粉末冶金材料课件
合集下载
粉末冶金ppt课件

22
(1)雾化法
粉
末 冶
• 特点:
金
– 生产效率高,成本低,易于制造高纯度
成
粉末;
型
– 合金粉末易产生成分偏析以及难以制得
小于300目的细粉。
• 应用
– 制造Fe 、Pb、Sn、Zn、Al、青铜、 黄铜等低熔点金属与合金粉末;
– 18-8不锈钢、低合金钢、镍合金等 粉末。
23
(2) 机械粉碎法 是靠压碎、击碎和磨削等作用,将
– 用回弹率表示,即线性 相对伸长的百分率,其 大小与模具尺寸计算有 直接关系。
33
• 称粉 就是
称量成型一 个压坯所需 的粉末的重 量或容量。
近两吨重大型坯料(用热等静压法)
18
粉末冶金成型
粉
§2 粉末冶金成型工艺简介
末
冶
金 成
粉料制备
压制成型
烧结
型
粉末冶金成品
烧结后的处理
19
§2 粉末冶金成型工艺简介
粉
一.粉料制备(粉末冶金原料)
末
冶 金
粉末冶金原材料(粉末)
成
型
纯金属
纯金属
种类
非金属 化合物
合金 化合物 复合金属粉末
制取方法选择:
• 特点:
从固态金属氧
– 该法简单,费用低 化 物 或 金 属 化 合 物
• 应用
中还原制取金属粉
– 目前铁粉大部分 由还原法生产。
末,是最常用的生 产方法之一。
26
(4)电解法
从金属盐水溶液中电
粉 末
解沉积金属粉末。
冶
• 特点:
金 成
– 电解末高纯度,高密度,高压缩性;
型
(1)雾化法
粉
末 冶
• 特点:
金
– 生产效率高,成本低,易于制造高纯度
成
粉末;
型
– 合金粉末易产生成分偏析以及难以制得
小于300目的细粉。
• 应用
– 制造Fe 、Pb、Sn、Zn、Al、青铜、 黄铜等低熔点金属与合金粉末;
– 18-8不锈钢、低合金钢、镍合金等 粉末。
23
(2) 机械粉碎法 是靠压碎、击碎和磨削等作用,将
– 用回弹率表示,即线性 相对伸长的百分率,其 大小与模具尺寸计算有 直接关系。
33
• 称粉 就是
称量成型一 个压坯所需 的粉末的重 量或容量。
近两吨重大型坯料(用热等静压法)
18
粉末冶金成型
粉
§2 粉末冶金成型工艺简介
末
冶
金 成
粉料制备
压制成型
烧结
型
粉末冶金成品
烧结后的处理
19
§2 粉末冶金成型工艺简介
粉
一.粉料制备(粉末冶金原料)
末
冶 金
粉末冶金原材料(粉末)
成
型
纯金属
纯金属
种类
非金属 化合物
合金 化合物 复合金属粉末
制取方法选择:
• 特点:
从固态金属氧
– 该法简单,费用低 化 物 或 金 属 化 合 物
• 应用
中还原制取金属粉
– 目前铁粉大部分 由还原法生产。
末,是最常用的生 产方法之一。
26
(4)电解法
从金属盐水溶液中电
粉 末
解沉积金属粉末。
冶
• 特点:
金 成
– 电解末高纯度,高密度,高压缩性;
型
【培训课件】粉末冶金PPT

温度可达1500~20000C
工业生产用的大型HIP的使用温度有1200、 1400、20000C
工作物承受的是各方向均等的成形压力,故其 密度、物理和机械性质均具良好的等方性。
2021/6/10
48
热均压成型示意图
2021/6/10
49
HIP的优点
1、易于维护的管路系统。 2、工作物之装卸方式采底部进出方式。 3、装有微处理机控制系统。 4、保护用的环墙厚壁。
2021/6/10
55
烧结机构示意图
2021/6/10
56
2021/6/10
57
烧结炉的简介
金属网带炉 驼背式炉筛网输送带式炉 滚轮式。
2021/6/10
58
将压粉体加中的润滑剂在烧结前先去除。 脱腊
使烧结炉内的气体不因外在气体(氢、水气…) 侵入而受影响。 气密性
2021/6/10
66
烧结耐热材料
在高温时,具有良好的机械性质、耐氧化性 及耐腐蚀性。
可得较细渡化的粉粒。 优点:资源回收再利用 缺点: 1.无法控制粉末特性 2.生产缓慢
2021/6/10
17
一、机械制造法
球磨
2021/6/10
18
一、机械制造法
球磨 不适用:易生冷焊现象、具延展性的材料 适用:脆性材料
缺点: 1.能量在噪音及摩擦热的消耗大 2.粒度越小所需要的时间和能量相对很大 3.粉末加工硬化、不规则形状、堆积性不良
不规则的粉末在搬运的时候易改变其密度。 圆球状的粉末最安定。
结论:将粉末充分的研磨以减低其形状的影响。
2021/6/10
38
在研磨时受氧化程度及冷作加工的影响。
氧化程度
工业生产用的大型HIP的使用温度有1200、 1400、20000C
工作物承受的是各方向均等的成形压力,故其 密度、物理和机械性质均具良好的等方性。
2021/6/10
48
热均压成型示意图
2021/6/10
49
HIP的优点
1、易于维护的管路系统。 2、工作物之装卸方式采底部进出方式。 3、装有微处理机控制系统。 4、保护用的环墙厚壁。
2021/6/10
55
烧结机构示意图
2021/6/10
56
2021/6/10
57
烧结炉的简介
金属网带炉 驼背式炉筛网输送带式炉 滚轮式。
2021/6/10
58
将压粉体加中的润滑剂在烧结前先去除。 脱腊
使烧结炉内的气体不因外在气体(氢、水气…) 侵入而受影响。 气密性
2021/6/10
66
烧结耐热材料
在高温时,具有良好的机械性质、耐氧化性 及耐腐蚀性。
可得较细渡化的粉粒。 优点:资源回收再利用 缺点: 1.无法控制粉末特性 2.生产缓慢
2021/6/10
17
一、机械制造法
球磨
2021/6/10
18
一、机械制造法
球磨 不适用:易生冷焊现象、具延展性的材料 适用:脆性材料
缺点: 1.能量在噪音及摩擦热的消耗大 2.粒度越小所需要的时间和能量相对很大 3.粉末加工硬化、不规则形状、堆积性不良
不规则的粉末在搬运的时候易改变其密度。 圆球状的粉末最安定。
结论:将粉末充分的研磨以减低其形状的影响。
2021/6/10
38
在研磨时受氧化程度及冷作加工的影响。
氧化程度
粉末冶金知识PPT幻灯片课件

蒸汽处理
出货 精整
机加工
油浸
油浸
洗净
洗净
出货
出货
油浸
油浸
出货
出货
3
1.2 后处理的选用依据
• 后处理的选用:①根据客户图面要求;②根据产品的使用 要求。
• 1. 提高产品强度: • 1.1 热处理:适用于综合机械性能要求较高的产品,硬度
一般可以达到HRC25以上(Hv0.2 450以上)。产品一般是 承受较大载荷的齿轮及一些耐磨性较高的产品。 • 1.2 蒸汽处理:适用于综合机械性能要求中等的产品,硬 度一般可达到HRB70以上。此工艺在产品表面形成致密的 氧化膜保护层,耐磨性能较好。产品一般是压缩机的阀板 及电动工具类的压板。 2. 提高产品尺寸精度: 2.1 精整:适用于一些齿形精度较高或尺寸精度较高但
长,段长);密度等。
29
30
31
• 成形机台吨位越大,所 能成形的产品也越大。
32
成形模具
下冲 芯棒 上冲
中模
33
上冲
中模
模具组立 下冲
芯棒
34
其他一些模具形式
35
成形三步曲(动作状态)
• 1.充填 • 2.压制 • 3.脱模
36
将粉末充填在模腔中
成形三步曲之:充填状态
37
上冲进入中模将粉末压制成生胚 成形三步曲之:压制状态
24
• 2.22对于轴套,隔套等定位零件,SMF40和SMF50系列 (对应MPIF FC和FN系列)均可,视其功能及工作要 求选用
• 对于荷重齿轮,链轮,凸轮和棘轮,推荐选用SMF50 系列其中的镍和钼均可起到提高强度和淬透性的作用
• 对于要求耐磨和高强度的产品,可以采用温压成形工 艺,并可采用高温烧结来提高密度与强度
粉末冶金PPT课件

• 颗粒表面状态 : 内表面、外表面、 全表面full surface , 内 表 面 远 比 外 表 面 复 杂 complicated、丰富。
第8页/共149页
Part 2:粉末性能表征
2、化学性能 ChemistryFeatures
• 原材料成分elements与组成 compositions,纯度标准,粉末国家及部 级标准GB and BB
第15页/共149页
Part 2:粉末性能表征
Particle shape and the suggested qualitative descr第i1p6页t/o共1r4s9页
Part 2:粉末性能表征
• The equivalent spherical diameter can be determined from surface area, volume project area or settling rate measurements.
第21页/共149页
Part 2:粉末性能表征
• 球形度sphere ability :与颗粒相同体积same volume的相当球体的表面积对颗粒的实际表面积real surface area之比称为球形度。它不仅表征express 了颗粒的symmetry对称性,而且与颗粒的表面粗糙 程度有关。一般情况下,球形度均远小于1。
• Usually,coarse particle 颗粒以single 单 颗 粒 存 在 , fine particles 由 于 表 面 big surface发达而结合binding together,以二 次颗粒形式存在。 第6页/共149页
Part 2:粉末性能表征
• 颗粒的内部结构:与颗粒的外部结构比较, compared with out surface structure, 颗 粒 的 very complicated structures in particles,内部结构非常复杂
第8页/共149页
Part 2:粉末性能表征
2、化学性能 ChemistryFeatures
• 原材料成分elements与组成 compositions,纯度标准,粉末国家及部 级标准GB and BB
第15页/共149页
Part 2:粉末性能表征
Particle shape and the suggested qualitative descr第i1p6页t/o共1r4s9页
Part 2:粉末性能表征
• The equivalent spherical diameter can be determined from surface area, volume project area or settling rate measurements.
第21页/共149页
Part 2:粉末性能表征
• 球形度sphere ability :与颗粒相同体积same volume的相当球体的表面积对颗粒的实际表面积real surface area之比称为球形度。它不仅表征express 了颗粒的symmetry对称性,而且与颗粒的表面粗糙 程度有关。一般情况下,球形度均远小于1。
• Usually,coarse particle 颗粒以single 单 颗 粒 存 在 , fine particles 由 于 表 面 big surface发达而结合binding together,以二 次颗粒形式存在。 第6页/共149页
Part 2:粉末性能表征
• 颗粒的内部结构:与颗粒的外部结构比较, compared with out surface structure, 颗 粒 的 very complicated structures in particles,内部结构非常复杂
粉末冶金ppt

烧结气氛 sintering atmosphere
1.烧结气氛的作用与分类
作用:
控制烧结体与环境之间的化学反应— 保护作用 如氧化和脱碳
及时带走烧结坯体中润滑剂和成形剂的分解产 物— 净化作用
分类
氧化性气氛:如纯Ag或Ag-氧化物复合材料及氧化 物陶瓷的烧结
还原性气氛:含有H2或CO组份的烧结气氛 如硬质合金烧结用氢气氛,铁基、铜基粉末冶 金零件的含氢气氛
的位移、重排。因此有理由认为热压过程比前述塑
性流动和扩散蠕变更为复杂,难以用一个统一的热
压动力学方程描述。在分析了多数氧化物和碳化物
等硬质粉末的热压实验曲线后,可以看到致密化过
程大致有三个连续过渡的基本阶段:(1)快速致密
化阶段——又称微流动阶段,即在热压初期,颗粒
发生相对滑动、破碎和塑性变形,类似冷压的颗粒
重排,致密化速度较大,主要取决于粉末的粒度、
形状及材料的断裂和屈服强度。这阶段的线收缩,
由费尔坦表示为
;(2)
致密化减速阶段——以塑性流动为主要机构,类似
烧结后期的闭孔收缩阶段,可适用默瑞热压方程 式,即孔隙度的对数与时间成线性关系;(3)趋近 终极密度阶段—— 受扩散控制的完全停止,这阶段 可适用柯瓦尔钦科蠕变为主要机构,此时,晶粒长 大使致密化速度大为降低,达到终极密度后,致密 化过程萨姆索诺夫或科布尔方程。
1、塑性流动理论 1949年,麦肯齐和舒特耳沃思发表了塑性流动烧结
理论,奠定了热压塑性流动理论的基础。他们根 据烧结后期形成闭孔的特点,提出图5-72所示模 型,即一个闭孔(半径r1)和包围闭孔的不可压 缩的致密球壳。孔隙的表面应力(-2γ/r1)使孔隙 周围的材料产生压应力而变形,迫使孔隙缩小。 根据塑性体(又称宾厄姆体)的流动方程
1.烧结气氛的作用与分类
作用:
控制烧结体与环境之间的化学反应— 保护作用 如氧化和脱碳
及时带走烧结坯体中润滑剂和成形剂的分解产 物— 净化作用
分类
氧化性气氛:如纯Ag或Ag-氧化物复合材料及氧化 物陶瓷的烧结
还原性气氛:含有H2或CO组份的烧结气氛 如硬质合金烧结用氢气氛,铁基、铜基粉末冶 金零件的含氢气氛
的位移、重排。因此有理由认为热压过程比前述塑
性流动和扩散蠕变更为复杂,难以用一个统一的热
压动力学方程描述。在分析了多数氧化物和碳化物
等硬质粉末的热压实验曲线后,可以看到致密化过
程大致有三个连续过渡的基本阶段:(1)快速致密
化阶段——又称微流动阶段,即在热压初期,颗粒
发生相对滑动、破碎和塑性变形,类似冷压的颗粒
重排,致密化速度较大,主要取决于粉末的粒度、
形状及材料的断裂和屈服强度。这阶段的线收缩,
由费尔坦表示为
;(2)
致密化减速阶段——以塑性流动为主要机构,类似
烧结后期的闭孔收缩阶段,可适用默瑞热压方程 式,即孔隙度的对数与时间成线性关系;(3)趋近 终极密度阶段—— 受扩散控制的完全停止,这阶段 可适用柯瓦尔钦科蠕变为主要机构,此时,晶粒长 大使致密化速度大为降低,达到终极密度后,致密 化过程萨姆索诺夫或科布尔方程。
1、塑性流动理论 1949年,麦肯齐和舒特耳沃思发表了塑性流动烧结
理论,奠定了热压塑性流动理论的基础。他们根 据烧结后期形成闭孔的特点,提出图5-72所示模 型,即一个闭孔(半径r1)和包围闭孔的不可压 缩的致密球壳。孔隙的表面应力(-2γ/r1)使孔隙 周围的材料产生压应力而变形,迫使孔隙缩小。 根据塑性体(又称宾厄姆体)的流动方程
粉末冶金材料PPT课件

16.5
600
7.1
245
21.0
800
7.3
260
25.5
7
浸铜烧结铁-石墨材料的性能
化学成分 (%) Fe Cu C
密度 抗拉强 度
(g/cm3)
(MPa)
延伸 率
(%)
硬度
(HB)
孔隙 度
(%)
0
8.02
468
8
74
0.25 7.94
593
5
78
余 15 0.5 7.89
644
4
87 2~3
• 铝基粉末冶金结构零件也在大批量生产。铝粉如此之软,以 致压制成形时,铝粉压坏强烈趋向于黏附在阴模。为克服这 种趋向,必须在铝粉中加人大量润滑剂。使用较粗的铝粉颗 粒,也能减小这种黏附倾向。铝基台金结构零件压坯是由元 素铝粉、铜粉、镁粉、硅粉及外加1.5%(质量分数)润滑剂 的混合粉压制成形的。压制时,采用低压制压力,以便压坯 具有足够高的开孔孔隙度.从而烧结时使润滑剂能迅速排出。
• 烧结温度位于600℃附近。烧结时铝与铜、镁及硅反应形成 液相。铝粉颗粒表面的氧化物层相当薄,因此液相得以在金 属粉末颗粒之间铺展和很好地接触。
• 最好的烧结气氛是-40℃左右的低露点、高纯氮气。往往在 烧结后随即进行热处理,以通过时效硬化强化台金。
33
1.3 烧结摩擦材料
• 1.3.1 概述 • 1.3.2 材料组成及摩擦条件对性能的影响 • 1.3.3 烧结摩擦材料的性能与制造工艺 • 1.3.4 发展方向
15
16
铜熔渗烧结钢结构
• 用铜熔渗烧结钢结构零件,可改进结构零件的密度均一性,提高结构 零件材料的抗拉强度、硬度、韧性、疲劳强度及冲击性能。烧结铁结 构零件,其各个截面的密度不同.熔渗铜可使各截面的密度趋于均一。
粉末冶金课件

•塑耐性腐变蚀形性能等
•表面状态
•表面张力等
粉末冶金成型
§2 粉末冶金成型工艺简介
3.粉末旳预处理与混合
(1)粉末旳预处理 (2)粉末混合
• 混合 – 两种以上化学组元相混合 (相同化学构成旳粉末旳混合叫做合并。)
• 目旳 – 使性能不同旳组元形成均匀旳混合物, 以利于压制和烧结时状态均匀一致。
为何预处理? a.虽然在同一条件下制造旳同一粉末,其纯度和粒
• 应用 – 制造Fe 、Pb、Sn、Zn、Al、青铜、 黄铜等低熔点金属与合金粉末; – 18-8不锈钢、低合金钢、镍合金等 粉末。
(2) 机械粉碎法
是靠压碎、击碎和磨削等作用,将 块状金属或合金机械地粉碎成粉末。
粉末冶金成型
(2) 机械粉碎法 • 特点:
– 既是一种独立制粉措施, – 又常作为某些制粉措施不可缺乏旳
▪ 据作业旳连续性分 – 间歇式烧结炉—坩埚炉箱式炉 – 高频或中频感应炉
– 大气环境
– 连续式烧结炉
• 产生“过烧”废品
– 烧结温度过高或时间过长,使压坯歪曲和变形,其晶粒也 大;
• 产生“欠烧”废品
– 烧结温度过低或时间过短,产品结合强度等性能达不到要 求;
粉末冶金成型
§2 粉末冶金成型工艺简介
粉末冶金成型
§1 概 述
五、应用
板、带、棒、管、丝等多种型材
成批或 齿轮、链轮、棘轮、轴套类等多种零件 大量生产 重量仅百分之几克旳小制品
近两吨重大型坯料(用热等静压法)
粉末冶金成型
粉末冶金成型
§2 粉末冶金成型工艺简介
粉料制备
压制成型
烧结
粉末冶金成品
烧结后旳处理
§2 粉末冶金成型工艺简介
粉末冶金学(全套课件325P)

粉末冶金的特点(续2)
1)高合金粉末冶金材料的性能比熔 铸法生产的好。 2)生产难熔金属材料或制品,一般 要依靠粉末冶金法,如钨、钼等 难熔金属。
粉末冶金的不足之处: 粉末成本高 粉末冶金制品的大小和形状受到一定的限制 烧结零件的韧性较差 但是,随着粉末冶金技术的发展,这些问 题正在逐步解决中,例如,等静压成形技术已 能压制较大的和异形的制品;粉末冶金锻造技 术已能使粉末冶金材料的韧性大大提高等等。
0-7 粉末冶金专家—黄培云1
粉末冶金专家—黄培云2 技术职称 : 教授 院 士 : 中国工程院院士 出生日期 : 1917-08-23 出生地点 : 福建 福州 专业领域 : 金属材料 ; 粉末冶金 外 语 : 英语 ; 德语 ; 俄语 ; 日语 通讯地址 : 湖南省长沙市中南工业大学 工作单位: 中南工业大学 职 务: 学术顾问
学和力学性能。
0-3 粉末冶金发展历史 公元3000年前,埃及人已经使用铁粉 公元300年,印度德里铁柱是用大约 6.5t 还原铁粉制成的。 19世纪初,为制铂,粉冶重焕青春 20世纪初,粉末冶金制取W 20世纪40年代,欧洲开始生产Fe粉 汽车工业推动了现代粉末冶金技术的进步 新材料新工艺—金属陶瓷、弥散强化材料、 高速钢、超合金
粉末冶金专家 学 历: —黄培云3
时 间: 1934-1938 学 校: 清华大学 所获学位: 学士 国 别: 中国 时 间: 1941-1945 学 校: 麻省理工学院 所获学位: 科学博士 国 别: 美国
粉末冶金专家—黄培云4
我国粉末冶金学科的主要创始人之一。
创立了著名的粉末压制理论和烧结理论。研制成 功多种用于核、航天、航空、电子等领域的粉末冶 金材料。
粉末冶金专家—黄培云7
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
还原铁粉复压复烧后的密度与性能
复压密度 抗拉强度 复压压力 (g/cm3) (MPa) (MPa) 200 400 600 800 6.3 6.8 7.1 7.3 157 201 245 260 延伸率 (%) 16.0 16.5 21.0 25.5
浸铜烧结铁-石墨材料的性能
化学成分 (%) ) Fe Cu C 0 0.25 余 15 0.5 0.75 1.0 密度
制造工艺
• 原料粉末及润滑剂 雾化Al,元素粉末 容易压 原料粉末及润滑剂:雾化 元素粉末 雾化 元素粉末,容易压 烧结时出现液相,利于烧结 制,烧结时出现液相 利于烧结 烧结时出现液相 利于烧结. • 压制 不大的压力下 能够达到 压制:不大的压力下 能够达到95%的相对密度 不大的压力下,能够达到 的相对密度. 的相对密度 • 烧结 润滑剂 湿度低 灰分少 与烧结气氛 低露 烧结:润滑剂 湿度低,灰分少 与烧结气氛(低露 润滑剂(湿度低 灰分少)与烧结气氛 度以下),添加溶解度高的合金元素 点, -40度以下 添加溶解度高的合金元素 度以下 添加溶解度高的合金元素. • 烧结后处理
• Fe-Mn-C系 系 固溶强化,提高淬透性 固溶强化 提高淬透性 资源丰富,价格低 资源丰富 价格低 易于氧化 • Fe-Cr-C系 系 改善力学性能 抗氧化性,耐腐蚀性 抗氧化性 -P固溶体,固溶强化 缩小奥氏体区,促进扩散 Fe-P在1050度共晶,形成液相,促进烧结 以合金形式加入
76 103 438
45 55 65
2) 烧结黄铜
耐腐蚀性,可加工性,光洁表面 耐蚀,外观好的零件.兵器,建筑,锁,螺母等 Zn:10~35%,一般用雾化粉末. P,Pb可改善性能,但Pb有害. 压制压力600~800MPa,烧结温度:固相线下 100度. • 避免Zn的挥发:加热与冷却速度;缩短时间;干 燥气氛;使用含锌填料 • • • • •
1.烧结机械零件与材料 1.烧结机械零件与材料 • 1.1 烧结结构零件 • 1.2 烧结减摩零件 • 1.3 烧结摩擦零件
烧结机械零件与材料的分类
类别 烧结结构零件 材料及制品名称
烧结铁基材料:烧结铁,碳钢,合金钢,不锈钢 烧结铜基材料:烧结青铜,黄铜,Cu-Ni合金,弥散强化 烧结铝基材料:烧结铝合金,弥散强化铝 烧结镍基材料: 烧结钛基材料: 多孔轴承:铁基,铜基,铝基,不锈钢基 固体自润滑材料:铁基,铜基,银基,双金属 铜基摩擦零件: 铁基摩擦零件: 碳-碳复合材料: 陶瓷基复合摩擦材料;
70 80 110
64 79 85
1.1.3 烧结铝基结构材料
• 特点 强度较高 重量轻 耐腐蚀 导热导电性好 特点:强度较高 重量轻,耐腐蚀 强度较高,重量轻 耐腐蚀,导热导电性好 • 主要用途:汽车活塞 连杆 家庭用具 办公器械 主要用途 汽车活塞,连杆 家庭用具,办公器械 汽车活塞 连杆,家庭用具 办公器械, 飞机构件 • 强化原理 与合金元素形成的金属间化合物 强化原理:与合金元素形成的金属间化合物 在固溶体中的溶解度变化为基础. 在固溶体中的溶解度变化为基础 • 常用体系 常用体系:Al-Cu, Al-Cu-Si, Al-Cu-Mg等. 等
铜熔渗烧结钢结构
• 用铜熔渗烧结钢结构零件,可改进结构零件的密度均一性,提高结构 用铜熔渗烧结钢结构零件,可改进结构零件的密度均一性, 零件材料的抗拉强度、硬度、韧性、疲劳强度及冲击性能。 零件材料的抗拉强度、硬度、韧性、疲劳强度及冲击性能。烧结铁结 构零件,其各个截面的密度不同.熔渗铜可使各截面的密度趋于均一。 构零件,其各个截面的密度不同.熔渗铜可使各截面的密度趋于均一。 • 也可以仅对结构零件的某一部分熔渗铜,将铜粉,铜粉压坯或铜线段 也可以仅对结构零件的某一部分熔渗铜,将铜粉, 置于结构零件压坯的熔渗部位, 置于结构零件压坯的熔渗部位,在烧结时铜熔化后借毛细作用灌入相 应部位,例如,用铜熔渗烧结钢齿轮的齿,称为局部熔渗。 应部位,例如,用铜熔渗烧结钢齿轮的齿,称为局部熔渗。用局部熔 渗可控制熔渗铜结构零件的密度与力学性能的变化。 渗可控制熔渗铜结构零件的密度与力学性能的变化。通过熔渗铜还能 将几个零件组合成一个形状复杂的结构零件, 将几个零件组合成一个形状复杂的结构零件,例如汽车分动器中的行 星齿轮托架。将一结构零件分成几部分分别压制成形,将各部分的压 星齿轮托架。将一结构零件分成几部分分别压制成形, 坯组装后同时进行烧结与熔渗铜,通过铜焊将各部分压坯连接成一体, 坯组装后同时进行烧结与熔渗铜,通过铜焊将各部分压坯连接成一体, 形成一形状复杂的结构零件。 形成一形状复杂的结构零件。 • 熔渗铜时,被熔渗的零件压坯的尺寸可能发生变化,通常量胀大,这 熔渗铜时,被熔渗的零件压坯的尺寸可能发生变化,通常量胀大, 些尺寸变化可能不均一,较难控制。 些尺寸变化可能不均一,较难控制。
烧结青铜零件的成分与性能
化学成分 (%) Cu: 87.5~90.5 Sn: 9.5~10.5 C≤1.75 Fe≤0.1 其它总量 ≤0.05 密度 (g/cm3) 抗拉强度 (MPa) 延伸率 (%) 压缩屈服强 度 (MPa) 硬度 (HRH)
6.4 6.8 7.2
93 110 138
1 2 3
4). 热处理的特点
原理,工艺与普通钢基本相同 孔隙度超过10%的制品不能盐浴加热 孔隙使材料的导热性变差 防止内部的渗碳与氮化 需保护气体,防止表面氧化与脱碳 淬火介质一般采用油
5). 基本材料体系
• Fe-C 体系 含碳量的控制 游离石墨的防止 组织性能还与烧结后的冷却速度有关
Fe-C 体系 Fe• 由铁粉与石墨粉的混合粉成形的压坯,在烧结时,石墨中的碳扩散到 由铁粉与石墨粉的混合粉成形的压坯,在烧结时, 铁中,形成奥氏体(碳在高温形态铁中的固溶体) 铁中,形成奥氏体(碳在高温形态铁中的固溶体)压坯烧结后冷却到 室温时,奥氏体发生相变,化合碳含量为 形成珠光体( 室温时,奥氏体发生相变,化合碳含量为0.80%时,形成珠光体(铁 % 素体与渗碳体的共晶混合物);化合碳含量低于0.80%(即亚共析钢 时, 即亚共析钢)时 素体与渗碳体的共晶混合物);化合碳含量低于 );化合碳含量低于 % 即亚共析钢 形成铁素体与珠光体的混合物;化合碳含量高于 即过共析钢)时 形成铁素体与珠光体的混合物;化合碳含量高于0.80%(即过共析钢 时, % 即过共析钢 形成珠光体与渗碳体的混合物。 形成珠光体与渗碳体的混合物。烧结碳素钢的金相组织和常规的共析 钢、亚共析钢及过共析钢是一致的。普碳钢的强度因含碳量增加而增 亚共析钢及过共析钢是一致的。 高。碳钢的抗拉强度一直增高到共析组成,当含碳量更高时,抗拉强 碳钢的抗拉强度一直增高到共析组成,当含碳量更高时, 度大体上处于恒定状态。 度大体上处于恒定状态。 • 由铁粉与石墨粉的混合粉制成的结构零件,其材料的强度同样随着含 由铁粉与石墨粉的混合粉制成的结构零件, 碳量增加而增高。在化合碳含量达到共晶点之前, 碳量增加而增高。在化合碳含量达到共晶点之前,强度随着化合碳含 丛增加而增高;化合碳含量超过共晶点之后,由于连续的、 丛增加而增高;化合碳含量超过共晶点之后,由于连续的、脆性的渗 碳体网络出现,烧结碳钢的横向断裂强度减低。 碳体网络出现,烧结碳钢的横向断裂强度减低。
Fe-Ni-C系与Fe-Ni-Cu-C系 Fe-Ni- 系与Fe-Ni-CuNi:稳定奥氏体,固溶强化 降低各元素的扩散速度,提高淬透性 需要选用细的Ni粉 随Ni含量增加,强度增加
Fe-Ni-C系 Fe-Ni• 通常.也用铁粉、镍粉及石墨粉的混合粉生产铁基粉末冶 通常.也用铁粉、 金结构零件。由铁粉与镍粉的混合粉末压制成形的压坯, 金结构零件。由铁粉与镍粉的混合粉末压制成形的压坯, 烧结时镍将扩散到铁中形成固熔体。 烧结时镍将扩散到铁中形成固熔体。添加镍粉的颗粒大小 与烧结温度决定固溶体的均一性, 与烧结温度决定固溶体的均一性,从而影响到对固溶体的 强化作用大小。细镍粉(如羰基镍粉 和高温烧结(1315℃烧 如羰基镍粉)和高温烧结 强化作用大小。细镍粉 如羰基镍粉 和高温烧结 ℃ 可使固溶体较快地均一化: 结)可使固溶体较快地均一化: 可使固溶体较快地均一化 • 较难评估镍粉与石墨粉对烧结镍钢力学性能的综合影响。 较难评估镍粉与石墨粉对烧结镍钢力学性能的综合影响。 烧结时,镍可能扩散不充分,残留有富镍奥氏体, 烧结时,镍可能扩散不充分,残留有富镍奥氏体,从烧结 温度冷却时, 温度冷却时,这些富镍区可能溶解足够数量的碳形成马氏 因此由铁粉、镍粉及石墨粉的混合粉压制-烧结生产的 体,因此由铁粉、镍粉及石墨粉的混合粉压制 烧结生产的 烧结镍钢零件,微观组织非常复杂。 烧结镍钢零件,微观组织非常复杂。
结构零件用烧结黄铜零件的成分与性能
化学成分 (%) Cu: 77.0~80.0 Pb: 1.0~2.0 C≤1.75 其余为Zn 密度 (g/cm3) 抗拉强度 (MPa) 延伸率 (%) 压缩屈服强 度 (MPa) 硬度 (HRH)
7.2 140 7.7 160 8.0 180
9.0 10.0 13.0
(g/cm3) ) (MPa) ) (%) )
抗拉强 度
延伸 率
硬度
(HB) )
孔隙 度
(%) )
8.02 7.94 7.89 7.90 7.69
468 593 644 713 720
8 5 4 4 4
74 78 87 90 93 2~3
3). 合金化的特点
• 金属学原理与普通钢一致 • 合金元素选用上的差别 孔隙度对合金元素的强化效果有直接影响,密 孔隙度对合金元素的强化效果有直接影响 密 度小于6.5g/cm3时效果不好 度小于 强化效果好的元素Cr,Mn易于氧化 合金形式 易于氧化,合金形式 强化效果好的元素 易于氧化 Cu,P在烧结钢中有强化作用 在烧结钢中有强化作用
Fe-Cu-C与Fe-Cu-Mo-C系 Fe-CuFe-Cu-Mo• • • • • • • 烧结铜:10%以内 以内 烧结铜 熔浸铜:15~25% 熔浸铜 较佳配比为C,1.5%;Cu,8% 较佳配比为 时效作用比较明显 对尺寸变化有很大影响 Mo的主要作用是固溶强化 细化径粒 的主要作用是固溶强化,细化径粒 的主要作用是固溶强化 Mo的扩散慢 一般采用合金粉 的扩散慢,一般采用合金粉 的扩散慢