大学数学怎么学-学好大学数学的8个方法.doc

合集下载

如何学好大学数学

如何学好大学数学

学好大学数学需要一定的方法和策略。

以下是一些建议,可以帮助您学好大学数学:1.打好数学基础:确保自己对初中和高中数学的基础知识掌握扎实。

如果有必要,回顾和巩固基础概念和技能,以便更好地理解和应用大学数学内容。

2.阅读教材和参考书:认真阅读教材,并结合课堂讲解进行学习。

此外,使用一些优秀的参考书籍,以获取更多的解题技巧和应用示例。

3.参加课堂并积极提问:课堂是学习的重要环节,积极参与课堂讨论和提问问题。

这有助于加深理解,并解决自己的困惑。

4.练习和巩固:数学需要不断的练习和巩固,通过解题提高问题解决能力。

根据教材和习题集,逐步增加难度,并针对自己的薄弱点进行有针对性的练习。

5.掌握解题技巧:学会分析问题、找出关键信息、选择适当的解题方法和策略。

学习不同类型问题的解题技巧,包括代数运算、几何证明、数列求和等。

6.寻找学习伙伴和资源:与同学一起学习和讨论数学问题,相互激励和帮助。

利用互联网资源,例如在线课程、视频教程、数学论坛等,扩展自己的数学学习资料。

7.寻求辅导和指导:如果遇到困难和疑惑,不要犹豫寻求老师或同学的帮助。

也可以考虑参加数学辅导班或找到专业辅导员进行个别指导。

8.培养数学思维:数学不仅仅是记忆和计算,更重要的是培养数学思维和推理能力。

学会发现问题背后的数学原理和模式,并运用它们解决复杂的问题。

9.坚持和反思:数学学习需要持之以恒,保持耐心和坚持。

定期复习和总结学习内容,发现自己的不足并及时调整学习方法。

最重要的是,保持积极的学习态度和信心,相信自己能够掌握大学数学。

持续努力和实践将帮助您不断提高数学水平。

大学数学新生入门怎么学习,如何学好大学数学

大学数学新生入门怎么学习,如何学好大学数学

大学数学新生入门怎么学习,如何学好大学数学大学数学新生入门怎么学习一、认清你的需要为什么需要学习数学,这是你首先需要想清楚的问题。

数学学科子分类多、每一本数学书中都有许多定理和结论,需要花大量时间研究。

而人的时间是宝贵的、有限的,所以你需要大体有一个目标和计划,合理安排时间。

1.1 你的目标是精通数学、钻研数学,以数学谋生,你可能立志掌握代数几何,或者想精通前沿物理。

那么你需要打下坚实的现代代数、几何以及分析基础,你需要准备大量时间和精力,拥有坚定不移的决心。

(要求:精通全部三级高等数学)1.2 你的目标是能够熟练运用高等数学,解决问题,掌握探索新应用领域的武器,你可能立志进入计算机视觉领域、经济学领域或数据挖掘领域。

那么,你需要打下坚实的矩阵论、微积分以及概率统计基础。

(要求:精通第一级高等数学)1.3 你的目标是想了解数学的乐趣,把学数学作为人生一大业余爱好。

那么,你需要打下坚实的线性代数、数学分析、拓扑学以及概率统计基础,对你来说,体会学数学的乐趣是一个更重要的目标。

(精通第一级高等数学,在第二级高等数学中畅游,尝试接触第三级高等数学)二、给自己足够的动力学数学需要智力,更需要时间和精力。

下面的几个事实相大家都深有体会:1. 凡是没有用的东西,或者虽然有用,但是你用不到的东西,学得快忘得也快。

不信你回忆一下你大一或者初一的基础课,你还记的清楚吗?2. 凡是你不感兴趣(或者感觉不到乐趣)的东西,你很难坚持完成它。

很多人都有这样的经历,一本书,前三章看的很仔细,后面就囫囵吞枣,越看越快,反正既没意思也没用。

3. 小学数学是中学数学的基础,中学数学是高中数学的基础,高中数学是大学数学的基础(你可以以此类推)。

因此,无论你的目标是什么,搞数学、用数学、还是体会数学的乐趣、满足自己从少年时就有的梦想。

学有所乐、学有所用,永远是维持你动力不衰退的两个最主要的因素。

三、高等数学学什么?好了,来看看标准大学数学的科技树:一级:线性代数(矩阵论),数学分析,近世代数(群环域),分别囊括了了几何、分析和代数的基础理论。

如何才能学好大学数学

如何才能学好大学数学

如何才能学好大学数学学好大学数学是每个大学生都面临的挑战。

数学作为一门基础学科,不仅在理工科专业中占据重要地位,也对其他学科的学习能力有着很大的影响。

然而,对于很多人来说,数学是一门难以理解和应用的学科。

在这篇文章中,我将分享一些有效的方法,帮助学生们克服数学困难,提高数学学习的效果。

一、培养正确的数学学习态度要学好大学数学,首先要树立正确的学习态度。

数学需要一定的时间和耐心来理解和学习。

因此,学生们应该具备以下几点:1.积极主动:要有积极主动的学习态度,主动寻求老师或同学的帮助,主动参与课堂讨论和学习小组。

2.耐心坚持:数学学习有时可能会遇到困难,但学生们要保持耐心和坚持,相信自己能够攻克难关。

3.合理安排时间:数学需要练习和思考,学生们应该合理安排时间,每天保持一定的学习量,不能等到考前才开始紧张备考。

二、掌握数学基础知识学好大学数学的前提是掌握好基础知识。

大学数学的内容与中学数学有很大的不同,因此学生们应该重点关注以下几个方面:1.复习中学数学知识:大部分大学数学知识都是建立在中学数学基础上的,因此学生们应该先对中学数学进行复习和巩固。

2.独立思考能力:大学数学更加注重培养学生的独立思考能力,学生们应该学会运用所学知识解决实际问题,而不是简单地死记硬背。

3.补充拓展知识:除了课本中的基础知识外,学生们还应该积极拓展数学知识,如参加数学竞赛、阅读数学相关书籍等,以提高自己的数学素养和应用能力。

三、合理利用各类学习资源要学好大学数学,合理利用各种学习资源是非常重要的。

以下是一些可供学生们利用的学习资源:1.教材和参考书:教材是学习数学的重要工具,学生们应该仔细阅读教材,理解概念和方法。

此外,还可以选择一些优秀的参考书纠正自己的理解和提高学习效果。

2.网络资源:互联网上有许多优质的数学学习资源,如网上课程、数学论坛、学术博客等。

学生们可以学习借鉴他人的经验和方法,提高自己的数学解题能力。

3.学习小组:组建一个学习小组,和同学们一起讨论问题、解决难题,可以互相促进,加深对数学概念的理解和记忆。

大学数学学习方法建议(经典)

大学数学学习方法建议(经典)

大学数学学习方法建议(经典)1. 制定研究计划- 设定明确的研究目标,包括掌握的知识点和技能。

- 制定合理的时间安排,合理分配研究时间,避免拖延和压力过大。

2. 理解基础概念- 充分理解数学的基础概念和定理,这是建立数学知识体系的基础。

- 如果对某个概念不理解,可以借助教材、教师或同学的帮助来深入理解。

3. 多做练题- 数学是一门实践性很强的学科,通过大量的练题可以提高对知识的熟练程度。

- 做题时要有系统性,从基础题开始,逐渐提高难度。

- 遇到难题时不要急于放弃,可以寻求帮助或尝试多种解法。

4. 加强数学推导能力- 数学是一门逻辑学科,具有推理和证明的特点。

- 经常进行数学推导和证明练,可以提高逻辑思维和严密性。

5. 理论与实践相结合- 数学研究不仅要掌握理论知识,还要注重实际应用和解决问题的能力。

- 尝试将数学知识应用到实际情境中,加强与其他学科的联系。

6. 多与同学交流合作- 参加小组讨论、合作研究或数学研究社群,可以相互激发思维和解决问题。

- 与同学讨论数学问题,互相提供帮助和启发。

7. 积极参与课堂- 认真听讲,积极参与课堂互动,与教师和同学共同探讨数学问题。

- 提问疑惑,思考问题,不怕犯错误,通过讨论来增进理解。

8. 多媒体辅助研究- 利用互联网、数学软件等多媒体资源,辅助数学研究和理解。

- 可以观看教学视频、参与在线交流群等方式获取更多研究资源和思路。

9. 定期复与总结- 定期回顾已研究的数学知识,进行复和总结。

- 总结研究方法和技巧,找出适合自己的研究方式,不断优化研究效果。

10. 坚持和兴趣驱动- 数学研究需要持之以恒和耐心。

- 培养对数学的兴趣和好奇心,保持积极的研究态度,坚持不懈地研究下去。

以上是一些经典的大学数学学习方法建议,希望对你有所帮助。

祝你在数学学习中取得好成绩!。

学好大学数学的方法

学好大学数学的方法

学好大学数学的方法数学作为一门“玄学”的学科,很多人都觉得很难学,甚至是不可学。

但事实上,数学也是一门可学可精通的学科,只要你找到了一定的方法和技巧,就能够轻松掌握它。

那么,如何学好大学数学呢?一、掌握基础知识掌握基础知识是学好大学数学的第一步。

大学数学有很多分支,如微积分、线性代数、概率论等,这些分支都有着自己的基础知识。

没有掌握好基础知识,就无法理解更高层次的概念和推导过程。

因此,在学习大学数学之前,要先把初中和高中所学的数学知识掌握好,尤其是代数和初等函数的基本概念和变形技巧,这样才能更好的理解大学数学中的公式和推理过程。

二、勤于练习和思考数学是一门需要勤于练习和思考的学科。

只有通过大量的练习才能掌握数学的方法和技巧,同时也能够巩固已学知识,提升自己的解题能力。

在练习的过程中,要多思考和尝试,做好分类总结,把已经掌握的方法和技巧进行归类总结,以便在以后的学习中能够更好的运用它们。

三、注重观察和思维数学是一门需要观察和思维的学科。

在学习数学的过程中,要注重观察和思维的训练,尤其是观察性的问题,要多使用图像或实例进行解答,这样能够更好地理解问题的本质和解法。

同时,要注意细节,多将信息进行分类、整理,把条件中重要的、不重要的、看似无关的等等分类出来,这将为解题提供更好的方向和引导,使问题更加易于理解和解决。

四、找到适合自己的学习方法数学是一门需要理性思考和精确处理的学科,每个人的认知方式、学习习惯都不相同,因此要从自己的实际情况出发,找到适合自己的学习方法。

目前,数学学习资源丰富,不同的学习方式比如自学、补课、家教等都能够满足不同的需求。

在学习的过程中,可以多尝试不同的方式,找到适合自己的学习方法和节奏。

五、建立自信和耐心经常有人在学习数学时遇到问题就会放弃学习,觉得自己根本学不会。

其实,学好数学最重要的就是自信和耐心。

数学学习需要花费大量的时间和精力,它不是一朝一夕能够完成的,要持之以恒,坚持不懈。

简析大学数学学习

简析大学数学学习

简析大学数学学习大学数学学习作为大学生必修的一门学科,对于培养学生的逻辑思维能力、数学运算能力以及解决实际问题的能力都有着重要的作用。

由于大学数学知识的广泛性和深度,很多学生在学习过程中感觉比较吃力,甚至有些人对数学学习产生了畏惧心理。

那么,如何才能高效地学好大学数学呢?下面我们就来简析大学数学学习的一些重要方法和技巧。

第一,明确学习目标。

大学数学知识非常广泛,不同专业的学生所学的数学分支也有所不同。

在学习大学数学之前,首先要明确自己所要学习的数学知识范围和深度。

这样可以有针对性地进行学习,不至于陷入无谓的茫然和困惑之中。

理论联系实际。

大学数学知识一般都是从理论出发,但数学却是一个应用性极强的学科,因此理论知识与实际应用是密不可分的。

在学习数学过程中,要不断地和实际问题联系起来,通过实际问题的引导来学习数学知识的应用,这样学习起来更加有趣有意义。

第四,勤做练习。

大学数学学习离不开大量的练习,这是巩固知识、提高技能的有效途径。

要想学好数学,就需要勤做大量的练习题。

通过练习可以更好地理解和掌握知识,提高解决实际问题的能力。

要注重做一些不同难度的练习,从简单到复杂、从基础到综合,这样可以更好地训练自己的思维能力和解题能力。

第五,多归纳总结。

在学习大学数学过程中,要善于总结归纳。

在做练习的过程中,可以有意识地进行归纳总结,总结解题方法、找出解题技巧、总结解题思路等。

通过总结归纳可以更好地掌握数学知识,提高解题的效率。

学好大学数学需要一定的方法和技巧。

明确学习目标,夯实基础知识,理论联系实际,勤做练习,多归纳总结,这五点是学习大学数学的有效方法和技巧。

希望同学们在学习数学过程中,能够多多尝试这些方法,相信一定能够取得更好的学习效果。

大学数学学习方法总结

大学数学学习方法总结

大学数学学习方法总结一、前言作为一门抽象的学科,大学数学对于大多数人来说都不是一件容易的事情。

许多学生在大学数学课程中遇到了很多困难,常常感到困惑和无助。

然而,数学作为一门基本学科,对于大学生的未来学习和工作都具有非常重要的影响。

因此,如何有效地学习大学数学成为了每位学生必须掌握的技能。

二、听课在学习大学数学时,最基本的方法是认真听课。

在听课时,学生应该有清晰的思路,先尽量理解教师所讲授的内容,对于自己不能理解的部分,建议在课后向老师或同窗求教。

在课堂上,可以在笔记本上做一些方程式和定理的笔记,也可以准备一些参考资料,例如公式表,辅助自己更好地学习大学数学。

三、做习题做习题是学习大学数学的最好方法之一。

通过做题,可以更好地理解概念和理论,掌握技能和方法。

做习题时,需要注意以下几点:1.做题前要认真阅读题意,分析问题,梳理出可行的解题思路。

2.做题时,要遵循正确的解题思路,注意步骤和细节。

3.解答完之后,应该仔细检查题目的解答,不要忽视细节的问题。

如果解答有错误,可以多加修改,直到解决问题。

四、创造性思维大学数学不仅仅是记忆和灌输,它更重要的是训练学生的思维能力,培养学生创造性思维。

在学习大学数学时,学生应该注重创造性思考,不断提高自己的思维水平。

学生可以通过自己或者与同学一起研究题目,提高自己的思维能力,训练自己的创造性思维。

五、参与讨论通过参与讨论,学生可以更好地理解知识,扩展思维,提出自己的看法和观点。

在参与讨论的过程中,学生可以和同学们交流,分享自己的学习心得和体会,了解他人的学习方法和思路,为自己的学习带来更多的灵感和启示。

此外,参与讨论还可以提高学生的口头表达和听力能力,锻炼社交技能,增加自信心。

六、总结大学数学的学习方法通常可以总结为四个步骤:听课、做习题、创造性思维和参与讨论。

这四个步骤彼此相互依存,需要在学习大学数学的整个过程中不断地加强和运用。

建议学生们在学习大学数学时切勿急于求成,要保持良好的心态和态度。

怎么学好大学数学

怎么学好大学数学

怎么学好大学数学引言大学数学作为高等教育中的一门重要课程,对于提高学生思维能力、培养逻辑思维和解决问题的能力具有重要作用。

然而,由于其抽象性和复杂性,许多学生在学习大学数学过程中遇到了困难。

本文将探讨一些学好大学数学的方法和技巧,帮助学生提高学习效果和克服困难。

步骤一:打好基础在学好大学数学之前,首先要打好数学基础。

这包括对初等数学的扎实掌握,例如代数、几何、微积分等。

学生可以通过复习高中数学知识,解决各种数学题目来巩固基础知识。

此外,还可以参考一些初等数学教材,逐步理解基本概念和解题方法。

步骤二:培养数学思维数学思维是学好大学数学的关键。

与初等数学不同,大学数学更注重抽象思维和逻辑推理能力的培养。

以下是几个培养数学思维的方法:1. 多做题目通过解决各种数学问题,可以锻炼数学思维能力。

学生可以选择一些习题集或者在线资源,多做一些适合自己难度的题目。

在解题过程中,不仅需要理解题目的意思,还需要运用适当的数学知识和解题方法。

并在解题的同时,多思考题目的相关性和扩展性。

2. 掌握概念和原理学好大学数学需要对关键概念和原理有充分的理解。

只有掌握了基本概念,才能更好地应用数学知识解决问题。

学生可以通过阅读教材、参加课堂讨论和进行独立学习来加深对概念和原理的理解。

3. 培养逻辑思维能力大学数学通常需要运用逻辑推理来证明结论。

因此,学生需要培养良好的逻辑思维能力。

可以通过参加数学竞赛、阅读相关数学杂志和书籍来提高逻辑思维能力。

此外,学生还可以尝试自己编写证明过程,加深对逻辑推理的理解和应用。

步骤三:重视实际应用大学数学不仅仅是一门理论学科,还有着广泛的实际应用。

学生可以通过关注数学在各个领域的应用,了解数学的实际意义和用途。

这样不仅可以增加学习的兴趣,也能更好地理解数学概念和原理的应用。

此外,学生还可以参加学术讲座、与教师或其他学生进行讨论,以更深入地探讨数学在实际问题中的应用。

步骤四:寻求帮助和合作在学习大学数学过程中,遇到困难或者不理解的地方是正常的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学数学怎么学?学好大学数学的8个方法大学数学怎么学?学好大学数学的8个方法学好大学数学的8个方法1)大一生大都自我感觉良好,认为自己的学习方法是成功的。

自己能考上不错的本科,就说明自己在学习上有一套。

自己高中怎样学,大学还怎样学,就一定能成功。

不知道改进学习方法的必要性。

2)缺少迎难而上的思想准备。

基础知识大滑坡,基本技能大退步,头脑时常出现空白。

学习时跟不上教学的进度与要求。

3)对大学课程的学习特点,缺少全面准确的了解。

对大学生应该掌握的学习方法,缺少系统的学习和掌握。

提高大学数学学习成绩的关键:大学生学数学,靠的是一个字:悟!借助这8个方法,教你更好领悟高数1先看笔记后做作业有的学生感到,老师讲过的,自己已经听得明明白白了。

但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。

因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。

2做题之后加强反思现在正做着的题,一定不是考试的题目。

而是要运用现在正做着的题目的解题思路与方法。

因此,要把自己做过的每道题加以反思,总结一下自己的收获。

要总结出:这是一道什么内容的题,用的是什么方法。

做到知识成片,问题成串,构建起一个内容与方法的科学的网络系统。

要看看自己做对了没有;还有什么别的解法;题目处于知识体系中的什么位置;解法的本质什么;题目中的已知与所求能否互换,能否进行适当增删改进。

主动复习和总结进行章节总结是非常重要的。

怎样做章节总结呢?①要把课本,笔记,校期末测验试卷,都从头到尾阅读一遍。

②把本章节的内容一分为二,一部分是基础知识,一部分是典型问题。

③在基础知识的疏理中,要罗列出所学的所有定义,定理,法则,公式。

④把重要的,典型的各种问题进行编队。

⑤总结那些尚未归类的问题,作为备注进行补充说明。

4重视改错,错不重犯一定要重视改错工作,做到错不再犯。

5积累资料随时整理把课堂笔记,练习,试卷,都分门别类按时间顺序整理好。

每读一次,就在上面标记出自己下次阅读时的重点内容。

这样,复习资料才能越读越精,一目了然。

6精挑慎选课外读物大学数学考的是学生解决常规题的能力。

作为一名大学生,如果还想围着自己的老师转,是不可能的,老师一般一下课就走,所以这种方法会存在着很大的局限性。

因此,要想学好数学,必须打开一扇门,看看外面的世界。

当然,也不要自立门户,另起炉灶。

一旦脱离校内教学和自己的老师的教学体系,也必将事倍功半。

7配合老师主动学习大学生必须提高自己学习的主动性,随时预防挂科。

合理规划步步为营大学的学习表面上是轻松的,实则是暗藏危机。

没有了高中老师的步步紧抓,许多自制力差,又没计划性的学生任由自己堕落。

所以,要想能迅速取得进步,就要给自己制定一个较长远的切实可行的学习目标和计划。

此外,还要给自己制定学习计划,详细地安排好自己的零星时间,并及时作出合理的微量调整。

大学数学怎么学?众所周知,数学是一门富有魅力又极具挑战性的学科。

有些时候,花了大量的时间,但还是没有什么结论或是还是理解不了一些过程,而且,往往会有一种挫败感为什么别人想的到而我想不到。

可见,学好数学绝不是一件易事,需要付出大量的努力,需要大量的积累和细心体会。

但是,大家也不必太过害怕或是灰心,要相信,只要付出了努力,只要有不断地、耐心地思考,一定能够理解好所学内容,能够解决问题。

对于刚入学的新生,要面对的专业课就是数学专业中基础中的基础:数学分析、高等代数和解析几何,正好对应数学的三大核心领域:分析、代数、几何。

数学分析是指以微积分学和无穷级数一般理论为主要内容,并包括它们的理论基础(实数、函数和极限的基本理论)的一个较为完整的数学学科。

数学分析的主要内容是微积分学,微积分学的理论基础是极限理论,极限理论的理论基础是实数理论。

实数系最重要的特征是连续性,有了实数的连续性,才能讨论极限,连续,微分和积分。

正是在讨论函数的各种极限运算的合法性的过程中,人们逐渐建立起了严密的数学分析理论体系。

在学习这门课程时,既需要感觉和直觉去分析理解问题,又需要严密的证明来说明你的观点。

刚接触时,由于和高中的思维方式有很大不同,可能会有无从下手的感觉,但多看例题,反复练习,慢慢就会熟悉理解。

高等代数主要研究线性空间、线性变换和多项式理论等。

通过引入向量、矩阵、行列式等工具,在一般的集合上研究问题,并将抽象的线性变换视为成更实际的矩阵进行研究。

这是一套严密完整的理论,全部学完后,你将看到它完整的面目。

在学习时,要注意将知识融会贯通,形成一个整体,一套体系。

解析几何在大一学的不多也不难,多用线性代数方法研究。

数分和高代是数学专业中的基础,需要高度重视,学到高年级的课程时,会发现有一些内容和数分高代的内容相近或是类似,如果一开始没好好学,后面会越学越辛苦。

学习数学必须要多思考,要多想想一个定理是怎么引入的,为什么需要这些条件,缺了某一个条件会有什么后果,多记一些例子,尤其是反例,再想想看如果不看证明,自己能不能证明出来。

多研究例题,看看人家是怎么想的,思考为什么别人能想到,有什么地方可以找到突破口,要积累。

多做题,多做好题,注意老师课堂上讲的题目和勾出来的题目。

在大学期间,也会有数学竞赛,主要的有:全国大学生数学建模竞赛(国赛)、美国大学生数学建模竞赛(美赛)、全国大学生数学竞赛(数学竞赛)、丘成桐大学生数学竞赛(丘赛)。

对自己的数学实力有自信的,或是想要挑战一下自己的同学可以考虑参加这几个竞赛,检验一下自己。

要学好数学需要多读书,要扩大自己在数学领域的知识面,才会有更加深入的体会和了解。

故在此推介一些适合数学专业的同学看的书,希望对大家有所帮助。

数学分析1. 基础教材(1)数学分析陈纪修复旦大学出版社(2)数学分析华东师范大学出版社(没有复旦的版本好,当作基础中的基础,全部掌握文本内容和习题即可)(3)数学分析教程常庚哲(较难)2. 参考书(1)微积分学教程菲赫金哥尔茨(非常详细,可作数学分析词典用,若要顺序读下来可能比较耗时)(2)数学分析卓里奇(观点比较高级,建议高年级时或觉得自己学得很清晰的同学阅读)(3)数学分析讲义陈天权(视角非常高,建议较高年级时阅读)(4)数学分析原理(Principles of Mathematical Analysis) Rudin (比较全面的经典教材,写得比较简练,可以学完后看)(5)陶哲轩实分析陶哲轩(从最基础写起,可以当作课外读物)(6)重温微积分齐民友(可以学得差不多时作为回顾)(7)数学分析新讲张筑生(8)数学分析全程辅导及习题精解3. 习题(1)数学分析习题课讲义(上下册) 谢惠民等(很好的习题集)(2)数学分析中的典型问题与方法裴礼文(很好的习题集,慢慢做不必着急)(3)吉米多维奇数学分析习题集(1 6)(题目以计算为主,可以选取里面的计算题作为对自己计算能力的检验,不要刷题,挑取类型题做熟练就行)高等代数1. 参考书(1)高等代数学习指导书(上下册) 丘维声(非常厚的两本书,也非常详细清晰,可作参考)(2)高等代数简明教程(上下册) 蓝以中(比较薄,易携带)(3)高等代数学张贤科、许甫华(相比以上较难,但非常全面,有一些知识在高等代数课上并未涉及,可以到这里阅读)(4)高等代数解题方法张贤科、许甫华(上本书的配套习题书)2. 习题集(1)高等代数习题集(上下册) 杨子胥(比较全面的一本高等代数习题集,可以作参考)(2)高等代数习题精解刘丁酉中国科学技术大学出版社(较全面)(3)我院樊启斌老师整理的高等代数习题集非常好,除了该本练习和课后习题,一般不需要再多做题目。

概率论(1)概率论何书元北京大学出版社(轻便而易懂)(2)概率论教程钟开莱(均以实变函数知识为基础的概率论,是真正意义上的数学中的概率论,大三的数基与弘毅同学可看)(3)概率论教程缪柏其、胡太忠中国科学技术大学出版社数值分析(1)数值线性代数北京大学出版社(2)数值计算方法武汉大学出版社常微分方程(1)常微分方程教程丁同仁(国内经典教材)(2)常微分方程习题集庄万(习题比较多可以参考一下)(3)高等数学例题与习题集(四)常微分方程博亚尔丘克(还不错的一本ODE习题集)(4)常微分方程阿诺尔德(观点较高的一个经典著作)复变函数(1)复变函数简明教程谭小江,伍胜健(北大教材,条理清晰,可作初次学习用)(2) Complex Analysis, Stein (非常简练而全面,可作参考书)(3)实分析与复分析(Real and Complex Analysis), Rudin (经典的西方教材)(4)复分析(Complex Analysis), Ahlfors(最经典的西方教材之一)(5)高等数学例题与习题集(三) 复变函数博亚尔丘克(非常全面的一本复变函数习题集)实变函数(1)Real Analysis, Folland(深入浅出,很详细)(2)Real Analysis, Stein(比较经典的教材)(3)实分析与复分析(Real and Complex Analysis), Rudin(经典教材,比较概括而全面)(4)实变函数论,实变函数学习指南周民强(非常好的国内教材,里面思考题非常多,可以慢慢阅读思考)泛函分析(1)泛函分析,江泽坚(非常简明)(2)泛函分析讲义(上下册) 张恭庆、林源渠、郭懋正(北大教材,比较全面,习题也不错)(3)Functional Analysis, Rudin(经典教材)(4)泛函分析(Functional Analysis), Peter Lax(经典教材)大学数学专业教育实习报告范文_实习报告一、实习目的实习是大学教育最后一个极为重要的实践性教学环节,通过实习,使我们在社会实践中接触与本专业相关的实际工作,增强感性认识,培养和锻炼我们综合运用所学的基础理论,基本技能和专业知识,去独立分析和解决实践问题的能力,把理论和实践结合起来,提高实践动手能力,为我们毕业后走上工作岗位打下一定的基础;同时可以检验教学效果,为进一步提高教育教学质量,培养合格人才累经验,并为自己能顺利与社会环境接轨做准备二、实习内容难忘的xx刚刚过去,憧憬着xx,我迎来了我的第一件大事—实习。

2月9日我就踏进了实习学校—xx第一中学。

这是一所历史悠久的首批省重点中学,以前我就在那里读书,哪里培养了我,走在校园有一种亲切感,同时也时常为自己能否成为一名合格的教师和班主任而担心,不过这就要靠自己去努力、去拼搏、去奋斗。

上学期我就和以前的数学老师联系好了,他也很高兴答应愿意带领我进行实习,在此也向xx老师表示感谢。

我将实习时间定为四周:第一周(2月9日——2月15日)主要实习内容——听课、熟悉教材、了解实习班级的基本情况。

相关文档
最新文档