体,沸点为161.7℃, 在空气中易氧化变黑,是一种良好的溶剂。 糠醛是合成药物的重要原料,通过硝化可制得一系列呋喃类抗菌药物,如治疗泌尿 系统感染的药物呋喃坦丁、治疗血吸虫病的药物呋喃丙胺等。
第十三章 杂环化合物

18
三种杂环具有一定程度的芳香性, 原子电负性大小: 三种杂环具有一定程度的芳香性,杂原子电负性大小: 芳香性 电负性大小
O (3.5) > N (3.0) > S (2.5)
对外层电子吸引力 电负性 , 对外层电子吸引力 , 孤电子离域 所以:芳香性与稳定性 所以:芳香性与稳定性: > S π电子密度: 电子密度: 电子密度 稳 定 性: 芳 香 性: 反 应 活 性: > N 杂环 > 苯环 杂环 < 苯环 杂环 < 苯环 杂环 > 苯环 > O , 故芳香性 。
O Furan
N H Pyrrole
S Thiophene
呋喃
N O Oxazole
吡咯
N N H Imidazole
噻吩
N S Thiazole
含多个杂原子
噁唑
O N
咪唑
N H Pyrazole N
噻唑
S N
Isoxazole
Isothiazole
异噁唑
吡唑
异噻唑
8
4.按杂原子的不同分 按杂原子的不同分
··
吡啶的偶极矩与吡咯方向相反: 吡啶的偶极矩与吡咯方向相反: 方向相反
N
N µ= 0 D µ= 2.26 D
N H µ= 1.81 D
这是由于杂环上氮原子作用不同,吡啶环上的N 是吸 这是由于杂环上氮原子作用不同,吡啶环上的 电子作用。(电负性 作用。( ),在发生亲电取代反应时比苯 电子作用。(电负性 N > C ),在发生亲电取代反应时比苯 。(相当于环上有一个吸电子基 相当于环上有一个吸电子基) 难。(相当于环上有一个吸电子基) 吡咯环上的N 把电子转移给环, 吡咯环上的 把电子转移给环,亲电取代反应时比苯容 相当于环上有一个供电子基) 易(相当于环上有一个供电子基) 21
三种杂环具有一定程度的芳香性, 原子电负性大小: 三种杂环具有一定程度的芳香性,杂原子电负性大小: 芳香性 电负性大小
O (3.5) > N (3.0) > S (2.5)
对外层电子吸引力 电负性 , 对外层电子吸引力 , 孤电子离域 所以:芳香性与稳定性 所以:芳香性与稳定性: > S π电子密度: 电子密度: 电子密度 稳 定 性: 芳 香 性: 反 应 活 性: > N 杂环 > 苯环 杂环 < 苯环 杂环 < 苯环 杂环 > 苯环 > O , 故芳香性 。
O Furan
N H Pyrrole
S Thiophene
呋喃
N O Oxazole
吡咯
N N H Imidazole
噻吩
N S Thiazole
含多个杂原子
噁唑
O N
咪唑
N H Pyrazole N
噻唑
S N
Isoxazole
Isothiazole
异噁唑
吡唑
异噻唑
8
4.按杂原子的不同分 按杂原子的不同分
··
吡啶的偶极矩与吡咯方向相反: 吡啶的偶极矩与吡咯方向相反: 方向相反
N
N µ= 0 D µ= 2.26 D
N H µ= 1.81 D
这是由于杂环上氮原子作用不同,吡啶环上的N 是吸 这是由于杂环上氮原子作用不同,吡啶环上的 电子作用。(电负性 作用。( ),在发生亲电取代反应时比苯 电子作用。(电负性 N > C ),在发生亲电取代反应时比苯 。(相当于环上有一个吸电子基 相当于环上有一个吸电子基) 难。(相当于环上有一个吸电子基) 吡咯环上的N 把电子转移给环, 吡咯环上的 把电子转移给环,亲电取代反应时比苯容 相当于环上有一个供电子基) 易(相当于环上有一个供电子基) 21
第十三章 杂环化合物 49页PPT文档

Organic Chemistry
第十三章 杂环化合物
Fuzhou University
Organic Chemistry
第十三章 杂环化合物
(Heterocyclic ompounds)
一. 分类和命名 二. 五元杂环化合物 三. 吡 啶 四. 喹啉、异喹啉
Fuzhou University
Organic Chemistry
N H
C H 2C H 2C O 2C H 3 N H
吡咯不能双烯合成
Organic Chemistry
3. 吡咯的其它性质 吡咯的弱酸性,它的pKa=16.5,比酚弱,比醇强, 可与强碱(NaNH2, KNH2、RMgX)或金属作用。
Fuzhou University
Na , K
N H
或浓NaOH
Organic Chemistry
Br2
300℃ N
Br N 39%
Br2 Br
20℃ N NH2
N NH2 90%
Fuzhou University
亲电取代可以进行,但比较难。 芳环上有给电子取代基时,有利于亲电取代。
Organic Chemistry
3.亲核取代反应,主要生成α位取代产物
Organic Chemistry
一、分类和命名 杂环化合物
单杂环 稠杂环 巨杂环 螺杂环 桥杂环 杂环多面体
Fuzhou University
Organic Chemistry
单杂环
三元杂环 O S
四元杂环
NN S
五元杂环 O
O
六元杂环 NN H
七元杂环
N H
Fuzhou University
第十三章 杂环化合物
Fuzhou University
Organic Chemistry
第十三章 杂环化合物
(Heterocyclic ompounds)
一. 分类和命名 二. 五元杂环化合物 三. 吡 啶 四. 喹啉、异喹啉
Fuzhou University
Organic Chemistry
N H
C H 2C H 2C O 2C H 3 N H
吡咯不能双烯合成
Organic Chemistry
3. 吡咯的其它性质 吡咯的弱酸性,它的pKa=16.5,比酚弱,比醇强, 可与强碱(NaNH2, KNH2、RMgX)或金属作用。
Fuzhou University
Na , K
N H
或浓NaOH
Organic Chemistry
Br2
300℃ N
Br N 39%
Br2 Br
20℃ N NH2
N NH2 90%
Fuzhou University
亲电取代可以进行,但比较难。 芳环上有给电子取代基时,有利于亲电取代。
Organic Chemistry
3.亲核取代反应,主要生成α位取代产物
Organic Chemistry
一、分类和命名 杂环化合物
单杂环 稠杂环 巨杂环 螺杂环 桥杂环 杂环多面体
Fuzhou University
Organic Chemistry
单杂环
三元杂环 O S
四元杂环
NN S
五元杂环 O
O
六元杂环 NN H
七元杂环
N H
Fuzhou University
有机化学精品课件——杂环化合物

11
▪ 取代位置
E+ A
+
A
E
α-取代
▪反应中间体的相对稳定性 主要产物
E
A
β-取代
E+
A
取代
E+
A
β-取代
AE
E A
AE
H
A E 三个主要共振式稳定
贡献最大 (满足八隅体)
E H
二个主要共振式不稳定
A
贡献最大
(满足八隅体) 12
▪ 亲电取代反应举例 注意:五员杂环较活泼,遇酸不稳定
A
(吡咯,呋喃,噻吩)
ONa
CO2 加压
OH
CO2
H+
OH
CO2H
Kolbe-Schmitt反应
OH CHCl3
OH
OH
CHO +
O OC R
AlCl3
O OH RC
OH
Reimer-Tiemann反应
CHO OH
+ C
OR
Fries重排
39
5. 呋喃、吡咯和噻吩环的制法
呋喃、吡咯和噻吩环的制备方法,常采用1,4-二羰 基化合物为原料。
起作用
• 三个共振式 • 推电子基使
稳定
22
(ii) 位有吸电子基
43
5
A
W
E+
进入5位
E+ 进入3位
E AW
E+ 进入4位
E
不稳定
A
W
最稳定
E
A
W
E
A
W
• 二个共振式 • 吸电子基使
不稳定
• 二个共振式 • 吸电子基未
▪ 取代位置
E+ A
+
A
E
α-取代
▪反应中间体的相对稳定性 主要产物
E
A
β-取代
E+
A
取代
E+
A
β-取代
AE
E A
AE
H
A E 三个主要共振式稳定
贡献最大 (满足八隅体)
E H
二个主要共振式不稳定
A
贡献最大
(满足八隅体) 12
▪ 亲电取代反应举例 注意:五员杂环较活泼,遇酸不稳定
A
(吡咯,呋喃,噻吩)
ONa
CO2 加压
OH
CO2
H+
OH
CO2H
Kolbe-Schmitt反应
OH CHCl3
OH
OH
CHO +
O OC R
AlCl3
O OH RC
OH
Reimer-Tiemann反应
CHO OH
+ C
OR
Fries重排
39
5. 呋喃、吡咯和噻吩环的制法
呋喃、吡咯和噻吩环的制备方法,常采用1,4-二羰 基化合物为原料。
起作用
• 三个共振式 • 推电子基使
稳定
22
(ii) 位有吸电子基
43
5
A
W
E+
进入5位
E+ 进入3位
E AW
E+ 进入4位
E
不稳定
A
W
最稳定
E
A
W
E
A
W
• 二个共振式 • 吸电子基使
不稳定
• 二个共振式 • 吸电子基未
有机化学精品课件——杂环化合物

杂环化合物在材料科学中具有广泛的应用,因为它们可以提供优良的物理和化学性能。例如,聚酰亚胺、聚醚醚酮等杂环高分子材料在航空航天、电子和汽车等领域广泛应用。
杂环化合物作为材料合成的关键组分,能够提高材料的耐热性、耐腐蚀性和机械性能等,同时降低生产成本和提高生产效率。
杂环化合物的研究进展与展望
05
在亲电反应机理中,试剂的性质和杂环化合物上的取代基的性质都会影响反应的进程和产物的生成。因此,在选择合适的试剂和反应条件时,需要考虑这些因素。
亲核反应机理是指反应过程中,试剂首先进攻杂环化合物上的电子云密度较高的部位,从而形成负碳离子中间体。然后,负碳离子中间体再与试剂发生反应,形成新的键,最终生成产物。
杂环化合物的应用
04
杂环化合物在药物合成中具有广泛的应用,因为它们具有独特的化学结构和生物活性。例如,嘧啶衍生物在抗肿瘤药物中发挥重要作用,喹啉衍生物具有抗菌和抗癌活性。
杂环化合物作为药物合成中的关键中间体,可用于合成多种类型的药物,如抗高血压药物、抗病毒药物和抗癌药物等。
VS
杂环化合物在农药合成中具有不可替代的地位,因为它们可以提供高效、低毒、低残留的农药。例如,吡啶衍生物可用于合成除草剂和杀虫剂,嘧啶衍生物可用于合成杀菌剂和杀虫剂。
杂环化合物作为农药合成的关键组分,能够提高农药的生物活性、选择性和稳定性,从而降低对环境和人体的危害。
杂环化合物在染料合成中具有重要作用,因为它们可以提供鲜艳的色彩和优良的染色性能。例如,偶氮染料和酞菁染料等杂环染料在纺织品、皮革和纸张等领域广泛应用。
杂环化合物作为染料合成的关键组分,能够提高染料的色牢度和稳定性,同时降低生产成本和对环境的污染。
杂环化合物的物理性质与其结构密切相关,如熔点、沸点、溶解度等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5 6
7 8
COOH
4 3
N2
1
4-异喹啉甲酸
NH2
65
1N
N7
2 N 4 N9 8 3H
6-氨基嘌呤(不叫6-嘌呤胺)
当N上连有取代基时,往往用“N”表示取代基
的位置。
N__CH3 (N-甲基吡啶)
第二节 五元杂环化合物
一、呋喃、噻吩、吡咯的结构
O
N
S
H
呋喃
噻吩
吡咯
. .
.
. ..
.
. .
.
. ..
第一节 杂环化合物的分类和命名 一、杂环化合物的分类
单杂环
根据环的形式分类
杂
稠杂环
环
根据环中杂原子的数目分类
五元杂环
六元杂环。
芳环并杂环 杂环并杂环。
含一个杂原子杂环 含两个杂原子杂环
二、杂环化合物的命名
1.译音法
根据杂环化合物的英文名称,选择带“口”字偏 旁的同音汉字来命名。
O
S
N
H
呋喃
噻吩
吡咯
②若含有多个相同的杂原子,则从连有氢或取代
基的杂原子开始编号,并使其他杂原子的位次尽可能
最小。
C H 3 _ _4
5
1
N
N3
2
H
(4-甲基咪唑)
③若含有不相同的杂原子,按O、S、N的顺序编号。
C l_ _4 N 3 5S 2
1
(4-氯噻唑)
某些特殊的稠杂环,不符合以上编号规则,有其 特定的编号。
第十三章 杂环化合物
第一节 杂环化合物的分类和命名 第二节 五元杂环化合物 第三节 糠醛 第四节 六员杂环化合物
*第五节 生物碱
第十三章 杂环化合物
概述
杂环化合物是指由碳原子和氧、硫、氮等杂原子 共同组成的,具有环状结构的化合物。
本章所要讨论的杂环化合物是环系比较稳定,具有 一定芳香性的化合物。
环醚、内酯、内酐和内酰胺等,不属杂环化合物。
(furan) (thiophene) (pyrrole)
N
N
N
S
H
咪唑
噻唑
(imidazole) (thiazole)
N
吡啶 (pyridine)
O
N N
N N
吡喃
嘧啶
吡嗪
(pyran) (pyrimidine) (pyrazine)
N H 吲哚
(indole)
N 喹啉
(quinoline)
N 异喹啉
(2)杂环编号 杂环上连有取代基时,需要给杂环 编号,编号规则如下。
①从杂原子开始编号,杂原子位次为1。当环上只 有一个杂原子时,也可把与杂原子直接相连的碳原子 称为α位,其后依次为β位和γ位。
4
3
5 O_2 _CHO
1
2-呋喃甲醛(糠醛) (α-呋喃甲醛)
5 4
6
3
7 8 N2 1 OH
8-羟基喹啉 (不叫8-喹啉酚)
S+H 2 浓 S O 4
S__S O 3H +H 2O α-噻吩磺酸
α-噻吩磺酸能溶于浓硫酸,而且易发生水解反应。
S _ _ S O 3 H + H 2 O 1 0 0 ~ 1 5 0 ℃ S+ H 2 S O 4 ( 稀 )
利用此性质可分离或除去粗苯中的噻吩。
2.加成反应
O +2H2100℃ Ni,5M Pa O 四 氢 呋 喃
Pd
S +2H2 0.2~0.4MPa S 四氢噻吩
N
+ 2H2
Ni 200℃
N
H
H
四氢吡咯
第四节 六元杂环化合物
一、吡啶的结构
N
...
. .
.
..
N原子为sp2杂化
吡啶π电子数符合休克尔规则,具有芳香性。吡 啶的芳香性比苯弱。
吡啶
二、吡啶的性质 1.碱性
吡啶存在于煤焦油及页岩油中。是一种弱碱,能使湿润的 石蕊试纸变蓝,可用此性质鉴定吡啶。吡啶能与无水氯化钙生 成配合物,所以不能使用氯化钙干燥吡啶。
.
. .
.
. ..
呋喃、噻吩、吡咯π电子数符合休克尔规则(4n+2),因
此具有芳香性。
在呋喃、噻吩、吡咯分子中,是由5个原子,6个π电子组
成的共轭体系,使环上碳原子的电子云密度增加,所以称为富 电子芳杂环或多π电子芳杂环。
另外,吡咯分子中的氮原子上连有一个氢原子,由于氮原 子的p电子参与了环上共轭,降低了对这个氢原子的吸引力, 使得氢原子变得比较活泼,具有弱酸性。
S + C H 3 C O O N O 2 乙 酸 0 或 ℃ 乙 酐 S _ _ N O 2 + C H 3 C O O H N H+ C H 3 C O O N O 2-乙 1 0 酐 ℃N H _ _ N O 2+C H 3 C O O H
呋喃、噻吩、吡咯的硝化,常使用比较缓和的硝 化剂(硝酸乙酰酯)在低温下进行硝化。硝酸乙酰酯 由硝酸和乙酸酐反应制得。
S +Br2CH3COOH S__Br+HBr
2-溴 噻 吩
N+4I2+4N aO H H
II_ _ _ _N_ _ _ _II+4N aI+4H 2O
四 碘 吡 咯
(2)硝化
O + C 硝 H 酸 3 C 乙 O 酰 O N 酯 O 2-5 ~ 3 0 ℃O _ _ N O 2+ C H 3 C O O H
呋喃、噻吩、吡咯分子中各原子间的键长并不完全相等, 因此芳香性比苯差。
电负性强弱顺序是:氧>氮>硫,
芳香性强弱顺序是:苯>噻吩>吡咯>呋喃。
呋喃
噻吩
吡咯
二、呋喃、噻吩、吡咯的性质
呋喃存在于松木焦油中,其蒸气遇到浸过盐酸的 松木片时呈绿色,叫做松木片反应。此现象可用来鉴 定呋喃。
噻吩存在于煤焦油的粗苯及石油中,在浓硫酸存 在下,与靛红一同加热显示蓝色,反应灵敏。可用来 检验噻吩。
(3)磺化
呋喃和吡咯遇酸容易发生环的破裂,磺化时常使用 比较缓和的磺化剂(吡啶三氧化硫)。
O+ N S O 3C lC H 2 C H 2 C l O _ _S O 3 H + N
吡 啶 三 氧 化 硫
α-呋喃磺酸
N+ NSO 3 H
N__SO 3H+ N H α-吡咯磺酸
噻吩在室温下可溶于浓硫酸,并发生磺化反应。
吡咯存在于煤焦油和骨焦油中,其蒸气或其醇溶 液能使浸过盐酸的松木片呈红色,此反应可用来鉴定 吡咯。
1. 亲电取代反应
呋喃、噻吩、吡咯都比苯容易发生亲电取代反
应,取代主要发生在α位。它们反应的活性顺序为:
吡咯>呋喃>噻吩>苯。
(1)卤化
O+Br2二 2氧 5℃ 六 环 O__Br+HBr
2-溴 呋 喃 ( 75% )
(isoquinoline)
NN
N
NN
S
嘌呤H 苯并噻唑
(purine)
(benzothiazole)
2.系统命名法
适用于杂环衍生物的命名
(1)选母体 与芳香族化合物命名原则类似,当杂 环上连有-R、-X、-OH、-NH2等取代基时,以 杂环为母体;如果连有-CHO、-COOH、-SO3H 等时,把杂环作为取代基 。