电力系统继电保护第六章 输电线路纵联保护

合集下载

电力系统继电保护原理-输电线路纵联保护

电力系统继电保护原理-输电线路纵联保护
3、电流相位比较式纵联保护
对比两侧电流相位差为0°保护动作; 对比两侧电流相位差为180°保护不动作;
4、距离纵联保护
距离Ⅱ段作为方向元件。 该保护的优点:既具有纵联保护的优点,又具有距离 保护的优点。
4.2 输电线路纵联保护两侧信息的交换
4.2.1 导引线通信(见P132图4.5)
4.2.2 电力线载波通信(见P134图4.6) “高频保护 ”
KD . Ir
. 正常、k外:Ir =
. IM2
-
. IN2
.. . d内:Ir = IM2 + IN2
线路两侧装有相同变比的TA
保护动作特性: 1)不带制动特性
I set K rel K np K er K st I k .max
2)带制动特性
动作方程:
I m I n K I m I n Iop0
2)使用线路侧电压 2、功率倒向对方向高频保护的影响
在环网或双回线路上,当一回线发生故障时,由于故障线 路两侧的断路器相继动作。造成非故障线路的短路功率改 变方向,从而有可能使得非故障线路的方向高频保护误动。
为防止在功率倒向中保护误动,采取的措施是: 一是反方向功率方向元件优先的原则。即一旦反方向元件 动作,立即闭锁正方向元件。 二是当故障发生后经过一段时间(大于本保护动作时间, 小于相邻线路断路器跳闸时间),尚未判为内部故障,则 认为是外部故障,程序转入另一模块。
protect &
GSX
跳闸
③跳闸讯号方式:高频讯号本身可直接使断路器跳闸
protect
பைடு நூலகம்GSX
≥1
跳闸
4.2.3 微波通道
利用150mHz到20gHz间的电磁波进行无线通信称为微波通 信。 优点: 微波通道频带宽。 微波通道独立于输电线之外,可靠。 因而用微波通道可实现传送允许信号和直接跳闸信号的 保护方式。 缺点: 微波信号的衰耗与天气有关。 必须沿线路建设微波中继站。

线路保护纵联保护

线路保护纵联保护
在“四统一”中采用这种“位置停信”还有一种 目的:如果线路出口短路,零序Ⅰ段等快速保护先发 跳闸命令并将断路器跳开时若高频保护还未跳闸(当 时系统用的相差高频保护由于两次比相,动作时间将 到40~60ms),断路器跳闸后高频保护立即恢复发 信,闭锁了对端的高频保护。采取了“位置停信”后 使该端一直处于停信状态可确保对端高频保护可靠跳
“零序高频”是指其方向元件由零序功率方向元件充当。 同样其零序功率方向元件应保证对本线范围内的所有接地 故障有绝对灵敏度。(如LFP901中的O++)
“方向高频”,从字面上理解可以指所有的基于两侧方向 判别的高频保护。但是有一种方向元件是由工频突变量方 向元件充当的高频保护,我们习惯称其为“方向高频” 。 (如LFP901中的D++)
(4)关于闭锁式的两个关键元件的说明:
1.启动元件 (1)高定值启动元件起动后,终止主程序,执行故处理程
序,开放保护。
(2)低定值启动元件动作,控制收发信机启动发信。 (3)启动元件无方向性,灵敏度高。 2.方向元件 (1)有明确的方向性。 (2)正方向元件要确保在本线路全长范围内的短路都能可
靠动作(超范围闭锁式)。
最大的优点就是可以瞬时切除本线路全长范围 内的短路。这种综合反应两端电气量变化的保
护就叫做纵联保护。纵联保护的优点是明显的,
但它的缺点是不能保护在相邻线路上的短路, 不能作相邻线路上的短路的后备。
小结:
纵联保护既然是反应两端电气量 变化的保护,那就一定要把对端电气 量变化的信息告诉本端,同样也应把 本端电气量变化的信息告诉对端,以 便每侧都能综合比较两端电气量变化 的信息做出是否要发跳闸命令的决定。 这必然涉及到通信的问题,而通信需 要通道。

继电保护基本知识

继电保护基本知识

第三章 电网的电流保护
1 90°接线方式
优点:① 对各种两相短路都没有死区,因为继电器加入的是非故障的相间电压,其值很高;② 适当选择内角α后,对线路上各种相间故障都能保证动作的方向性。
缺点:三相短路时仍有死区。
第四章 电网接地故障的零序电流保护
1.中性点直接接地电网发生单相接地短路时,零序电流、零序电压的分布特点;
零序电压:故障点零序电压最高,离故障点越远,零序电压越低,变压器中性点接地处为零。
零序电流:分布:与变压器中性点接地的多少和位置有关;大小:与线路及中性点接地变压器的零序阻抗有关。
零序功率:分布:短路点零序功率最大;方向:对于发生故障的线路,两端的零序功率方向为线路—母线。
第五章 距离保护
纵差动保护和电流速断保护:防御变压器绕组、套管及引出线上的故障 。
2 : 励磁涌流特点
特点:有很大成分的非周期分量;有大量的高次谐波,尤以二次谐波为主;波形经削去负波后出现间断。
防止励磁涌流造成差动保护误动的措施主要有:采用具有速饱和铁芯的差动继电器,采用二次谐波制动,采用间断角原理的差动保护,采用波形对称原理的差动保护。
2 : 发电机定子绕组单相接地特点
(1)有零序电压出现,其大小与α成正比;(2)接地点通过容性零序电流,大小与α及C0G、C0l有关; (3)当发电机定子绕组内部发生单相接地时,机端零序电流互感器中流过的电流为外接元件电容电流,方向由发电机流向母线;(4)当发生外部单相接地时,机端零序电流互感器中流过的电流为发电机本身的电容电流,方向由外部流向发电机。
3 : 线路发生故障保护和重合闸的动作情况
对于瞬时性故障,两侧保护动作,断路器断开,线路失去电压,检无压侧重合闸先进行重合。重合成功,另一侧同步检定继电器在两侧电源符合同步条件后再进行重合,恢复正常供电;

04 输电线路纵联保护

04 输电线路纵联保护

4.3.3 闭锁式距离纵联保护的构成
¾ 本线路故障: ZIII启动发信; ZII判断为正方向,启动停信;两侧均未收到高频闭锁信号
而跳闸。
4.3.3 闭锁式距离纵联保护的构成
¾ 外部故障: ZIII启动发信; ZII判断为反方向,不停信;两侧均收到高频闭锁信号而不
跳闸。
闭锁式距离纵联保护中的III段定时限距 具有为线路远端母线和相邻元件的远后备 能力。
它是以由短路功率为负的一侧发出高频闭 锁信号,这个信号被两端的收信机所接收,而 把保护闭锁。故称高频闭锁方向保护。
这种按闭锁信号构成的保护只在非故障线 路上才传送高频信号,而在故障线路上并不传 送高频信号。因此,在故障线路上由于短路使 高频通道可能遭到破坏时,并不会影响保护的 正确动作。
高频闭锁信号由非故障线的近故障点侧保 护发出。
4.4 纵联电流差动保护 4.4.1 纵联电流差动保护原理
线路两侧装有相同变比的TA
由于两侧电流互感器励磁特性不同,正常 运行及外部故障时流过的短路电流反映至二 次侧大小会不相同。此电流差称为不平衡电 流。
4.4 纵联电流差动保护
4.4.1 纵联电流差动保护原理
不平衡电流的值可计算为:
Iunb = 0.1Kst Knp Ik max
两侧电流相位差00
两侧电流相位差1800
4.1 输电线路纵联保护概述
4.1.2 输电线路短路时两侧电气量的故障特征分析
两端测量阻抗的特征(距离纵联保护) (以II段距离为启动元件,采用方向阻抗特性)
区内故障:两侧测量阻抗均为短路阻抗 区外故障:两侧测量阻抗均为短路阻抗,但一侧 为反方向 正常运行时:两侧测量阻抗均为负荷阻抗
4. 2 输电线路纵联保护两侧信息量的交换

4.输电线纵联差动保护

4.输电线纵联差动保护
I r ≥ K res I unb
保护的动作值将随外 部故障时的不平衡电流 增大而增大
I r ≥ K res I unb
K res = 制动系数
4.4.2 两侧电流的同步测量

基于数据通道的同步方法 基于GPS统一时钟的同步方法
4. 2
输电线路纵联保护两侧信息量的交换

输电线路目前常用的通信方式为:

导引线通信 电力线载波通信 微波通信 光纤通信
4.2.2

电力线载波通信
有“相-相”和“相-地”两种连接方式 “我国广泛运用” 1. 阻波器 2. 耦合电容器 3. 连接滤波器 4. 电缆 5. 载波收发信机 6. 接地开关
Zr ⋅ Δ I

保护的反方向短路,保护安装 处的电流、电压的关系为: ⋅ ⋅

ΔU = Δ I ⋅ Z s
考虑各种因素的影响,反方向故 障时功率方向为正的判断依据为: ⋅
90 > arg
0
ΔU
Zr ⋅ Δ I

> −900
4.3.1
工频故障分量的方向元件
负序、零序方向元件在正方向 故障时,功率方向为正的判断 ⋅ 为: ΔU
零序方向纵联保护与负序方向相同
因此需取断路器线路侧电压互感器信号
4.3.3 闭锁式距离纵联保护的构成 闭锁式距离纵联保护利用线路两侧三段式 距离保护,以III段作为启信元件,以II段方向 判别元件作停信元件。
4.3.3 闭锁式距离纵联保护的构成
闭锁式距离纵联保护利用线路两侧三段式距离保护,以III 段作为启信元件,以II段方向判别元件作停信元件。
4.4

纵联电流差动保护
4.4.1

电力系统继电保护课程教学基本内容及要求

电力系统继电保护课程教学基本内容及要求

课程名称:电力系统继电保护课程编码:课程学分:2学分课程学时:32学时适用专业:电气工程及其自动化、新能源科学与工程《电力系统继电保护》(Relay Protection of Power System)教学大纲]1.课程性质与任务本课程为电气工程及其自动化专业、新能源科学与工程专业的专业选修课。

电力系统继电保护是识别电力系统故障和不正常运行状态并通过继电保护装置进行保护的科学技术,以实现电力系统的安全稳定运行。

通过本课程的学习,目的是让本专业的学生深刻地认识到电力系统继电保护在保证电力系统中所起的重要作用;重点掌握电力系统继电保护的要求、原理、类型、应用及评价;考虑和解决问题的基本方法以及基本的实验技能;培养学生分析和解决具体工程问题的能力。

本课程为学生从事电力系统继电保护相关工作奠定理论及实践基础。

2.课程教学基本内容及要求(1)基本内容传统继电保护方面:电力系统继电保护的任务和作用、继电保护的基本原理、继电保护的组成及分类、传统极点保护装置的要求、电网的电流保护、电网的距离保护、输电线路纵联保护、自动重合闸、电力变压器的继电保护、发电机的继电保护、母线保护。

微机继电保护方面:微机保护的硬件构成原理、微机保护装置的软件、提高微机保护可靠性的措施、电力系统微机保护故障处理方法及实例。

<(2)基本要求学完本课程后,学生应掌握电网三段式电流保护的输电线路的工作原理、接线分析、整定计算方法【1-6】、应用及评价;掌握方向性电流保护的整定计算方法【1-6】;掌握小电流接地系统单相接地保护的工作原理。

学生应能基于继电保护原理和保护特性,针对不同的保护方式,分析其适用范围,判断关键环节的工作机理和参数【2-1】,完成电力系统继电保护简单设计。

应能掌握微机保护算法实现电气基本量的采集。

应能看懂继电保护工程图纸。

应能使用Matlab中的PowerSystem模块进行简单的电力系统继电保护仿真【5-1】。

电力系统继电保护 ——方向比较式纵联保护和纵联电流差动保护

电力系统继电保护 ——方向比较式纵联保护和纵联电流差动保护


四、影响正确工作的因素及应对措施
2. 功率倒向对方向比较式纵联保护的影响及应对措施 增加延时返回元件。

3. 分布电容对方向比较式纵联保护的影响及应对措施 一端断开,另一端三相合闸充电 负序方向元件:按躲过空载线路两相先闭合时出现的稳态负 序电容电流进行整定;或增大保护启动时间;或用方向阻抗 元件代替负序方向。
电气工程及其自动化专业课程
电力系统继电保护
武汉理工大学自动化学院
唐金锐
tangjinrui@
输电线路纵联保护
一、输电线路纵联保护概述 二、输电线路纵联保护两侧信息的交换 三、方向比较式纵联保护 四、纵联电流差动保护
方向比较式纵联保护
一、工频故障分量的方向元件 二、闭锁式方向纵联保护 三、闭锁式距离纵联保护 四、影响正确工作的因素及应对措施

四、影响正确动作的因素


3. 负荷电流对纵联电流差动保护的影响
重负荷情况下发生经大电阻短路,有可能动作量小于制动 量而拒动 全电流纵联差动保护的主要缺点:为了提高重负荷情况下 保护耐受过渡电阻的能力,不得不降低制动系数K的值, 同时也就降低了外部故障时的防卫能力。


为了消除负荷电流的影响,增强保护的耐过渡电阻能力, 提高保护的灵敏度,利用电流的故障分量构成差动保护判 据。

三、闭锁式距离纵联保护

由两端完整的三段式距离保护附加高频通信部分组成: (1)核心变化:距离保护II段的跳闸时间元件增加了瞬时 动作的与门元件。本侧II段动作且收不到闭锁信号。实现 了纵联保护瞬时切除全线任意点短路的速动功能。
( 2 )闭锁式零序方向纵联保护的实现原理与闭锁式距离 纵联保护相同,三段式零序方向保护代替三段式距离保护

继电保护知识点总结

继电保护知识点总结

继电保护知识点总结第一篇:继电保护知识点总结电力系统中常见的故障类型和不正常运行状态故障:短路(最常见也最危险);断线;两者同时发生不正常:过负荷;功率缺额而引起的频率降低;发电机突然甩负荷而产生的过电压;振荡继电保护在电力系统发生故障或不正常运行时的基本任务和作用。

迅速切除故障,减小停电时间和停电范围指示不正常状态,并予以控制继电保护的基本原理利用电力系统正常运行与发生故障或不正常运行状态时,各种物理量的差别来判断故障或异常,并通过断路器将故障切除或者发出告警信号继电保护装置的三个组成部分。

测量部分:给出“是”、“非”、“大于”等逻辑信号判断保护是否启动逻辑部分:常用逻辑回路有“或”、“与”、“否”、“延时起动”等,确定断路器跳闸或发出信号执行部分保护的四性选择性:保护装置动作时仅将故障元件从电力系统中切除,使停电范围尽量减少速动性:继电保护装置应尽可能快的断开故障元件。

灵敏性:继电保护装置应尽可能快的断开故障元件。

故障的切除时间等于保护装置和断路器动作时间之和可靠性:在保护装置规定的保护范围内发生了它应该反映的故障时,保护装置应可靠地动作(即不拒动,称信赖性)而在不属于该保护装置动作的其他情况下,则不应该动作(即不误动,称安全性)。

主保护、后备保护保护:被保护元件发生故障故障,快速动作的保护装置后备保护:在主保护系统失效时,起备用作用的保护装置。

远后备:后备保护与主保护处于不同变电站近后备:主保护与后备保护在同一个变电站,但不共用同一个一次电路。

继电器的相关概念:继电器是测量和起动元件动作电流:使继电器动作的最小电流值返回电流:使继电器返回原位的最大电流值返回系数:返回值/动作值过量继电器:返回系数Kre<1 欠量继电器:返回系数Kre>1 绩电特性:启动和返回都是明确的,不可能停留在某个中间位置阶梯时限特性:最大(小)运行方式:在被保护线路末端发生短路时,系统等值阻抗最小(大),而通过保护装置的电流最大(小)的运行方式三段式电流保护:由电流速断保护、限时电流速断保护及定时限过电流保护相配合构成的一整套保护工作原理:电流速断保护:当所在线路保护范围内发生短路时,反应电流增大而瞬时动作切除故障的电流保护,为了保证保护的选择性,一般情况下只保护被保护线路的一部分限时电流速断保护:切除本线路上电流速断保护范围之外的故障,作为电流速断保护的后备保护定时限过电流保护:反应电流增大而动作,保护本线路全长和下一条线路全长,作为本条线路主保护拒动的近后备保护,也作为下一条线路保护和断路器拒动的远后备保护。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


二、纵联保护的基本原理
保护原理的本质是甄别系统正常和故障状态下电气量或非电气 量之间的差别,纵联保护也不例外。输电线路的纵联保护就是利用线 路两端的电气量在故障与非故障时的特征差异构成的。当线路发生区 内故障、区外故障时,电力线两端电流波形、功率、电流相位以及两 端的测量阻抗都有明显的差异,利用这些差异就可以构成不同原理的 纵联保护。
第6章 输电线路纵联保护

6.1 输电线路纵联保护的基本原理和分类
6.2 输电线路纵联保护的通信通道 6.3 输电线路的导引线纵联差动保护 6.4 方向比较式纵联保护 6.5 相位比较式纵联保护
6.1 输电线路纵联保护基本原理和分类

一、纵联保护及其构成
输电线路的纵联保护,就是用某种通信通道(简称通道)将输电线 两端或各端(对于多端线路)的保护装置纵向连接起来,将各端的电气 量(电流、功率的方向等) 传送到对端,将各端的电气量进行比较,以 判断故障在本线路范围内还是在线路范围之外,从而决定是否切断被 保护线路。

2.两侧电流相位特征
两端输电线路,若全系统阻抗角均匀,且两端电动势角相等,则 当线路MN发生区内短路故障时,两侧电流同相位,即、相位差为0°; 而当正常运行或发生区外短路故障时,两侧电流反相,即电流、相位 差为180°。

3.两侧功率方向特征
当线路上发生区内故障和区外故障时,输电线两端的功率方向也 有很大差别。令功率正方向由母线指向线路,则线路发生区内故障时, 两端功率方向都由母线流向线路,两端功率方向相同,同为正方向; 而发生区外故障时,远故障点端功率由母线流向线路,功率方向为正, 近故障点端功率由线路流向母线,功率方向为负,两端功率方向相反。
2.电力线载波(高频)通道 3.微波通道 4.光纤通道
电力线载波通道构成示意图 1—阻波器;2—结合电容器;3—连接滤波器;4—电缆;5—高频收发 信;6—刀闸

⑴阻波器:阻波器是由一个电感线圈与可变电容器并联组 成的回路。 ⑵结合电容器:结合电容器与连接滤过器共同配合将载波 信号传递至输电线路,同时使高频收发信机与工频高压线

路绝缘。

⑶连接滤波器:连接滤波器由一个可调节的空心变压器及 连接至高频电缆一侧的电容器组成。

⑷高频收、发信机:发信机部分系由继电保护装置控制,
通常都是在电力系统发生故障时,保护起动之后它才发出 信号。

二、高频信号的分类
按照信号的性质或作用,可以将其分为闭锁信号、 允许信号和跳闸信号。这三种信号可用以上任一中 种通信通道产生和传送。
系统一相仅在一侧断开的情况 (a)负序电压分布图;(b)相量图
实际非全相运行状态是一相在两侧同时断开的状态, 特别是考虑分布电容的影响后,需要分析有两个断线端口 的复杂故障下负序电压、电流的相位关系,结论同样是: 当使用线路侧电压时,受电侧功率方向为正,送电侧的负
序功率方向为负,发出闭锁信号,保护不会误动作;如果
⑵功率倒向对方向比较式纵联保护的影响及应对措施
功率导向电网示意图
系统中假设故障发生在线路L1上靠近M侧k点,断路器 QF3先于断路器QF4跳闸。在断路器QF3跳闸之前,线路L2 中短路功率由N侧流向M侧,线路L2中N侧功率方向为负, 方向元件不动作,向M侧发送闭锁信号。
在断路器QF3跳闸后QF4跳闸前,线路L2中的短路功率突然 倒转方向,由M侧流向N侧,这一现象称为功率倒向。反应负 序、零序和故障分量的方向元件在短路功率倒向时如果动作不 协调会出现误动作。在断路器QF3跳闸后QF4跳闸前,M侧功 率方向由负变为正,功率方向元件动作,停止发信并准备跳闸; 此时N侧的功率方向由正变负,方向元件应立即返回并向M侧 发闭锁信号,但是可能M侧的方向元件动作快,N侧的方向元 件返回慢,这被称为“触点竞赛”。由于这个原因,会有一段 时间两侧方向元件均处于动作状态,M侧没有闭锁信号,造成 线路两端的保护误动。如果增加延时返回时间元件t1,使发信 元件动作后经时间t1延时返回,就可以解决这个问题。时间t1 要大于两侧方向元件动作与返回的最大时间差,再加源线路区内、外故障示意图 (a)内部故障;(b)外部故障 当线路发生内部故障时, 如图所示,有 I I M I N I k1 ,在故障点有较大短路电流流出; 当线路发生区外短路故障或正常运行时,


如图所示,线路两端电流相量关系为
I I M I N。 0

4.两侧测量阻抗值特征三、纵联保护的分类
当线路区内短路时,输电线路两端的测量阻抗都是短路阻抗,一 定位于距离保护Ⅱ段的动作区内,两侧的Ⅱ段同时启动;当正常运行 时,两侧的测量阻抗是负荷阻抗,距离保护Ⅱ段不会启动;当发生外 部短路时,两侧测量阻抗也是短路阻抗,但一侧为反方向,若采用方 向特性的阻抗继电器,则至少有一侧的距离Ⅱ段不会启动。
6.3输电线路的导引线纵联差动保护 6.4方向比较式纵联保护
一、闭锁式方向纵联保护 1.闭锁式方向纵联保护的基本原理
闭锁式方向纵联保护作原理
2.闭锁式方向纵联保护的基本构成
⑴区外短路故障; ⑵两端供电线路区内短路故障; ⑶单电源供电线路区内短路故障。
闭锁式方向纵联保护的原理接线图
3.影响方向比较式纵联保护正确动作的因素 ⑴系统非全相运行的影响

三、纵联保护的分类
纵联保护按照所利用信息通道的不同类型可以分为导引线纵
纵联保护按照保护动作原理,可以分为方向比较式纵联保护
联保护、电力线载波纵联保护、微波纵联保护和光纤纵联保护四种。
和纵联电流差动保护两类。
6.2 输电线路纵联保护的通信通道

一、通信通道的构成和特点 1.导引线通道
导引线通道是纵联保护最早使用的通信通道,是由和 被保护线路平行敷设的金属导线构成,用来传递被保护线 路各侧信息的通信通道。
1.闭锁信号。即无闭锁信号是保护作用于跳闸的必 要条件,或者说闭锁信号是阻止保护动作于跳闸的 信号。 2.允许信号。允许信号是允许保护作用于跳闸的信 号,或者说有允许信号是保护动作于跳闸的必要条 件。
3.跳闸信号。跳闸信号是直接引起跳闸的信号,或 者说收到跳闸信号是跳闸的充要条件。
高频保护信号逻辑图 (a)闭锁信号;(b)允许信号;(c)跳闸信号
使用母线电压,两侧的负序功率方向同时为正,保护将误 动作。零序功率方向在非全相运行期间与负序功率方向的
特点一致。
克服非全相运行期间负序、零序方向纵联保护误动的 措施一般是:使用线路侧电压,这也是超高压线路电压互
感器装于线路侧的主要原因;在两相运行期间退出负序、
零序方向元件,仅保留使用工频突变量的方向元件。
相关文档
最新文档