整式的运算知识点汇总
整式及其加减 知识点总结

整式及其加减知识点总结一、整式的概念整式是由数字、字母和它们的乘积或商从而可以化简成(即分母不含字母的)整数幂次的代数和所组成的代数表达式叫做整式。
(a、b是常数,x是变量)二、整式的表达形式整式的表达形式主要有以下几种:1. 单项式:一个单独的数字、字母或者它们的乘积或商。
例如:3x、-5、a、bc、-7m^2n^32. 二项式:由两个单项式相加或相减而成。
例如:2x+3y、a^2-5b、-3x^2+4y^33. 多项式:由两个以上的单项式相加或相减而成。
例如:5x+3y-7、4a^2b+2ab^2+6、-2m^2n^2+3mn三、整式的基本性质1. 整式相加:只有同类项才能相加。
2. 整式相减:也只有同类项才能相减。
3. 同类项:具有相同的字母变量和其指数的项叫做同类项。
4. 单项式的加减法:单项式相加减时,先合并同类项,再进行加减运算。
四、整式的加减运算1. 合并同类项:将同类项合并成一项,系数相加。
例如:3x+2x+5x=10x2. 加减运算:合并同类项后,进行系数的加减运算。
例如:2x^2-3x^2= -x^2五、整式的乘法1. 单项式的乘法:用单项式乘以多项式时,将单项式的每一项与多项式进行乘法运算。
例如:2x(3x+5)=6x^2+10x2. 多项式的乘法:用多项式乘以多项式时,将每一项与另一个多项式进行乘法运算,然后将结果合并。
例如:(3x+2)(4x-7)=12x^2-21x+8x-14=12x^2-13x-14六、整式的除法整式的除法相对来说较为复杂,主要需要将被除式与除数进行长除法运算,得到商和余数。
例如:(3x^2+2x-5)/(x-3)=3x+11+28/(x-3)七、整式的加减乘除综合运算整式的加减乘除综合运算需要遵循一定的运算法则,主要是化整法、分解因式、提公因式、分项分式等运算方法。
八、整式方程整式方程是指含有未知数的整式的等式,例如:2x+3=7,4x^2-5x=0。
整式知识点总结归纳

整式知识点总结归纳
内容:
一、整式的概念
整式是只包含整数系数的一元多项式。
整式可以表示为_ ^ + _{-1} ^{-1} + ... + _1 + _0的形式,其中_0,_1,..._都是整数。
二、整式的运算
1. 整式的加法:两个整式可以直接相加,系数按照代数法则相加。
例如:(3^2 - 2 + 5) + (2^2 + - 1) = (3 + 2)^2 + (-2 + 1) + (5 - 1) = 5^2 - + 4
2. 整式的减法:将被减整式的每一项系数取反,然后与被减整式相加。
例如:(3^2 - 2 + 5) - (2^2 + - 1) = (3^2 - 2 + 5) + (-2^2 - + 1) = ^2 - 3 + 6
3. 整式的乘法:遵循代数乘法分配律和乘幂法则进行计算。
例如:(2 + 3)(^2 - 1) = 2(^2 - 1) + 3(^2 - 1) = 2^3 - 2 + 3^2 - 3
4. 整式的除法:遵循代数除法的步骤,将被除数按照余数进行分割。
例如:(^3 + 3^2 - 2) ÷ ( + 2) = ^2 + - 2 余数7
三、整式的基本操作
1. 通分:将整式中变量的指数统一到最大的那个指数。
2. 合并同类项:将整式中同类项的系数合并。
3. 提取公因式:找出整式所有项的公共因式并提出。
4. 因式分解:将整式分解为多个整式相乘的形式。
常用因式分解法有:差的平方,共同因式分解,分组等。
综上,我们系统地归纳总结了整式的基本概念和运算规则,整理出整式的各种基本操作,这对我们全面掌握和运用整式知识点是非常必要的。
整式知识点总结归纳总结

整式知识点总结归纳总结一、整式的概念在代数中,整式是由字母和数字通过加减乘除及乘方等代数运算符号组成的式子。
整式通常由多项式和单项式组成,这些式子可以是常数、变量、或者变量的乘积,也可以是变量的幂次积。
二、整式的分类1. 单项式:只含有一个项的整式,例如3x、-5y、2a^2等。
2. 多项式:含有两个或多个项的整式,例如2x+3y、4a^2-5b+1等。
3. 基本整式:可以表示为单项式或单项式与多项式的和的整式,例如3x、5+2a-3b等。
三、整式的运算1. 整式的加法和减法:对整式进行加法和减法运算时,首先将同类项进行合并,然后再进行简化和化简。
2. 整式的乘法:两个整式相乘时,可以利用分配律和乘法结合律进行展开和化简。
3. 整式的除法:整式的除法通常需要将被除式分解成因式的乘积,然后再进行约分和化简。
四、整式的因式分解1. 将整式分解成两个或多个整式的乘积的过程称为因式分解。
因式分解可以简化计算和求解方程的过程,是代数运算中的重要内容。
2. 因式分解的方法:常见的因式分解方法有提公因式法、分组法、平方差公式、换元法等。
3. 因式分解的应用:因式分解可以用于解决多项式方程、求多项式的根、简化复杂表达式等问题。
五、整式的求值1. 求整式的值:当给定整式的变量取值时,可以通过代入变量的值得到整式的数值结果。
这个过程称为求整式的值。
2. 求整式的值的方法:可以通过代数运算规则和整式的性质进行计算,也可以通过代入变量的值进行计算。
六、整式的应用1. 整式在代数表达式中广泛应用于各类数学问题的建模和求解过程,包括代数方程的求解、图形分析、几何问题的求解等。
2. 在实际生活和工作中,整式也被广泛应用于各种工程技术和科学领域的计算和建模工作中。
总结:整式是代数中的重要概念,对于代数运算和数学建模具有重要的意义。
掌握整式的定义、分类、运算、因式分解和应用等知识点,有助于提高数学实际应用和解决问题的能力。
通过不断的练习和应用,可以更好地理解和掌握整式的相关知识,提高数学素养和解决实际问题的能力。
整式知识点总结初中

整式知识点总结初中一、整式的概念1. 整式的定义整式是由字母和常数的乘积及它们的和构成的代数式,其中各字母和常数的指数应是非负整数,整式通常用代数式或代数方程来表示。
例如,3x^2 + 2xy - 5y^2 + 7等都是整式。
2. 同类项同类项指的是整式中相同字母部分(含指数)相同的项。
在整式中,我们需要对同类项进行合并或整理,以便进行后续的运算和化简。
3. 等式与不等式中的整式整式在等式和不等式中具有重要的应用,可以通过整式来表达和推导数学关系,解决实际问题。
二、整式的性质1. 对称性整式具有对称性,即对于加法和乘法,整式满足交换律和结合律。
2. 乘法性质整式的乘法满足分配律、结合律和交换律。
3. 分配律对于任意整式a、b、c和d,有a(b+c) = ab + ac和(a+b)c = ac + bc。
三、整式的运算规律1. 加法和减法对于整式的加法和减法,我们需要合并同类项,并保持整式的形式不变。
2. 乘法整式的乘法需要遵循乘法分配律、结合律和交换律的规则,进行合并同类项和化简。
3. 除法整式的除法通常通过因式分解和约分的方式进行,以求得商式和余式。
4. 提取公因式对于给定的整式,我们可以通过提取公因式的方法来简化整式,方便后续的计算和分解因式。
四、整式的因式分解1. 因式分解的概念整式的因式分解是指将一个整式表示为几个整式的乘积。
因式分解在解决方程和不等式、简化计算、求根和解决实际问题中具有重要作用。
2. 因式分解的方法a) 提取公因式b) 分组分解c) 公式法d) 十字相乘法3. 因式分解的应用因式分解广泛应用于解方程、证明恒等式、求最值等问题中,是代数学习中的重要内容。
五、整式在实际应用中的作用1. 代数方程的建立与解法整式在解决现实生活中的问题中起着至关重要的作用,可以将现实问题转化为代数方程,然后运用整式的知识对方程进行求解。
2. 几何问题的代数化在几何学习中,整式也经常应用于解决几何问题,通过代数化的方法将几何问题转化为代数问题,并借助整式相关的知识来求解。
整式的运算知识点

整式的运算知识点整式是数学中的一个重要概念,是指由常数、变量及它们的乘积和幂次构成的代数式。
在代数运算中,我们常常需要对整式进行加减乘除的运算。
下面将分别介绍整式运算中的加法、减法、乘法和除法知识点。
一、加法运算在整式的加法运算中,我们对同类项进行合并。
所谓同类项,指的是具有相同的字母部分和相同的指数部分的项。
例如,对于整式3x² + 2xy + 5x² - 4xy,我们可以将其中的同类项合并,得到3x² + 2xy + 5x² - 4xy = 8x² - 2xy。
二、减法运算整式的减法运算与加法运算类似,仍然需要对同类项进行合并。
例如,对于整式3x² + 2xy - 5x² + 4xy,我们可以将其中的同类项合并,得到3x² + 2xy - 5x² + 4xy = -2x² + 6xy。
三、乘法运算整式的乘法运算是将一个整式与另一个整式相乘,需要运用分配律和同底数幂相乘的法则。
例如,对于整式(2x + 3)(4x - 5),我们可以使用分配律展开式子,得到8x² - 10x + 12x - 15 = 8x² + 2x - 15。
四、除法运算整式的除法运算需要使用长除法的方法进行。
例如,对于整式12x³ + 6x² - 4x + 8除以3x + 2,我们可以按照长除法的步骤进行计算:先将被除式按照指数从高到低的顺序排列:12x³ + 6x² - 4x + 8。
再将除式按照指数从高到低的顺序排列:3x。
将被除式的第一项与除式的第一项相除,得到4x²。
将4x²与除式相乘,得到12x³ + 8x²。
将被除式减去12x³ + 8x²,得到-2x² - 4x + 8。
重复以上步骤,直到被除式的所有项都被除尽或次数不够减为止。
初一下册数学知识点整式的运算

初一下册数学知识点整式的运算整式是由常数项、变量和它们的乘积以及乘方运算构成的,其中的常数项、变量和它们的乘积分别称为整式的常数项、单项式和多项式。
在整式的运算中,我们主要关注的是整式的加减乘除运算。
1.整式的加法运算:将两个整式的同类项相加即可。
同类项是具有相同的字母幂次的项。
例如:(2x²+3x+1)+(4x²-2x+5)=6x²+x+6注意,相加时应遵循交换律和结合律。
2.整式的减法运算:将两个整式的同类项相减即可。
例如:(5x³+2x²+3x+4)-(3x³+4x²-x-5)=2x³-2x²+4x+9减法运算可以转化为加法运算,即将减法转换为加法,然后将减数取负数。
3.整式的乘法运算:乘法运算需要用到分配律,即将一个整式的每一项与另一个整式的每一项相乘,然后将乘积相加。
例如:(2x+3)(4x-5)=8x²-10x+12x-15=8x²+2x-154.整式的除法运算:整式的除法运算涉及到整式的除法算法,需要注意除法运算时应遵循整除和长除法的步骤。
除此之外- 交换律:加法和乘法的运算可以交换,即 a + b = b + a, ab = ba。
- 结合律:加法和乘法的运算可以结合,即 (a + b) + c = a + (b + c), (ab)c = a(bc)。
- 分配律:乘法运算对加法运算具有分配律,即 a(b + c) = ab + ac。
此外,在整式的除法运算中,还有一个重要的知识点是多项式的因式分解。
因式分解可以将多项式表示为多个因子的乘积。
例如:4x²+12x=4x(x+3)以上就是初一下册数学整式的运算知识点的详细介绍。
整式的运算是初中数学的基础内容,掌握了这些知识,相信你能够顺利解决整式的加减乘除运算问题。
整式的乘除知识点总结

整式的乘除知识点总结一、幂的运算1. 同底数幂的乘法- 法则:同底数幂相乘,底数不变,指数相加。
即a^m· a^n = a^m + n (m,n都是正整数)。
- 例如:2^3×2^4=2^3 + 4=2^7。
2. 幂的乘方- 法则:幂的乘方,底数不变,指数相乘。
即(a^m)^n=a^mn(m,n都是正整数)。
- 例如:(3^2)^3 = 3^2×3=3^6。
3. 积的乘方- 法则:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
即(ab)^n=a^nb^n(n是正整数)。
- 例如:(2×3)^2=2^2×3^2 = 4×9 = 36。
4. 同底数幂的除法- 法则:同底数幂相除,底数不变,指数相减。
即a^mdiv a^n=a^m - n(a≠0,m,n都是正整数,m > n)。
- 例如:5^5div5^3 = 5^5 - 3=5^2。
- 规定:a^0 = 1(a≠0);a^-p=(1)/(a^p)(a≠0,p是正整数)。
二、整式的乘法1. 单项式与单项式相乘- 法则:把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
- 例如:3x^2y·(-2xy^3)=[3×(-2)](x^2· x)(y· y^3)= - 6x^3y^4。
2. 单项式与多项式相乘- 法则:就是用单项式去乘多项式的每一项,再把所得的积相加。
即m(a + b + c)=ma+mb+mc。
- 例如:2x(3x^2 - 4x + 5)=2x×3x^2-2x×4x + 2x×5 = 6x^3-8x^2 + 10x。
3. 多项式与多项式相乘- 法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
即(a + b)(m + n)=am+an+bm+bn。
整式的运算》知识点总结

整式的运算》知识点总结一、整式的加减运算整式的加减运算是指对两个或多个整式进行加法或减法运算。
整式的加减运算可以分为以下几种情况:1. 同类项的加减运算同类项是指含有相同字母的变量,并且这些变量的指数相同的项。
同类项的加减运算可按如下步骤进行:a) 把括号内的加减式化简为同类项;b) 把同类项的系数相加或者相减;c) 合并同类项。
例如:(2x^2 + 3x + 5) + (4x^2 + 2x - 3)合并同类项得:(2x^2 + 4x^2) + (3x + 2x) + (5 - 3) = 6x^2 + 5x + 22. 整式的加法整式的加法是指对两个或多个整式进行加法运算。
a) 把各个整式的同类项相加;b) 将合并后的结果写在一起。
例如:(2x^2 + 3x + 5) + (4x^2 + 2x - 3)合并同类项得:(2x^2 + 4x^2) + (3x + 2x) + (5 - 3) = 6x^2 + 5x + 23. 整式的减法整式的减法是指对两个整式进行减法运算。
a) 把被减式变成它的相反数;b) 将变号后的被减式写成加法;c) 把变号后的被减式和减数进行加法运算;d) 把同类项相加。
例如:(2x^2 + 3x + 5) - (4x^2 + 2x - 3)变号得:(2x^2 - 3x - 5) + (4x^2 + 2x - 3)合并同类项得:(2x^2 + 4x^2) + (3x + 2x) + (5 - 3) = 6x^2 + 5x + 2二、整式的乘法运算整式的乘法运算是指对两个整式进行乘法运算。
整式的乘法运算是比较复杂的,需要遵循以下规则进行计算:1. 同类项的乘法同类项的乘法是指对两个同类项进行乘法运算。
乘法运算时,同类项的系数相乘,变量的指数相加。
例如:(2x^2)(3x^2) = 6x^42. 乘法分配律整式的乘法运算满足乘法分配律,即a(b + c) = ab + ac。
其中a为整式,b和c为单项式或者多项式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 整式的运算知识点汇总
一. 整式
※1. 单项式
①由数与字母的积组成的代数式叫做单项式. 单独一个数或字母也是单项式. ②单项式的系数是这个单项式的数字因数.
作为单项式的系数,必须连同前面的性质符号.
一个单项式只是字母的积,并非没有系数,它的系数为1,如mn 的系数为1. ③一个单项式中,所有字母的指数和叫做这个单项式的次数.
※2.多项式
①几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数.
②含有字母的单项式有系数,多项式没有系数.
单项式和多项式都有次数, 一个多项式的次数只有一个,就是各项的次数中最高的那一项的次数.
多项式的每一项都是单项式,一个多项式的项数就是这个多项式中单项式的个数.
※3.整式
单项式和多项式统称为整式.
⎪⎩
⎪⎨⎧⎩⎨⎧其他代数式多项式单项式整式代数式
二. 整式的加减
¤1. 整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单
项式.
¤2. 括号前面是“-”号,去括号时,括号内各项要变号
三. 同底数幂的乘法
※同底数幂的乘法法则: n m n m a a a +=⋅(m,n 都是正整数)
同底数幂相乘,底数不变,指数相加
应用法则运算时,要注意以下几点:(难点、易错点)
①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是一个单项或多项式;
②单独字母指数是1时,不要误以为没有指数;
③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;
④当三个或三个以上同底数幂相乘时,法则可推广为p n m p n m a a a a ++=⋅⋅(其中m 、n 、p 均为正数);
⑤公式还可以逆用:n m n m a a a ⋅=+(m 、n 均为正整数)
四.幂的乘方与积的乘方
※1. 幂的乘方法则:mn n m a a =)((m,n 都是正整数).
幂的乘方,底数不变,指数相乘
应用法则时,要注意以下几点:(难点、易错点)
○
1注意公式的逆用:mn m n n m a a a ==)()((m,n 都是正整数). ○2底数有负号时,运算时要注意,底数是a 与(-a)虽然看着不是同底,但可以利用乘方法则化成同底,如将(-a )3化成-a 3
⎩⎨⎧-=-).(),()(,为奇数时当为偶数时当一般地n a n a a n n n
○
3底数有时形式不同,但可以化成相同。
○
4要注意区别(ab )n 与(a+b )n 意义是不同的,记得(a+b )n ≠a n +b n (a 、b 均不为零)。
※2.积的乘方法则:n n n b a ab =)((n 为正整数)
积的乘方,等于乘方的积.
注意: 公式的逆用:n n n ab b a )(=
五. 同底数幂的除法
※ 同底数幂除法法则: n m n m a a a -=÷ (a ≠0,m 、n 都是正数,且m>n). 同底数幂相除,底数不变,指数相减
应用法则时需要注意以下几点: (难点、易错点)
○
1则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a ≠0. ○
2)0(10≠=a a ,如1100=,(-2.50=1),但00无意义. ○3p p a
a 1=-( a ≠0,p 是正整数), 而0-1,0-3都是无意义的;当a>0时,a -p 的值一定是正的; 当a<0时,a -p 的值可能是正也可能是负的,如4
1(-2)2-=,81)2(3-=-- ○
4运算要注意运算顺序. 六. 整式的乘法
※1. 单项式乘法法则:
1 系数相乘
单项式相乘 2 同底数幂相乘
3 单独字母连同它的指数作为积的因式
单项式乘法法则在运用时要注意以下几点:(难点、易错点)
○
1积的系数等于各因式系数积(先确定符号,再计算绝对值)。
这时容易出现的错误的是,将系数相乘与指数相加混淆;
○
2单项式乘法法则对于三个以上的单项式相乘同样适用; ○
3单项式乘以单项式,结果仍是一个单项式。
※2.单项式与多项式相乘
an am n m a +=+)(
单项式与多项式相乘,用单项式去乘多项式的每一项,再把所得的积相加。
单项式与多项式相乘时要注意以下几点:(难点、易错点)
①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同; ②运算时要注意积的符号,多项式的每一项都包括它前面的符号; ③在混合运算时,要注意运算顺序。
※3.多项式与多项式相乘
bn bm an am n m b a +++=++))((
多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得积相加。
多项式与多项式相乘时要注意以下几点:(难点、易错点)
①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;
②多项式相乘的结果应注意合并同类项;
七.平方差公式
平方差公式: 22))((b a b a b a -=-+
口诀:两数和乘两数差,积的结果平方差
结构特征:
①左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数; ②公式右边是两项的平方差,即相同项的平方与相反项的平方之差。
八.完全平方公式
完全平方公式: 2222)(b ab a b a +±=±;
口诀:首平方,尾平方,2倍首尾放中央;
结构特征:
①公式左边是二项式的完全平方;
②公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。
易错点:○
1在运用完全平方公式时,要注意公式右边中间项的符号, ○
2避免出现222)(b a b a ±=±这样的错误。
九.整式的除法
¤1.单项式除法单项式
1 系数相除
单项式相除 2 同底数幂相除
3 只在被除式里出现的字母连同它的指数作为商的因式 ¤2.多项式除以单项式
多项式除以单项式,先把多项式的每一项除以单项式,再把所得的商相加, 注意:把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。