混凝土坍落度影响因素的试验研究

混凝土坍落度影响因素的试验研究
混凝土坍落度影响因素的试验研究

混凝土坍落度影响因素的试验研究

邓初首,夏勇。

【摘要】研究了在用水量一定时,砂率、水灰比、粉煤灰对混凝土坍落度的影响,并分析了粗集料最大粒径对坍落度的影响。结果表明:砂率有一个最佳值,此值下坍落度最大;不同水灰比的混凝土拌合物,通过适当增减砂率,可保持坍落度基本不变;与基准混凝土(不掺粉煤灰)相比,内掺II级粉煤灰的混凝土坍落度增大,内掺III级粉煤灰的混凝土坍落度减小。

【关键词】砂率;水灰比;粉煤灰;坍落度

0前言

混凝土一个重要技术指标是拌合物的和易性,和易性(又称工作性)是指混凝土拌合物易于施工操作(拌和、运输、浇筑和捣实)并能获得质量均匀、成型密实的性能。它包括三方面含义:流动性、粘聚性和保水性。流动性是指混凝土拌合物在自重或施工机械振捣的作用下,能产生流动,并均匀密实地填满模板的性能。对于大量使用的塑性混凝土来说,其拌合物流动性用坍落度表征。

如何准确快速地配制出坍落度符合要求的混凝土?这就需要了解引起坍落度变动的影响因素。不容置疑,用水量是决定坍落度的主要因素。本文着重研究了在固定单位用水量的情况下,砂率、水灰比和粉煤灰掺合料对混凝土坍落度的影响,并分析了粗集料最大粒径的影响。

1 试验用原材料和试验方法

1.1 水泥海螺牌P.O3

2.5级水泥。

1.2 粗集料

马鞍山市葛羊山产石灰岩质人工碎石,最大粒径分别取25mm、40mm两种规格。

1.3细集料

江砂(中砂),细度模数2.6。

1.4粉煤灰

经检验,选用马鞍山二电厂提供的II级和III级粉煤灰,检验结果如表l所示。

注:细度为45~rr-方孔筛筛余。

1.5试验方法

执行GB/T50080—2002《普通混凝土拌合物性能试验方法标准》。按标准规定,测得的坍落度值均精确到1mm,修约至5mm。

2结果与讨论

2.1砂率对混凝土坍落度的影响

采用两种研究途径:(1)固定单位用水量和水灰比不变,分别用粗集料最大粒径为25mm、40rnm的碎石混凝土拌合物试验,结果见图1。(2)固定单位用水量和粗集料最大粒径不变,分别取水灰比为0.45、0.55的凝土拌合物试验,结果见图2。

由图1知:(1)比较同一规格的粗集料混凝土拌合物,坍落度随着砂率的增大呈现先增后减的变化趋势,即存在一个最佳砂率值,在此砂率下,拌合物流动性最大。也就是说,在此最佳砂率下,获得相同坍落度的拌合物所需的水泥用量最少。(2)随着粗集料最大粒径的减小(由40mm 减至25mm ),其最佳砂率值增大(由35%增至37%)。(3)在相同用水量情况下,混凝土坍落度随着粗集料最大粒径的减小而降低,且在各级砂率下均有不同程度的下降,最佳砂率下,坍落度最大值由 75mm 降至 45mm 。

分析原因,笔者认为:(1)在相同用水量和水灰比下,水泥用量一定,若砂率过小,则浆体不足,不能保证粗集料间有足够的砂浆填充润滑,粗集料颗粒间的摩擦阻力较大,拌合物流动性较小,坍落度较低;若砂率过大,细集料比表面积和空隙率增大,在用水量和水泥用量一定时,需要润湿细集料表面的水分和包裹细集料的水泥浆体显得不足,水泥浆的润滑作用减弱,细集料间的摩擦阻力增加,拌合物流动性下降。只有砂率适宜时,砂子不但较好地填充了粗集料间隙,保证石子间有一定厚度的砂浆层润滑,而且也能在水泥浆体一定时,细集料有充足的水泥浆包裹润滑,使混凝土拌合物有较好的流动性,所以存在一个最佳砂率值。(2)粗集料最大粒径减小,集料间空隙率增大,需要填充石子间隙的砂浆需求量增加,所以最佳砂率值会随着石子粒径的减小而增大。(3)粗集料最大粒径减小,比表面积增加,需要润湿其表面的水量增加,而在用水量一定时,会使最大粒径较小的粗集料润湿水分相对不足,所以在相同用水量下,混坍落度较小,也就是说,要获得相同坍落度的混凝土拌合物,最大粒径较大的粗集料需水量较少。 由图2可看出:不同水灰比的混凝土拌合物,其最佳砂率随着水灰比的减小而减小。分析认为:用水量一定,当水灰比较小时,水泥用量较多,水泥浆较稠,较小的砂率即可使混凝土拌合物含有丰富的浆体,填充集料间隙,包裹并润湿集料,此时,若砂率过大,会造成混凝土拌合物过于干涩粘稠,流动性急剧下降,如图2显示:水灰比为0.45的混凝土拌合物,在较大的砂率下(37%和39%),坍落度显著降低。 2.2水灰比对混凝土坍落度的影响

研究思路:固定用水量不变,随着水灰比的减小,即水泥用量的增加,适当减小砂率,以扣除同体积(增加的水泥体积)的砂重。试验配合比与结果如表2所示。

由表2知:不同水灰比的混凝土拌合物坍落度基本不变。这是因为适当增减的砂率,可使不同水灰比的混凝土拌合物砂浆浆体基本维持在同一水平,拌合物的流动性基本不变。因此,配制不同强度,相同坍落度的普通混凝土时,可固定用水量,通过调节

注:粗集料最大粒径D一=40㎜

砂率的大小来满足相同流动性的要求。但是,如果用水量一定,而水灰比过大,即使增加砂率,也不能保持混凝土拌合物流动性不变,坍落度将会有减小的趋势,如前所述,这是因为:此时的水泥用量太少,水泥浆体严重不足,其润滑作用大大减弱,而砂子的表面又缺少够的水泥浆体包裹润滑,细集料间的摩擦阻力增加,拌合物流动性下降。

2.3粉煤灰对混凝土坍落度的影响

粉煤灰是最常用的混凝土掺合料,试验分别取II级灰和III级灰内掺于混凝土中,等量取代水泥,在同一用水量下,与基准混凝土(不掺粉煤灰)进行对比试验,混凝土配合比及试验结果见表3。

由表3知:用水量一定时,掺II级灰的混凝土拌合物流动性大于基准混凝土;而掺III级灰的混凝土流动性小于基准混凝土。分析认为:II级灰的颗粒较细,含有大量的具有滚珠轴承作用和润滑作用的球状微细颗粒,减少了浆体与集料间的界面摩擦,提高了拌合物的流动性。同时,由于微细的粉煤灰颗粒能填充到水泥颗粒之中,降低了胶凝材料空隙率,相应地填充于固体颗粒中的水量减少,增加了颗粒表面的水膜层水量,对浆体的流动性有利。一般而言,II级以上的粉煤灰具有一定的减水作用。III级灰因颗粒较粗,细小致密的球形玻璃微珠少,滚珠轴承作用和润滑作用弱,同时III级灰的烧失量较大(烧失量表示的是粉煤灰在高温燃烧过程中未燃尽碳的含量),未燃尽碳含量多,而碳颗粒表面粗糙,蓄水孔多,易吸水,造成混凝土拌合物流动性下降。

3 结论

(1)用水量和水灰比一定时,砂率对混凝土坍落度的影响存在一个最佳值,在此最佳砂率下,混凝土坍落度最大。

(2)用水量一定,通过适当增减砂率,可保持不同水灰比的混凝土拌合物坍落度基本不变。

(3)用水量一定,掺II级粉煤灰可提高新拌混凝土的流动性;III级灰则降低了混凝土坍落度,要达到相同的流动性,掺III级粉煤灰的混凝土需水量增加。

(4)用水量一定,新拌混凝土坍落度随着粗集料最大粒径的增大而增大。

坍落度及影响因素

坍落度 坍落度主要是指混凝土的塑化性能和可泵性能,影响混凝土坍落度主要有级配变化、含水量、衡器的称量偏差,外加剂的用量容易被忽视的还有水泥的温度几个方面。 目录 1基本概念 2影响因素 3坍落扩展度法 基本概念 坍落度是指混凝土的和易性,具体来说就是保证施工的正常进行,其中包括混凝土的保水性,流动性和粘聚性。坍落度是用一个量化指标来衡量其程度的高低,用于判断施工能否正常进行。 和易性是指混凝土是否易于施工操作和均匀密实的性能,是一个很综合的性能其中包含流动性、粘聚性和保水性。影响和易性主要有用水量、水灰比、砂率以及包括水泥品种、骨料条件、时间和温度、外加剂等几个方面。 坍落度的测试方法:用一个上口100mm、下口200mm、高300mm喇叭状的塌落度桶,灌入混凝土分三次填装,每次填装后用捣锤沿桶壁均匀由外向内击25下,捣实后,抹平。然后拔起桶,混凝土因自重产生塌落现象,用桶高(300mm)减去塌落后混凝土最高点的高度,称为塌落度.如果差值为10mm,则塌落度为10。 混凝土坍落度,应根据建筑物的结构断面、钢筋含量、运输距离、浇注方法、运输方式、振捣能力和气候等条件决定,在选定配合比时应综合考虑,并宜采用较小的坍落度。 坍落度适用于流动性较大的混凝土拌和物(坍落度值不小于10mm),干硬性混凝土拌和物的坍落度小于10mm时须用维勃稠度(s)表示其稠度。 影响因素

混凝土原材料影响 沙河水洗砂由于存料时间和批次不同,含水量不稳定,且通过试验确定含水量时局限性较大,粗骨料一般情况含水量比较稳定,但有时也会变化,原因是骨料厂多为开敞式存放,在雨后骨料含水量发生变化,拌制混凝土时骨料吸水率不同会造成混凝土坍落度不同程度的偏差。 机械和搅拌时间影响 混凝土搅拌时间长会造成骨料吸水量加大,使混凝土熟料中的自由水份减少,造成混凝土坍落度的损失。 混凝土搅拌机械计量系统误差也会造成混凝土坍落度损失,混凝土配合比是通过精确计算并经过多次试配调整得出来的,任何一种材料由于计量不准确,都会使单位内材料比表面积发生变化,材料比表面积变化越大,坍落度经时损失也越大。 运输机械的影响 混凝土搅拌运输车运输距离和时间越长,混凝土熟料由于发生化学反应、水份蒸发、骨料吸水等多方面原因,自由水份减少,造成混凝土坍落度经时损失,混凝土皮带运输机、串筒还会造成砂浆损失,这也是造成混凝土坍落度损失的重要原因。 混凝土浇筑速度的影响 混凝土浇筑过程中,混凝土熟料到达仓面内的时间越长,会因为发生化学反应、水份蒸发、骨料吸水等多方面原因使混凝土熟料中的自由水份迅速减少造成坍落度损失,特别是混凝土暴露在皮带运输机上时,表面与外界环境接触面积较大,水份蒸发迅速,对混凝土坍落度损失的影响最大。根据实际测定当气温在25℃左右时混凝土熟料现场坍落度在半小时内损失可达4cm。 浇筑时间的影响 混凝土浇筑时间不同,也是造成混凝土坍落度损失的一个重要原因。早上和晚上气温低,水份蒸发慢,影响较小;中午和下午气温高水份蒸发快,影响较大。水份损失越快混凝土坍落度损失越大,混凝土的流动性、粘聚性等越差,质量越难保证。 3坍落扩展度法 该方法适用于骨料最大粒径不大于40 mm、坍落度不小于10 mm的混凝土拌合物稠度测定。 目前,尚没有能够全面反映混凝土拌合物和易性的测定方法。在工地和试验室,通常是做坍落度试验测定拌合物的流动性,并辅以直观经验评定粘聚性和保水性。

混凝土坍落度损失过快的七大原因

混凝土坍落度损失过快的七大原因 坍落度损失原因 坍落度损失原因较多,主要有以下几个方面: 1 原材料影响 所用水泥和泵送剂是否匹配、适应,必须通过适应性检测得出,泵送剂掺量要 通过与水泥胶凝材料的适应性检测,确定最佳掺量。泵送剂中的引气、缓凝成 分的多少,对混凝土坍落度损失影响较大,引气、缓凝成分多,混凝土坍落度 损失慢,否则损失快。萘系高效减水剂配制的混凝土坍落度损失快,在低正温 +5℃以下时,损失较慢。 水泥中的调凝剂如果用的是硬石膏,就会造成混凝土坍落度损失加快,水泥中 早强成分C3A含量多,使用“R”型水泥,水泥细度很细,水泥凝结时间快等都会造成混凝土坍落度损失加快,混凝土坍落度损失快慢与水泥中混合材料的质 量和掺量多少均有关联。水泥中的C3A含量宜在4%~6%内,含量低于4%时,应减少引气、缓凝剂成分,否则会造成混凝土长时间不凝固,C3A含量高于7%时,应增加引气缓凝成分,否则会造成混凝土坍落度很快损失或假凝现象出现。 混凝土所用粗细骨料的含泥量和泥块含量超标,碎石针片状颗粒含量超标等都 会造成混凝土坍落度损失加快。如果粗骨料吸水率大,尤其是所用碎石,在夏 季高温季节经高温暴晒后,一旦投入到搅拌机内它会在短时间内大量吸水,造 成混凝土短时间内(30min)坍落度损失加快。 2 搅拌工艺影响 混凝土搅拌工艺对混凝土坍落度损失亦有影响,搅拌机的机型和搅拌效率都有关,因此,要求搅拌机要定期检修,搅拌叶片要定期更换。混凝土搅拌时间不 能少于30s,如低于30s混凝土坍落度不稳定,造成坍落度损失相对加快。 3 温度影响

温度对混凝土坍落度损失的影响要特别关注。炎热的夏季气温大于25℃或30℃以上时,相对于20℃时的混凝土坍落度损失要加快50%以上,当气温低于+5℃时,混凝土坍落度损失又很小或不损失。因此,泵送混凝土生产和施工时,要密切关注气温对混凝土坍落度的影响。 原材料的使用温度高,会造成混凝土出现温度提高和坍落度损失加快。一般要求混凝土出机温度应在5~35℃内,超出此温度范围,就要采取相应的技术措施,如加冷水、冰水、地下水以降温和加热水和原材料使用温度等等。 一般要求水泥、掺合料的使用温度最高不能高于50℃,冬期泵送混凝土加热水的使用温度不宜高于40℃,否则,不但造成混凝土坍落度损失加快,甚至会造成混凝土速凝,在搅拌机内出现假凝状态,出不了机或运到现场卸料困难。 所用胶凝材料使用温度越高泵送剂中的减水成分对混凝土塑化效果越差,混凝土坍落度损失会加快。混凝土温度与坍落度损失成正比,混凝土每提高5~10℃,坍落度损失可达20~30mm左右。 4 强度等级 混凝土坍落度损失与混凝土强度等级大小有关系,混凝土等级高的相对于低等级混凝土坍落度损失快,碎石混凝土比卵石混凝土损失快,其主要原因是与单位水泥用量的多少有关。 5 混凝土状态 混凝土静态比动态坍落度损失快。动态时,混凝土不断的受到搅拌,使泵送剂中的减水成分与水泥不能充分反应,阻碍了水泥水化进度,从而使坍落度损失小;静态时,减水成分与水泥接触充分,加速了水泥水化进程,因此混凝土坍落度损失加快。 6 运输机械 混凝土搅拌运输车运输距离和时间越长,混凝土熟料由于发生化学反应、水份蒸发、骨料吸水等多方面原因,自由水份减少,造成混凝土坍落度经时损失,混凝土皮带运输机、串筒还会造成砂浆损失,这也是造成混凝土坍落度损失的重要原因。

混凝土拌合物性能试验方法标准学习记录

混凝土拌合物性能试验法标准学习记录 学习普通混凝土拌合物性能试验法标准的检测项目、检测法、判定依据、仪器设备、检测环境条件、检测程序等。 2、检测环境条件的变化 制备混凝土拌合物时,试验环境相对湿度不宜小于50%,试验室的温度应保持在20±5℃,所用材料、试验设备、容器及辅助设备的温度宜与试验室温度保持一致。 3、取样与试样的制备 3.1 同一组混凝土拌合物的取样应从同一盘混凝土或同一车混凝土中取样。取样量应多于试验所需量的1.5倍,且宜不小于20L。 3.2 混凝土拌合物的取样应具有代表性,宜采用多次采样的法。一般在同一盘混凝土或同一车混凝土中的约1/4处、1/2处和3/4处之间分别取样,并搅拌均匀;第一次取样和最后一次取样的时间间隔不宜超过15min。 3.3 宜在取样后5min开始各项性能试验。 3.4 试验室制备混凝土拌合物的搅拌应符合下列规定: 3.4.1、混凝土拌合物应采用搅拌机搅拌。拌和前应将搅拌机冲洗干净,并预拌少量同种混凝土拌合物或水胶比相同的砂浆,搅拌机壁挂浆后将剩余料卸出。 3.4.2、应将称好的粗骨料、胶凝材料、细骨料和水(外加剂一般先溶于水)依次加入搅拌机,难溶和不溶的粉状外加剂宜与胶凝材料同时加入搅拌机,液体和可溶外加剂宜与拌合水同时加入搅拌机 3.4.3、混凝土拌合物宜搅拌2min以上,直至搅拌均匀; 3.4.4、混凝土拌合物一次拌和量不宜少于搅拌机公称容量的1/4;不应大于搅拌机容量,且不应少于20L; 3.5 试验室搅拌混凝土时,材料用量应以质量计。骨料的称量精度应为±0.5%;水泥、掺合料、水、 外加剂的称量精度均应为±0.2%。3.6 在试验室制备混凝土拌合物时,拌合时试验室的温度应保持在20±3℃,所用材料的温度宜与试验室温度保持一致。 4 坍落度及经时损失试验试验应按下列步骤进行: 4.1.1)、坍落度筒壁和底板应润湿无明水;底板应放置在坚实水平面上,并把坍落度筒放在底板中心,然后用脚踩住二边的脚踏板,坍落度筒在装料时应保持在固定的位置; 2)、混凝土试样应分三层均匀地装入坍落度筒,捣实后每层高度应约为筒高的三分之一。每装一层,应用捣棒在筒由边缘到中心按螺旋形均匀插捣25次; 3)、插捣底层时,捣棒应贯穿整个深度,插捣第二层和顶层时,捣棒应插透本层至下一层的表面; 4)、顶层混凝土装料应高出筒口,插捣过程中,如果混凝土低于筒口,则应随时添加; 5)、顶层插捣完后,取下装料漏斗,应将混凝土拌合物沿筒口抹平;

混凝土塌落度的概念及标准

混凝土塌落度 一、坍落度主要是指混凝土的塑化性能和可泵性能,影响混凝土坍落度主要有级配变化、含水量、衡器的称量偏差,外加剂的用量容易被忽视的还有水泥的温度几个方面。 坍落度是指混凝土的和易性,具体来说就是保证施工的正常进行,其中包括混凝土的保水性,流动性和粘聚性。 和易性是指混凝土是否易于施工操作和均匀密实的性能,是一个很综合的性能其中包含流动性、粘聚性和保水性。影响和易性主要有用水量、水灰比、砂率以及包括水泥品种、骨料条件、时间和温度、外加剂等几个方面。 二、坍落度的测试方法:用一个上口100mm、下口200mm、高300mm喇叭状的塌落度桶,灌入混凝土后捣实,然后拔起桶,混凝土因自重产生塌落现象,用桶高(300mm)减去塌落后混凝土最高点的高度,称为塌落度.如果差值为10mm,则塌落度为10。 混凝土的坍落度,应根据建筑物的结构断面、钢筋含量、运输距离、浇注方法、运输方式、振捣能力和气候等条件决定,在选定配合比时应综合考虑,并宜采用较小的坍落度。 三、(1)混凝土原材料影响,沙河水洗砂由于存料时间和批次不同,含水量不稳定,且通过试验确定含水量时局限性较大,粗骨料一般情况含水量比较稳定,但有时也会变化,原因是骨料厂多

为开敞式存放,在雨后骨料含水量发生变化,拌制混凝土时骨料吸水率不同会造成混凝土坍落度不同程度的偏差。 (2)机械和搅拌时间影响,混凝土搅拌时间长会造成骨料吸水量加大,使混凝土熟料中的自由水份减少,造成混凝土坍落度的损失。 (3)混凝土搅拌机械计量系统误差也会造成混凝土坍落度损失,混凝土配和比是通过精确计算并经过多次试配调整得出来的,任何一种材料由于计量不准确,都会使单位内材料比表面积发生变化,材料比表面积变化越大,坍落度经时损失也越大。 (4)混凝土运输机械的影响,混凝土搅拌运输车运输距离和时间越长,混凝土熟料由于发生化学反应、水份蒸发、骨料吸水等多方面原因,自由水份减少,造成混凝土坍落度经时损失,混凝土皮带运输机、串筒还会造成砂浆损失,这也是造成混凝土坍落度损失的重要原因。 (5)混凝土浇筑速度的影响,混凝土浇筑过程中,混凝土熟料到达仓面内的时间越长,会因为发生化学反应、水份蒸发、骨料吸水等多方面原因使混凝土熟料中的自由水份迅速减少造成坍落度损失,特别是混凝土暴露在皮带运输机上时,表面与外界环境接触面积较大,水份蒸发迅速,对混凝土坍落度损失的影响最大。根据实际测定当气温在25℃左右时混凝土熟料现场坍落度在半小时内损失可达4cm。

混凝土坍落度试验

建筑 混凝土坍落度试验 砼坍落度试验 1、试验步骤 (1)每次测定前,用湿布湿润坍落度筒、拌和钢板及其他用具,并把筒放在不吸水的刚性 水平底板上,然后用脚踩住 2个脚踏板,使坍落度筒在装料时保持位置固 定。 (2)取拌好的混凝土拌和物15L,用小铲分 3层均匀地装入筒内,使捣实后每层高度为筒 高的 1/3左右。每层用捣棒沿螺旋方向在截面上由外向中心均匀插捣25次。插捣筒边混凝 土时,捣棒可以稍稍倾斜。插捣底层时,捣棒应贯穿整个深度,插捣第二层和顶层时,捣棒 应插透本层至下一层的表面。浇灌顶层时,混凝土应灌到高出筒口,插捣过程中, 如混凝土沉落到低于筒口,则应随时加料,顶层插捣完毕后,刮去多余混凝土,并用镘刀抹平。 (3)清除筒边底板上的混凝土后,垂直平稳地提起坍落度筒。坍落度筒的提离过程应在5~10s内完成。从开始装料到提起坍落度筒的整个过程应不间断地进行,并应 150s内完成。2、试验结果确定与处理 (1)提起坍落度筒后,立即量测筒高与坍落后混凝土试体最高点之间的高度差,即 为该混凝土拌和物的坍落度值。混凝土拌和物坍落度以mm为单位,结果精确至 1mm。(2)坍落度筒提离后,如混凝土发生崩坍或一边剪坏现象,则应重新取样再测定。如第二 次试验仍出现上述现象,则表示该混凝土拌和物和易性不好,应予记录备查。 (3)观察坍落后的混凝土试体的粘聚性和保水性。粘聚性的检查方法是用捣棒在已坍落的 混凝土锥体侧面轻轻敲打,此时,如果锥体逐渐下沉,则表示粘聚性良好,如果锥体倒塌、 部分崩裂或出现离析现象,则表示粘聚性不好。保水性以混凝土拌和物中稀浆析出的程度来 评定。如坍落度筒提起后无稀浆或仅有少量稀浆自底部析出,则表示此混凝土拌和物保水性 良好;坍落度筒提起后如有较多的稀浆从底部析出且锥体部分的混凝土也因失浆而骨料外 露,则表明此混凝土拌和物的保水性能不好。 (4)和易性的调整 1)当坍落度低于设计要求时,可在保持水灰比不变的前提下,适当增加水泥浆量。 2)当坍落度高于设计要求时,可在保持砂率不变的条件下,增加集料的用量。 3)当出现含砂量不足,粘聚性、保水性不良时,可适当增加砂率,反之减小砂率。 混凝土坍落度试验 一、实验目的 混凝土由各组成材料按一定比例配合、搅拌而成。混凝土拌和物的和易性是一项综合性的 指标,它包括流动性、粘聚性和保水性等三方面的性能。由于它的内涵较为复杂,根据我国的现 行标准规定,采用“坍落度”和“维脖稠度”来测定混凝土拌和物的流动性。这里先进行“坍落 度”试验。(本试验适用于坍落度值不小于10 mm,骨料粒径不大于40mm混凝土伴和物)。 二、实验设备和仪器

普通混凝土坍落度试验步骤

普通混凝土坍落度试验步骤 混凝土坍落度主要是指混凝土的塑化性能和可泵性能,影响混凝土坍落度的因素主要有级配变化、含水量、衡器的称量偏差、外加剂的用量,容易被忽视的还有水泥的温度等。坍落度是指混凝土的和易性,具体来说就是保证施工的正常进行,其中包括混凝土的保水性,流动性和粘聚性。 和易性是指混凝土是否易于施工操作和均匀密实的性能,是一个很综合的性能其中包含流动性、粘聚性和保水性。影响和易性主要有用水量、水灰比、砂率以及包括水泥品种、骨料条件、时间和温度、外加剂等几个方面。 混凝土的坍落度,应根据建筑物的结构断面、钢筋含量、运输距离、浇注方法、运输方式、振捣能力和气候等条件决定,在选定配合比时应综合考虑,并宜采用较小的坍落度。 一、适用范围: 集料骨料最大粒径不大于40mm; 坍落度值不小于10mm的混凝土拌合物。 二、坍落度试验的试验设备应符合下列规定: 1、坍落度仪应符合现行行业标准《混凝土坍落度仪》JG/T248的规定; 2、应配备2把钢尺,钢尺的量程不应小于300mm,分度值不应大于1mm; 3、底板应采用平面尺寸不小于1500mmX1500mm、厚度不小于3mm的钢板,其最大挠度不应大于3mm。 三、主要试验设备: 试验室用混凝土小型搅拌机试验步骤: 1、坍落度筒内壁和底板应润湿无明水;底板应放置在坚实水平面上,并把坍落度筒放在底板中心,然后用脚踩住两边的脚踏板,坍落度筒在装料时应保持在固定的位置;

2、混凝土拌合物试样应分三层均匀地装人坍落度筒内,每装一层混凝土拌合物,应用捣棒由边缘到中心按螺旋形均匀插捣25次,捣实后每层混凝土拌合物试样高度约为筒高的三分之一; 3、插捣底层时,捣棒应贯穿整个深度,插捣第二层和顶层时,捣棒应插透本层至下一层的表面; 4、顶层混凝土拌合物装料应高出筒口,插捣过程中,混凝土拌合物低于筒口时,应随时添加; 5、顶层插捣完后,取下装料漏斗,应将多余混凝土拌合物刮去,并沿筒口抹平; 6、清除筒边底板上的混凝土后,应垂直平稳地提起坍落度筒,并轻放于试样旁边;当试样不再继续坍落或坍落时间达30s时,用钢尺测量出简高与坍落后混凝土试体最高点之间的高度差,作为该混凝土拌合物的坍落度值。点击添加图片描述(最多60个字)坍落度简的提离过程宜控制在3s~7s;从开始装料到提坍落度筒的整个过程应连续进行,并应在150s内完成。将坍落度简提起后混凝土发生一边崩坍或剪坏现象时,应重新取样另行测定;第二次试验仍出现一边崩坍或剪坏现象,应予记录说明。混凝土拌合物坍落度值测量应精确至1mm,结果应修约至5mm。 判断混凝土和易性 流动性:测量坍落度; 粘聚性:捣棒敲打锥体侧面; 保水性:观察稀浆程度。 坍落度的选择:

影响混凝土坍落度的因素

水灰比 拌制水泥浆、砂浆、混凝土时所用的水和水泥的重量之比。水灰比影响混凝土的流变性能、水泥浆凝聚结构以及其硬化后的密实度,因而在组成材料给定的情况下,水灰比是决定混凝土强度、耐久性和其他一系列物理力学性能的主要参数。对某种水泥就有一个最适宜的比值,过大或过小都会使强度等性能受到影响。 水灰比按同品种水泥固定。硅酸盐水泥、普通硅酸盐水泥、矿渣水泥为0.44; 火山灰水泥、粉煤灰水泥为0.46。 离析 混合物料中某一类分子由于物性相同而发生集聚的现象。其相反的意思是混合。在极端情况下,物料质点可以达到以分子规模相互混合的程度,称为最大混合度。相反,两种黏度相差很大的液体搅在一起,即使采用搅拌等措施,也无法达到分子级均匀分散,而是同种分子成团成块地存在。至于极端情况,比如油滴悬浮在水中,两者互不混溶,以完全的离析状态存在,称为离析流。 混凝土离析是指混凝土拌合物成分相互分离,造成内部组成和结构不均匀的现象。离析后会影响混凝土的浇筑质量,降低强度,造成粗骨料堆积,形象的说就是骨肉分离。混凝土搅拌时配合比计量要准确,保证搅拌时间一般为90s,控制好坍落度,混凝土自由下落高度不能超过2m,如果浇筑超过2m的可以用溜槽,溜筒等辅助工具。 和易性 和易性是指新拌水泥混凝土易于各工序施工操作(搅拌、运输、浇灌、捣实等)并能获得质量均匀、成型密实的性能。和易性是一项综合的技术性质,它与施工工艺密切相关,通常,包括有流动性、保水性和粘聚性三方面的含义。 流动性是指新拌混凝土在自重或机械振捣的作用下,能产生流动,并均匀密实地填满模板的性能。 粘聚性是指新拌混凝土的组成材料之间有一定的粘聚力,在施工过程中,不致发生分层和离析现象的性能。 保水性是指在新拌混凝土具有一定的保水能力,在施工过程中,不致产生严重泌水现象的性能。 新拌混凝土的和易性是流动性、粘聚性和保水性的综合体现,新拌混凝土的流动性、粘聚性和保水性之间既互相联系,又常存在矛盾。因此,在一定施工工艺的条件下,新拌混凝土的和易性是以上三方面性质的矛盾统一。 预测和影响因素 (二)和易性的测定及指标 目前,还没有能够全面反映混凝土拌和物和易性的简单测定方法。通常,通过实验测定流动性,以目测和经验评定粘聚度和保水度。混凝土的流动性用稠度表示,其测定方法有坍落度与坍落扩展法和维勃稠度法两种。

水泥混凝土坍落度试验作业指导书

水泥混凝土坍落度试验作业指导书 1. 依据标准:《公路工程水泥及水泥混凝土试验规程》JTG E30-2005; 2. 试验目的及适用范围: 2.1目的:测定水泥混凝土拌合物稠度。 2.2适用范围:本试验适用于坍落度大于10mm,集料粒径不大于40mm的混凝土。集料粒径大于40mm的混凝土,允许用加大坍落度筒,但应予以说明。 3.试验环境: 3.1在试验室检测,检查温湿度仪,在试验记录中注明室内温湿度。 3.2在施工现场检测,要记录现场试验时的温湿度。 4.试验准备: 4.1试验仪器

4.2试样制备:施工现场及室内按配合比拌合好的混凝土。 5.试验步骤: 根据《公路工程水泥及水泥混凝土试验规程JTG E30-2005》T0522-2005方法进行试验。 6.试验结果整理: 6.1混凝土拌合物坍落度和坍落度扩展度值以毫米(mm)为单位,测量精确至1mm,结果修约至最接近的5mm。 6.2当混凝土拌合物坍落度大于220mm时,用钢尺测量混凝土扩展后最终的最大直径和最小直径,在这两个直径之差小于50mm的条件下,用其算术平均值作为坍落扩展度值;否则,此次试验无效。 7.试验报告: 试验报告应包括内容:○1.要求检测的项目名称、执行标准;○2.原材料的品种、规格和产地;○3.仪器设备名称、型号及编号;○4.环境温度和湿度;○5.搅拌方式;○6.水泥混凝土拌合物坍落度(坍落度扩展度);○7.要说明的其他内容,如棍度、含砂情况、粘聚性和保水性。

8.试验注意事项: 8.1.混凝土拌合物需分层装筒,分层插捣,每层插捣25次。 8.2圆锥筒慢慢垂直提起,提筒不能过快。 8.3测量坍落度值时,须量平尺底面至试样顶面中心之间的垂直距离。 8.4当混凝土试件的一侧发生崩坍或一边剪切破坏,应重新取样另测。如果第二次仍发生上述情况,则表示该混凝土和易性不好,应记录。 8.5如锥体突然倒塌,部分崩裂或发生石子离析现象,表示粘聚性不好。 8.6用加大坍落度筒量测时,应乘系数0.67,以换算为标准坍落度。 8.7从开始装筒至提起坍落筒的全过程,不应超过2.5min。

混凝土坍落度试验

混凝土坍落度试验 1、先用湿布抹湿坍落筒,铁锹,拌和板等用具。坍落筒为上口直径100mm,下口直径 200mm,高300mm,呈喇叭状。 2、按配合比称量材料:先称取水泥和砂并倒在拌和板上搅拌均匀,在称出石子一起拌 和。将料堆的中心扒开,倒入所需水的一半,仔细拌和均匀后,再倒入剩余的水,继续拌和至均匀。拌和时间大约4-5min。 3、将坍落筒放于不吸水的刚性平板上,漏斗放在坍落筒上,脚踩踏板,拌和物分三层 注入筒内,每层装填的高度约占筒高的三分之一。每层用捣棒沿螺旋线由边缘至中心插捣25次,要求最底层插捣至底部,其他两层插捣至下层20-30mm。 4、装填结束后,用镘刀刮去多余的拌和物,并抹平筒口,清楚筒底周围的混凝土。随 即立即提起坍落筒,操作过程在5-10S内完成,且防止提筒时对装填的混凝土产生横向扭力作用。 5、将坍落筒放在以坍落的拌和物一旁,筒顶平放一个朝向拌和物的直尺,用钢尺量出 直尺底面到试样顶点的垂直距离,该距离定义为混凝土拌和物的坍落度值,以mm为单位。结果精确至5mm。以同一次拌和的混凝土测得的两次坍落度的平均值作为试验结果,如果两次结果相差20mm以上则需做第三次,而第三次结果与前两次结果相差20mm以上,则整个试验重做。 6、通过采用侧向敲击,进一步观察混凝土塌落体的下沉变化。如混凝土拌和物在敲击 下渐渐下沉,表示粘聚性较好;如拌和物突然折断坍,或有石子离析现象,则表示粘聚性较差。 7、另一方面查看拌和物均匀程度和水泥浆含纳状况,判断混凝土的保水性。如整个试 验过程中有少量水泥浆从底部析出或从拌和物表面沁出,则表示混凝土拌和物的保水性良好;如果有较多的水泥浆从底部析出或从拌和物表面沁出,并引起拌和物的集料外露,则说明混凝土保水性不好。

混凝土坍落度和经时损失的控制

混凝土坍落度及其经时损失的控制 文章发表于:2010-10-19 10:44:20 混凝土坍落度及其经时损失的控制 一、新拌混凝土和易性 1.1 新拌混凝土和易性的概念 新拌混凝土的和易性,也称工作性,是指混凝土拌合物易于施工操作(拌合、运输、浇注、振捣)并获得质量均匀、成型密实的性能。混凝土拌合物的和易性是一项综合技术性质,它至少包括流动性、粘聚性和保水性三项独立的性能。流动性是指混凝土拌合物在自重或机械(振捣)力作用下能产生的流动并均匀密实地添满模板的性能。粘聚性是指混凝土拌合物各组成材料之间有一定的粘聚力,不致在施工过程中产生分层和离析的现象。保水性是指混凝土拌合物具有一定的保水能力,不致在施工过程中出现严重的泌水现象。可见,新拌混凝土的流动性、粘聚性和保水性有各自的内涵,因此,影响它们的因素也不尽相同。 正是因为新拌混凝土的流动性、粘聚性和保水性有其各自独立的内涵,目前,尚没有能够全面反映混凝土拌合物和易性的测定方法。通常是测定混凝土拌合物的流动性,辅以其他方法或直接观察(结合经验)评定混凝土拌合物的粘聚性和保水性,然后综合评定混凝土拌合物的和易性。 测定流动性的方法目前有数十种,最常用的是坍落度试验方法。 将搅拌好的混凝土拌合物按一定方法装入圆台形筒内(坍落度筒,见图1),并按一定方式插捣,待装满刮平后,垂直平稳地向上提起坍落度筒,量测筒高与坍落后混凝土试体最高点之间的高度差(mm),即为该混凝土拌合物的坍落度值。

作为流动性指标,坍落度越大表示流动性越好。 实际施工时,混凝土拌合物的坍落度要根据构件截面尺寸大小、钢筋疏密和捣实方法来确定。当构件截面尺筋较密,或采用人工捣实时,坍落度可选择大一些。反之,若构件截面尺寸较大,或钢筋较疏,或采用机械振捣,则坍落度可选择小一些。表1列出《混凝土结构工程施工质量验收规范》(GB 50204-2002)关于选用坍落度的规定。 表1 混凝土浇筑时坍落度选择范围 结构种类坍落度/mm 基础或地面等的垫层、无配筋的大体积结构(挡土墙、基础等)或配筋稀疏的结构 10~30 板、梁和大型及中型截面的柱子等 30~50 配筋密列的结构(薄壁、斗仓、筒仓、细柱等) 50~70 配筋特密的结构 70~90 注:a. 本表是采用机械振捣混凝土时的坍落度,当采用人工捣实混凝土时坍落度可适当增大; b. 当需要配置大坍落度混凝土时,应掺用外加剂; c. 曲面或斜面结构混凝土的坍落度应根据实际需要另行选定; d. 泵送混凝土的坍落度宜为80~180mm。 根据浇筑时坍落度的不同要求,混凝土拌合物可分为四个等级,见表2。 表2 混凝土浇筑时的坍落度 名称级别坍落度(mm) 低塑性混凝土 T1 10~40

影响混凝土坍落度经时损失的主要因素分析

影响混凝土坍落度经时损失的主要因素分析 1引言 目前,我国商品混凝土应用的最为广泛,其特点在于集中拌制、商品化供应。这就将混凝土从传统的施工现场分离出来,是工程施工技术的一种革新,同时也是混凝土发展的一种必然趋势。随着现在商品混凝土的大范围应用,这就要求混凝土在经过了较长时间的运输和停放以后仍然能够维持比较高的坍落度。在施工过程中,坍落度的损失很容易造成堵泵和施工困难以及拆模以后混凝土的蜂窝麻面现象,甚至产生工程质量问题。这些都严重地影响到了商品混凝土的泵送距离和泵送高度以及商品混凝土搅拌站的供应半径。 2混凝土坍落度经时损失机理 通常认为,坍落度损失的机理在于几个方面: (1)因为水泥水化反应的发生,同时还有一部分游离水吸附于水化产物表面,另外一些游离水不断蒸发,造成混凝土拌合物中的游离水逐渐减少,再加上分子作用力和外力等作用促进了水化产物的凝聚。 (2)对于掺高效减水剂的混凝土,随着时间的延长,减水剂的减水作用降低,这也造成混凝土坍落度的损失。因为高效减水剂吸附在水化产物表面,部分减水剂被水化产物包裹,还有部分减水剂随着水化反应的发生而被消耗掉,因此造成水泥颗粒之间的斥力减小,水泥

颗粒絮凝,从而使混凝土坍落度变小。 (3)由于水泥的水化作用,水泥在水化过程中会产生大量的Ca(OH)2以及C-S-H等水化产物,这会增加体系的黏度,从而使混凝土的坍落度经时损失增大。实际工程中,减水剂等外加剂的广泛应用会增强水泥的分散作用,使水泥颗粒的反应面积增大,因此,掺混凝土外加剂特别是减水剂的混凝土坍落度经时损失会更大。同时减水剂中大量的极性集团与一些金属离子产生络合物,造成液相中的离子浓度降低,加速了水泥水化初期的速度,使得整体混凝土体系的黏度增加,导致混凝土坍落度的经时损失。 3影响混凝土坍落度经时损失的因素分析 3.1胶凝材料 3.1.1水泥细度 水泥水化的过程是水泥熟料与水的反应过程,在这一过程中,水泥熟料与水不断反应生成水化物,使得液相减少。温汉美的研究表明,在水泥水化过程中,3~30μm的熟料颗粒主要起强度增长作用,而大于60μm的颗粒则对强度不起作用,小于10μm的颗粒主要起早强作用,3μm以下的颗粒只起早强作用。小于10μm的颗粒需水量大。流变性好的水泥10μm以下颗粒应少于10%。颗粒越细,细颗粒越多,需水量越大,早期强度越高,这必将加剧坍损。同时由于水化反应的进行,固相增多,固体颗粒之间相互联结,从而导致混凝土的坍落度损失。因此,混凝土的流动性与水泥的水化过程有着重要的关系:水泥的水化速度越快,混凝土的坍落度损失也就越大。在相同条件下,

混凝土坍落度实验报告

混凝土 试验单位:云南工商学院建筑工程学院 试验班级:2012级土木工程5班 组号:第1组 组长:金端斌 成员:金端斌,陈飞,马伊帅,唐国银,柳帅,熊安林,李雄伟,饶启彬。 指导老师:肖松涛 一.混凝土坍落度。 混凝土坍落度主要是指混凝土的塑化性能和可泵性能,影响混凝土坍落度主要有级配变化、含水量、衡器的称量偏差,外加剂的用量容易被忽视的还有水泥的温度几个方面。坍落度是指混凝土的和易性,具体来说就是保证施工的正常进行,其中包括混凝土的保水性,流动性和粘聚性。 和易性是指混凝土是否易于施工操作和均匀密实的性能,是一个很综合的性能其中包含流动性、粘聚性和保水性。影响和易性主要有用水量、水灰比、砂率以及包括水泥品种、骨料条件、时间和温度、外加剂等几个方面。 混凝土的坍落度,应根据建筑物的结构断面、钢筋含量、运输距离、浇注方法、运输方式、振捣能力和气候等条件决定,在选定配合比时应综合考虑,并宜采用较小的坍落度。 二.实验目的。 混凝土由各组成材料按一定比例配合、搅拌而成。混凝土拌和物的和易性是一项综合性的指标,它包括流动性、粘聚性和保水性等三方面的性能。由于它的内涵较为复杂,根据我国的现行标准规定,采用“坍落度”和“维脖稠度”来测定混凝土拌和物的流动性。这里先进行“坍落度”试验。 试验设备和器材:坍落度筒和弹头型捣棒、铁锹、卷尺、镘刀、磅称等。 适用范围:适用于坍落度大于10mm,集料公称最大粒径不大于31.5mm水泥混凝土的坍落度。 三.试验步骤: 1.先用湿布抹湿坍落筒,铁锹,拌和板等用具。坍落筒为上口直径100mm,下口直径200mm,高300mm,呈喇叭状。 2.称量材料:

混凝土坍落度及其影响因素

混凝土坍落度及其影响因素 一、基本概念 坍落度是指混凝土的和易性,具体来说就是保证施工的正常进行,其中包括混凝土的保水性,流动性和粘聚性。 和易性是指混凝土是否易于施工操作和均匀密实的性能,是一个很综合的性能其中包含流动性、粘聚性和保水性。影响和易性主要有用水量、水灰比、砂率以及包括水泥品种、骨料条件、时间和温度、外加剂等几个方面。 坍落度的测试方法:用一个上口100mm、下口200mm、高300mm喇叭状的塌落度桶,灌入混凝土后捣实,然后拔起桶,混凝土因自重产生塌落现象,用桶高(300mm)减去塌落后混凝土最高点的高度,称为塌落度.如果差值为10mm,则塌落度为10。 混凝土的坍落度,应根据建筑物的结构断面、钢筋含量、运输距离、浇注方法、运输方式、振捣能力和气候等

条件决定,在选定配合比时应综合考虑,并宜采用较小的坍落度。 影响混凝土坍落度的因素 混凝土原材料影响: 沙河水洗砂由于存料时间和批次不同,含水量不稳定,且通过试验确定含水量时局限性较大,粗骨料一般情况含水量比较稳定,但有时也会变化,原因是骨料厂多为开敞式存放,在雨后骨料含水量发生变化,拌制混凝土时骨料吸水率不同会造成混凝土坍落度不同程度的偏差。 机械和搅拌时间影响: 混凝土搅拌时间长会造成骨料吸水量加大,使混凝土熟料中的自由水份减少,造成混凝土坍落度的损失。 混凝土搅拌机械计量系统误差也会造成混凝土坍落度损失,混凝土配和比是通过精确计算并经过多次试配调整得出来的,任何一种材料由于计量不准确,都会使单位内

材料比表面积发生变化,材料比表面积变化越大,坍落度经时损失也越大。 混凝土运输机械的影响: 混凝土搅拌运输车运输距离和时间越长,混凝土熟料由于发生化学反应、水份蒸发、骨料吸水等多方面原因,自由水份减少,造成混凝土坍落度经时损失,混凝土皮带运输机、串筒还会造成砂浆损失,这也是造成混凝土坍落度损失的重要原因。 混凝土浇筑速度的影响 混凝土浇筑过程中,混凝土熟料到达仓面内的时间越长,会因为发生化学反应、水份蒸发、骨料吸水等多方面原因使混凝土熟料中的自由水份迅速减少造成坍落度损失,特别是混凝土暴露在皮带运输机上时,表面与外界环境接触面积较大,水份蒸发迅速,对混凝土坍落度损失的影响最大。根据实际测定当气温在25℃左右时混凝土熟料现场坍落度在半小时内损失可达4cm。

混凝土坍落度试验

混凝土坍落度试验 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

混凝土坍落度试验 砼坍落度试验 1、试验步骤 (1)每次测定前,用湿布湿润坍落度筒、拌和钢板及其他用具,并把筒放在不吸水的刚性水平底板上,然后用脚踩住2个脚踏板,使坍落度筒在装料时保持位置固定。 (2)取拌好的混凝土拌和物15L,用小铲分3层均匀地装入筒内,使捣实后每层高度为筒高的1/3左右。每层用捣棒沿螺旋方向在截面上由外向中心均匀插捣25次。插捣筒边混凝土时,捣棒可以稍稍倾斜。插捣底层时,捣棒应贯穿整个深度,插捣第二层和顶层时,捣棒应插透本层至下一层的表面。浇灌顶层时,混凝土应灌到高出筒口,插捣过程中,如混凝土沉落到低于筒口,则应随时加料,顶层插捣完毕后,刮去多余混凝土,并用镘刀抹平。 (3)清除筒边底板上的混凝土后,垂直平稳地提起坍落度筒。坍落度筒的提离过程应在5~10s内完成。从开始装料到提起坍落度筒的整个过程应不间断地进行,并应150s内完成。 2、试验结果确定与处理 ( 1)提起坍落度筒后,立即量测筒高与坍落后混凝土试体最高点之间的高度差,即为该混凝土拌和物的坍落度值。混凝土拌和物坍落度以mm为单位,结果精确至1mm。(2)坍落度筒提离后,如混凝土发生崩坍或一边剪坏现象,则应重新取样再测定。如第二次试验仍出现上述现象,则表示该混凝土拌和物和易性不好,应予记录备查。(3)观察坍落后的混凝土试体的粘聚性和保水性。粘聚性的检查方法是用捣棒在已坍落的混凝土锥体侧面轻轻敲打,此时,如果锥体逐渐下沉,则表示粘聚性良好,如果锥体倒塌、部分崩裂或出现离析现象,则表示粘聚性不好。保水性以混凝土拌和物中稀浆析出的程度来评定。如坍落度筒提起后无稀浆或仅有少量稀浆自底部析出,则表示此混凝土拌和物保水性良好;坍落度筒提起后如有较多的稀浆从底部析出且锥体部分的混凝土也因失浆而骨料外露,则表明此混凝土拌和物的保水性能不好。(4)和易性的调整 1)当坍落度低于设计要求时,可在保持水灰比不变的前提下,适当增加水泥浆量。 2)当坍落度高于设计要求时,可在保持砂率不变的条件下,增加集料的用量。 3)当出现含砂量不足,粘聚性、保水性不良时,可适当增加砂率,反之减小砂率。 混凝土坍落度试验 一、实验目的 混凝土由各组成材料按一定比例配合、搅拌而成。混凝土拌和物的和易性是一项综合性的指标,它包括流动性、粘聚性和保水性等三方面的性能。由于它的内涵较为复杂,根据我国的现行标准规定,采用“坍落度”和“维脖稠度”来测定混凝土拌和物的流动性。这里先进行“坍落度”试验。(本试验适用于坍落度值不小于10mm,骨料粒径不大于40mm混凝土伴和物)。

混凝土坍落度及其经时损失的控制

混凝土损失原因及常用解决方法 一、影响混凝土坍落度及其损失的因素 1.1 单位体积用水量 单位体积用水量是指在单位体积水泥混凝土中,所加入水的质量,它是影响水泥混凝土工作性的最主要的因素。新拌混凝土的流动性主要是依靠集料及水泥颗粒表面吸附一层水膜,从而使颗粒间比较润滑。而粘聚性也主要是依靠水的表面张力作用,如用水量过少,则水膜较薄,润滑效果较差;而用水量过多,毛细孔被水分填满,表面张力的作用减小,混凝土的粘聚性变差,易泌水。因此用水量的多少直接影响着水泥混凝土的工作性,而且大量的试验表明,当粗集料和细集料的种类和比例确定后,在一定的水灰比范围内(W/C=0.4~0.8),水泥混凝土的坍落度主要取决于单位体积用水量,而受其他因素的影响较小,这一规律称为固定加水量定则,它为水泥混凝土的配合比设计提供了极大的方便。 1.2 水泥特性 水泥的品种、细度、矿物组成以及混合材料的掺量等都会影响需水量。由于不同品种的水泥达到标准稠度的需水量不同,所以不同品种水泥配制成的混凝土拌合物具有不同的和易性。通常普通水泥的混凝土拌合物比矿渣水泥和火山灰水泥的工作性好。矿渣水泥拌合物的流动性虽大,但粘聚性差,易泌水离析。火山灰水泥流动性小,但粘聚性最好。此外,水泥细度对混凝土拌合物的工作性亦有影响,适当提高水泥的细度可改善混凝土拌合物的粘聚性和保水性,减少泌水、离析现象。 水泥对混凝土坍落度经时损失的影响主要体现在水泥细度和化学参数两个方面。水泥的比表面积越小,颗粒形状越接近球形,混凝土的和易性将越好,坍落度经时损失也越小。影响混凝土坍落度损失的水泥化学参数中,C3A和C4AF的含量、C3A的形态、硫酸钙含量及形态、碱含量等是影响混凝土坍落度经时损失的主要因素。 水泥的矿物组成不同会影响减水剂的坍落度损失,因为水泥中不同的矿物组成成分对减水剂的吸附能力有大有小。水泥中几种主要矿物对减水剂的吸附能力有大有小。水泥中几种主要矿物对减水剂(表面活性剂类外加剂)吸附能力顺序如下:

混凝土坍落度平行检验记录

混凝土坍落度平行检验记录 1、检验方法:用坍落度检测器和钢尺量测检查。 2、检验数量:施工单位应对每车预拌混凝土坍落度进行检查,监理单位至少每10车随机抽取1次平行检验,且不少于1次。 3、检验时间:混凝土搅拌车到达浇筑现场,浇筑前。 4、本表可用于施工单位自检或监理单位平行检验混凝土坍落度使用。用于施工单位自检时,监理单位可不签字;用于监理平行检验时,检查人由监理员签字。 5、现场检测坍落度与厂家配合比坍落度差距较大时应及时通知混凝土厂家调整。

钢筋外观质量平行检验记录

1、钢筋进场后,外观质量检测应在监理单位的见证下进行。除本表格外,检测结果同时应在监理见证记录中予以体现。 2、检验频率:以同牌号、同炉号、同规格、同交货状态的钢筋,每60t 为一批,60t 的按每30t 一批,不足30t 以一批计,每批抽检1次。 3、钢筋重量偏差的测定: (1)测量钢筋重量偏差时,试样应从不同根钢筋上截取,数量不少于5支。每支试验长度不小于500mm 。长度应逐支测量,精确到1mm 。测量试样总重量时,应精确到不大于总重量的1%。 (2)用钢丝刷清除钢筋试样表面杂物后,称取试样总重量。用下式计算钢筋实际重量和理论重量的偏差(%): 100理论重量 试样总长度) 理论重量试样总长度(试样实际总重量)%重量偏差(???-= 4、外观质量:钢筋应平直、无损伤,钢筋表面不得有裂纹、起皮、油污、颗粒状或片状锈蚀等。根据检测结果在相应栏内填“有”或“无”,平直栏直接填“平直”或“弯曲”。 5、产品标牌上的标识炉批号应与质量保证书上一致,并做好记录。当不一致时,应查明材料来源,否则应退货。 6、当钢筋表面存在裂纹、起皮应退货;若存在损伤、不平直应剔出退货;存在油污应清理干净;存在颗粒状或片状老锈应除尽,若影响截面尺寸,应降级处理。 7、外观检查合格后,应及时见证取样送有资质的检测机构进行力学性能检测,检测合格后方可使用。 (3)钢筋理论重量可见下表:

塌落度

坍落度主要是指混凝土的塑化性能和可泵性能,影响混凝土坍落度主要有级配变化、含水量、横器的称量偏差,外加剂的用量容易被忽视的还有水泥的温度几个方面。 坍落度是指混凝土的和易性,具体来说就是保证施工的正常进行,其中包括混凝土的保水性,流动性和粘聚性。 和易性是指混凝土是否易于施工操作和均匀密实的性能,是一个很综合的性能其中包含流动性、粘聚性和保水性。影响和易性主要有用水量、水灰比、砂率以及包括水泥品种、骨料条件、时间和温度、外加剂等几个方面。 坍落度的测试方法:用一个上口100mm、下口200mm、高300mm喇叭状的塌落度桶,灌入混凝土后捣实,然后拔起桶,混凝土因自重产生塌落现象,用桶高(300mm)减去塌落后混凝土最高点的高度,称为塌落度.如果差值为10mm,则塌落度为10。 混凝土的坍落度,应根据建筑物的结构断面、钢筋含量、运输距离、浇注方法、运输方式、振捣能力和气候等条件决定,在选定配合比时应综合考虑,并宜采用较小的坍落度。 编辑本段影响混凝土坍落度之生产施工方面 混凝土原材料影响 沙河水洗砂由于存料时间和批次不同,含水量不稳定,且通过试验确定含水量时局限性较大,粗骨料一般情况含水量比较稳定,但有时也会变化,原因是骨料厂多为开敞式存放,在雨后骨料含水量发生变化,拌制混凝土时骨料吸水率不同会造成混凝土坍落度不同程度的偏差。 机械和搅拌时间影响 混凝土搅拌时间长会造成骨料吸水量加大,使混凝土熟料中的自由水份减少,

造成混凝土坍落度的损失。 混凝土搅拌机械计量系统误差也会造成混凝土坍落度损失,混凝土配和比是通过精确计算并经过多次试配调整得出来的,任何一种材料由于计量不准确,都会使单位内材料比表面积发生变化,材料比表面积变化越大,坍落度经时损失也越大。 混凝土运输机械的影响 混凝土搅拌运输车运输距离和时间越长,混凝土熟料由于发生化学反应、水份蒸发、骨料吸水等多方面原因,自由水份减少,造成混凝土坍落度经时损失,混凝土皮带运输机、串筒还会造成砂浆损失,这也是造成混凝土坍落度损失的重要原因。 混凝土浇筑速度的影响 混凝土浇筑过程中,混凝土熟料到达仓面内的时间越长,会因为发生化学反应、水份蒸发、骨料吸水等多方面原因使混凝土熟料中的自由水份迅速减少造成坍落度损失,特别是混凝土暴露在皮带运输机上时,表面与外界环境接触面积较大,水份蒸发迅速,对混凝土坍落度损失的影响最大。根据实际测定当气温在25℃左右时混凝土熟料现场坍落度在半小时内损失可达4cm。 混凝土浇筑时间的影响 混凝土浇筑时间不同,也是造成混凝土坍落度损失的一个重要原因。早上和晚上影响较小,中午和下午影响较大,早上和晚上气温低,水份蒸发慢,中午和下午气温高水份蒸发快,水份损失越快混凝土坍落度损失越大,混凝土的流动性、粘聚性等越差,质量越难保证 .

混凝土塌落度试验

水泥混凝土试块成型及坍落度试验 试验报告 一、试验目的与适用范围 采用定量测定流动性,直观经验判定粘聚性和保水性的原则,来判定混凝土拌合物的和易性。定量测定流动性的方法有坍落度法和维勃稠度法两种。坍落度法适用于坍落度值不小于10mm 的塑性混凝土拌合物;维勃稠度法适用于维勃稠度在5 ~ 30之间的干硬性混凝土拌合物。要求骨料的最大粒径均不得大于40mm。本次试验选用坍落度法。 二、主要仪器设备 (1)坍落度筒:截头圆锥形,由薄钢板或其它金属板制成。 (2)捣棒:端部应磨圆,直径16mm,长度650mm。 (3)其他:装料漏斗、小铁铲、钢直尺、抹刀等。 三、试验步骤 (1)湿润坍落度筒及其他用具,并把筒放在不吸水的刚性水平底板上,然后用脚踩住两边的踏脚板,使坍落度筒在装料时保持位置固定。 (2)将混凝土拌合物试样用小铲分三层均匀地装入坍落度筒内,使捣实后每层高度为筒高的三分之一左右。每层用捣棒插捣25 次,插捣应沿螺旋方向由外向中心进行,每次插捣应在截面上均匀分布。插捣筒边混凝土时,捣棒可以稍稍倾斜;插捣底层时,捣棒应贯穿整个深度;插捣第二层或顶层时,插捣应插透本层至下一层表面。浇灌顶层时,混凝土应高出筒口。插捣过程中,如混凝土沉落到低于筒口,则应随时添加。顶层插捣完后,刮去多余的混凝土,并用抹刀抹平。 (3)清除筒边底板上的混凝土后,垂直平稳地提起坍落度筒,应在5-10s 内完成;从开始装料至提起坍落度筒的整个过程应不间断地进行,并应在150s 内完成。 (4)提起坍落度筒后,量测筒高与坍落后混凝土拌合物试体最高点之间的高度差,即为该混凝土拌合物的坍落度值(以毫米为单位,读数精确至5mm)。如混凝土发生崩坍或一边剪坏的现象,则应重新进行测定。如第二次试验仍出现上述现象,则表示该混凝土和易性不好,应予以记录备查。 (5)测定坍落度后,观察拌合物的下述性质,并记录。粘聚性:用捣棒在已坍落的混凝土锥体侧面轻轻敲打,如果锥体逐渐下沉,表示粘聚性良好;如果锥体坍塌、部分崩裂或出现离析现象,表示粘聚性不好。保水性:坍落度筒提起后如有较多的稀浆从底部析出,锥体部分的混凝土也因失浆而骨料外露,则表明保水性不好;如无稀浆或只有少量稀浆自底部析出,则表明保水性良好。 四、试验结果 水泥混凝土坍落度检测表:试验次数坍落度(mm) 保水性粘聚性 1 30.0 良好良好 2 29.0 良好良好3 30.0 良好良好平均值29.7 良好良好 五、试验结论经试验得,该混凝土塌落度为30mm 介于10mm 到40mm 之间,符合要求;而且,该混凝土保水性、粘聚性均为良好。

相关文档
最新文档