指数平滑法
指数平滑法

指数平滑法,也叫指数移动平均法,是移动平均预测法加以发展的一种特殊加权移动平均预测法。
一次指数平滑法是以本期的实际值和一次指数平滑预测值的加权平均作为下一期的市场现象预测值的方法。
一次指数平滑公式的实际意义是,被研究市场现象某一期的预测值,等于它前一期的一次指数平滑预测值,加上以平滑系数调整后的市场现象前一期的观察值与一次平滑值的离差。
模型平滑指数的确定指数平滑法是以首项系数为,公比为的等比数列的和为权数的加权平均法。
在计算过程中,越接近预测期的权数越大,越远离的权数越小.的取值在0到1之间,在一次预测中,同时选择几个值进行预测,并分别计算预测误差,最后选择误差小的初始值的确定一般将定义为应用某企业的历史销售资料如下,用一次指数平滑法预测2009年的销售额(1)确定平滑指数,选定0.3、0.5、0.8(2)确定第一个平滑值,即1997年的一次指数平滑值(3)分别计算不同平滑系数下各年的预测值以0.3的平滑系数为例,预测2009年销售额趋势预测法原理趋势预测法,也叫趋势外推预测,就是利用时间序列所具有的直线或曲线趋势,通过建立预测模型进行预测的方法。
模型直线趋势预测法直线方程Y=a+bXX为自变量,为按照自然数顺序排列的时间序数Y为因变量,为预测对象按照时间排列的数据趋势外推法,就是通过预测对象和时间的对应关系,用拟合方程的方法寻找参数,建立预测模型进行预测。
应用已知某企业某种产品1993年-2006年的销售数据,请用趋势外推预测法预测企业2007年的销售量。
一元线性回归模型例题进行预测2008年固定投资为298亿元,预计国内生产总值为市场调查方案范文分享(一)调研背景近年来,宝洁公司凭借其强大的品牌运作能力以及资金实力,在洗发水市场牢牢地坐稳了第一把交椅。
但是随着竞争加剧,局势慢慢起了变化,联合利华强势跟进,夏士莲、力士等多个洗发水品牌从宝洁手中夺走了不少消费者。
花王旗下品牌奥妮和舒蕾占据了中端市场,而低端的市场则归属了拉芳、亮庄、蒂花之秀、好迪等后起之秀。
指数平滑法

(2)指数平滑法指数平滑法是从移动平均法发展而来的,它是以预测期的上期实际值和预测值为基数,分别给两者不同的权数,计算出加权平均数作为预测期的预测值的方法。
其计算公式如下:式中:Yt--预测期的预测值;Yt-1--预测期的前期预测值;Xt-1--预测期的前期实际值;a--平滑系数(0≤a≤1)。
因为从这个公式可以看出,只要有上期的预测值Yt-1和上期的实际值Xt-1,就可以求得预测期的预测值Yt。
故同理有:将 Yt-1和Yt-2代入Yt,就可以得到:由此可见,指数平滑法实质上就是一种加权移动平均法。
在计算时分别以a、a(1-a)、a(1-a)2……对过去各期的实际值进行了加权,权数反映各期实际值对预测值的不同影响。
近期的影响较大,加权数也较大;远期的影响较小,加权数也较小。
由于加权数是指数形式,因此这种方法被称作指数平滑法。
在指数平滑法中,平滑系数a是很重要的参数,它通常是根据预测者的经验确定的。
一般来讲,a值越大,则近期实际值的趋向性变动的影响也越大;a值越小,则近期实际值的趋向性变动的影响也越小。
a一般在0.01至0.30之间,合适的a值要根据过去的数据经过试算和调整求得。
例如,某企业本季度销售额预测值为6000万元,实际销售额为6500万元,a假定=0.1,则下季度销售额的预测值为:=0.1×6500+(1-0.1)×6000=6050万元(3)趋势延伸法趋势延伸法就是根据时间序列数据,运用数学的最小二乘法求得变动趋势线,并使其延伸,借以预测未来的发展趋势的方法,因而又叫最小二乘法。
趋势延伸法适用于长期预测,常用的主要有直线趋势法和曲线趋势法。
这里主要介绍直线趋势法,曲线趋势法请参考有关教材书籍。
直线趋势法适用于历史数据随时间的发展变化趋势近于直线的情况。
其方程式为:式中:Y--预测理论值;X--时间序数;a、b--待定系数。
根据最小二乘法原理,当∑X=0时,有:例题:某企业1999年1-5月份的销售额资料为:试预测该企业6月份的销售额。
信息分析方法__指数平滑法

第四节 指数平滑法指数平滑法是在移动平均法基础上发展而来的一种时间序列分析预测法,它是通过计算指数平滑值,配合一定的时间序列预测模型,对现象的未来进行预测。
它既可用于市场趋势变动预测,也可用于市场季节变动预测。
在市场趋势变动预测中,根据平滑次数不同,指数平滑法又可分为一次指数平滑法、二次指数平滑法、三次指数平滑法。
一、 一次指数平滑法一次指数平滑法,是指根据本期观察和上期一次指数平滑值,计算其加权平均值,并将其作为下期预测值的方法。
它仅适用于各期数据大体呈水平趋势变动的时间序列的分析预测,并且仅能向下作一期预测。
(一) 平滑公式和预测模型设时间序列各期观察值为Y 1、Y 2,…,Y n ,则一次指数平滑公式为(1)1-t t (1)t)S -(1Y S αα+= (7-16)式中:(1)tS 为第t 期的一次指数平滑值;α为平滑系数,且0<α<1;Y t 为第t 期的观察值。
将第t 期的一次指数平滑值(1)t S 作为第t+1期的预测值1t Y ˆ+,即 )1(1ˆtt S Y =+ (7-17) 为进一步说明指数平滑法的实质,现将(7-16)式展开。
由于(1)1-t t (1)t)S -(1Y S αα+=(1)2-t 1-t (1)1-t )S -(1Y S αα+=… …(1)01(1)1)S -(1Y S αα+=所以 (1)1-t t 1t )S -(1Y Y ˆαα+=+ ])S -(1Y )[-(1Y (1)2-t 1-t t αααα++=(1)0t 11-t 1-t t S )-(1Y )-(1)Y -(1Y αααααα++++=(1)0t 1j -t j S )-(1Y )-(1ααα++=∑-=t j (7-18)由于0<α<1,当t →∞时,(1-α)t →0,于是将(7-27)式改写为∑∞=+=0j -t j 1t Y )-(1Y ˆj αα (7-19) 由于∑-==1j1)-(1t j αα,各期权数由近及远依指数规律变化,且又具有平滑数据功能,指数平滑法由此而得名。
指数平滑法

指数平滑法的基本公式
指数平滑法的基本公式是:
St · yt (1 )St 1
式中, St--时间t的平滑值; yt--时间t的实际值; St − 1--时间t-1的平滑值; α--平滑常数,其取值范围为[0,1]
由该公式可知: 1.St是yt和 St − 1的加权算数平均数,随着 α取值的 大小变化,决定yt和 St − 1对St的影响程度,当α 取1时,St = yt;当 取0时,St = St − 1。 2.St具有逐期追溯性质,可探源至St − t + 1为止,包 括全部数据。其过程中,平滑常数以指数形式递 减,故称之为指数平滑法。指数平滑常数取值至 关重要。平滑常数决定了平滑水平以及对预测值 与实际结果之间差异的响应速度。
S
(1) t
(1 ) yt j (1 ) S
j t j 0
ቤተ መጻሕፍቲ ባይዱ
t 1
(1) 0
由于0< <1,当 t→∞时, (1 )t→0,于是上述公 变为:
S
(1) t
(1 ) j yt j
j 0
由此可见 St(1) 实际上是 yt , yt i ,..., yt j ... 的加权平均。 (1 ), 加权系数分别为 , (1 )2 ,…,是按几何级 数衰减的,愈近的数据,权数愈大,愈远的数据, 权数愈小,且权数之和等于1,即
指数平滑

指数平滑法一、指数平滑法简介指数平滑法是布朗(Robert G..Brown)所提出,布朗(Robert G..Brown)认为时间序列的态势具有稳定性或规则性,所以时间序列可被合理地顺势推延;他认为最近的过去态势,在某种程度上会持续到最近的未来,所以将较大的权数放在最近的资料。
指数平滑法是生产预测中常用的一种方法。
也用于中短期经济发展趋势预测,所有预测方法中,指数平滑是用得最多的一种。
简单的全期平均法是对时间数列的过去数据一个不漏地全部加以同等利用;移动平均法则不考虑较远期的数据,并在加权移动平均法中给予近期资料更大的权重;而指数平滑法则兼容了全期平均和移动平均所长,不舍弃过去的数据,但是仅给予逐渐减弱的影响程度,即随着数据的远离,赋予逐渐收敛为零的权数。
也就是说指数平滑法是在移动平均法基础上发展起来的一种时间序列预测分析法,它是通过计算指数平滑值,配合一定的时间序列预测模型对现象的未来进行预测。
其原理是任一期的指数平滑值都是本期实际观察值与前一期指数平滑值的加权平均。
二、指数平滑法的基本公式指数平滑法的基本公式是:式中,∙S t--时间t的平滑值;∙y t--时间t的实际值;∙S t− 1--时间t-1的平滑值;∙a--平滑常数,其取值范围为[0,1];由该公式可知:1.S t是y t和S t−1的加权算术平均数,随着a取值大小变化,决定y t和S t−1对S t的影响程度,当a取1时,S t = y t;当a取0时,S t = S t− 1。
2.S t具有逐期追溯性质,可探源至S t−t+ 1为止,包括全部数据。
其过程中,平滑常数以指数形式递减,故称之为指数平滑法。
指数平滑常数取值至关重要。
平滑常数决定了平滑水平以及对预测值与实际结果之间差异的响应速度。
平滑常数a越接近于1,远期实际值对本期平滑值影响程度的下降越迅速;平滑常数a 越接近于 0,远期实际值对本期平滑值影响程度的下降越缓慢。
由此,当时间数列相对平稳时,可取较大的a;当时间数列波动较大时,应取较小的a,以不忽略远期实际值的影响。
指数平滑法计算

指数平滑法计算
指数平滑法是一种基于时间序列数据的预测方法,应用广泛。
它的核心思想是将过去一定的时间段内的数据进行加权平均,并给较近的数据以较大的权重,以此来预测未来的数据趋势。
具体来说,指数平滑法的计算公式为:
Ft+1 = αYt + (1-α)Ft
其中,Ft+1表示未来时期的预测值,Yt表示当前时期的实际观测值,Ft表示上一时期的预测值,α为平滑系数,它的取值范围为0~1之间。
平滑系数越大,近期数据的权重越大,预测值越敏感;反之,平滑系数越小,历史数据的权重越大,预测值越平滑。
在实际运用中,可以通过调整平滑系数来不断优化预测效果。
同时,指数平滑法也可以结合其他的时间序列预测方法,如季节性调整、趋势线拟合等,来得到更加准确的预测结果。
总之,指数平滑法是一种简单而有效的预测方法,对于多种领域的预测问题都具有一定的应用价值。
- 1 -。
指数平滑法计算公式

指数平滑法计算公式
(最新版)
目录
1.指数平滑法的概念
2.指数平滑法计算公式的推导
3.指数平滑法计算公式的应用
4.指数平滑法的优缺点
正文
1.指数平滑法的概念
指数平滑法(Exponential Smoothing)是一种时间序列预测方法,
主要用于处理具有线性趋势和季节性效应的时间序列数据。
它通过计算历史数据的加权平均值来预测未来趋势,权重随着时间的推移而呈指数递减。
2.指数平滑法计算公式的推导
设 N 表示观测期的数量,t 表示当前时间,T 表示观测期长度,y_t 表示第 t 期的观测值,y_t-1, y_t-2,..., y_1 表示前 t-1 期的观测值。
指数平滑法的预测公式为:
F_t = α * y_t + (1 - α) * ∑[β_j * y_(t-j)]
其中,F_t 表示第 t 期的预测值,α表示平滑系数,β_j 表示季节性权重,j 表示季节长度。
3.指数平滑法计算公式的应用
指数平滑法适用于处理具有线性趋势和季节性效应的时间序列数据。
在实际应用中,首先需要确定时间序列的线性趋势和季节性效应,然后根据观测期的数量、观测期长度、季节长度等参数计算平滑系数和季节性权重,最后代入公式进行预测。
4.指数平滑法的优缺点
优点:
- 适用于处理具有线性趋势和季节性效应的时间序列数据;- 计算简便,易于实现;
- 能较好地处理数据中的长期趋势和季节性变化。
指数平滑法

指数平滑法指数平滑法(Exponential Smoothing,ES)什么是指数平滑法指数平滑法是布朗(Robert G..Brown)所提出,布朗(Robert G..Brown)认为时间序列的态势具有稳定性或规则性,所以时间序列可被合理地顺势推延;他认为最近的过去态势,在某种程度上会持续到最近的未来,所以将较大的权数放在最近的资料。
指数平滑法是生产预测中常用的一种方法。
也用于中短期经济发展趋势预测,所有预测方法中,指数平滑是用得最多的一种。
简单的全期平均法是对时间数列的过去数据一个不漏地全部加以同等利用;移动平均法则不考虑较远期的数据,并在加权移动平均法中给予近期资料更大的权重;而指数平滑法则兼容了全期平均和移动平均所长,不舍弃过去的数据,但是仅给予逐渐减弱的影响程度,即随着数据的远离,赋予逐渐收敛为零的权数。
也就是说指数平滑法是在移动平均法基础上发展起来的一种时间序列分析预测法,它是通过计算指数平滑值,配合一定的时间序列预测模型对现象的未来进行预测。
其原理是任一期的指数平滑值都是本期实际观察值与前一期指数平滑值的加权平均。
[编辑]指数平滑法的基本公式指数平滑法的基本公式是:式中,•S t--时间t的平滑值;•y t--时间t的实际值;•S t− 1--时间t-1的平滑值;•a--平滑常数,其取值范围为[0,1];由该公式可知:1.St是y t和S t− 1的加权算数平均数,随着a取值的大小变化,决定y t和S t− 1对S t的影响程度,当a取1时,St = y t;当a取0时,S t = S t− 1。
2.St具有逐期追溯性质,可探源至S t− t + 1为止,包括全部数据。
其过程中,平滑常数以指数形式递减,故称之为指数平滑法。
指数平滑常数取值至关重要。
平滑常数决定了平滑水平以及对预测值与实际结果之间差异的响应速度。
平滑常数a越接近于1,远期实际值对本期平滑值影响程度的下降越迅速;平滑常数a越接近于0,远期实际值对本期平滑值影响程度的下降越缓慢。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
指数平滑法是生产预测中常用的一种方法。
所有预测方法中,简单的全期平均法是对时间数列的过去数据一个不漏地全部加以同等利用;移动平均法则不考虑较远期的数据,并在加权移动平均法中给予近期资料更大的权重;而指数平滑法则兼容了全期平均和移动平均所长,不舍弃过去的数据,但是仅给予逐渐减弱的影响程度,即随着数据的远离,赋予逐渐收敛为零的权数。
下面将详细介绍指数平滑法这种方法。
指数平滑法的基本公式是:
St=ayt+(1-a)St-1
式中,St--时间t的平滑值;
yt--时间t的实际值;
St-1--时间t-1的实际值;
a--平滑常数,其取值范围为[0,1];
由该公式可知:
1.St是yt和St-1的加权算数平均数,随着a取值的大小变化,决定yt和St-1对St的影响程度,当a取1时,St= yt;当a取0时,St= St-1。
2.St具有逐期追溯性质,可探源至St-t+1为止,包括全部数据。
其过程中,平滑常数以指数形式递减,故称之为指数平滑法。
指数平滑常数取值至关重要。
平滑常数决定了平滑水平以及对预测值与实际结果之间差异的响应速度。
平滑常数a越接近于1,远期实际值对本期平滑值的下降越迅速;平滑常数a越接近于0,远期实际值对本期平滑值影响程度的下降越缓慢。
由此,当时间数列相对平稳时,可取较大的a;当时间数列波动较大时,应取较小的a,以不忽略远期实际值的影响。
生产预测中,平滑常数的值取决于产品本身和管理者对良好响应率内涵的理解。
3.尽管St包含有全期数据的影响,但实际计算时,仅需要两个数值,即yt和St-1,再加上一个常数a,这就使指数滑动平均具逐期递推性质,从而给预测带来了极大的方便。
4.根据公式S1=ay1+(1-a)S0,当欲用指数平滑法时才开始收集数据,则不存在y0。
无从产生S0,自然无法据指数平滑公式求出S1,指数平滑法定义S1为初始值。
初始值的确定也是指数平滑过程的一个重要条件。
如果能够找到y1以前的历史资料,那么,初始值S1的确定是不成问题的。
数据较少时可用全期平均、移动平均法;数据较多时,可用最小二乘法。
但不能使用指数平滑法本身确定初始值,因为数据必会枯竭。
如果仅有从y1开始的数据,那么确定初始值的方法有:1)取S1等于y1;2)待积累若干数据后,取S1等于前面若干数据的简单算术平均数,如:S1=(y1+ y2+y3)/3等等。