北航最优化方法最新最全答案2015版
北航最优化方法有关大作业参考

1流量工程问题重述定一个有向网 G=(N,E) ,此中 N 是点集, E 是弧集。
令 A 是网 G 的点弧关矩,即 N×E 矩,且第 l 列与弧里 (I,j) ,第 i 行元素 1 ,第 j 行元素 -1 ,其他元素 0。
再令b m=(b m1 ,⋯,b mN )T,f m =(f m1,⋯ ,f mE )T,可将等式束表示成:Af m=b m本算例一典 TE 算例。
算例网有 7 个点和 13 条弧,每条弧的容量是 5 个位。
别的有四个需求量均 4 个位的源一目的,详细的源点、目的点信息如所示。
里了,省区了未用到的弧。
别的,弧上的数字表示弧的号。
此,c=((5,5 ⋯,5) 1 )T,×13依据上述四个束条件,分求得四个状况下的最决议量x=((x 12 ,x13,⋯ ,x75)1×13 )。
1 网拓扑和流量需求7 节点算例求解算例1(b1=[4;-4;0;0;0;0;0]T)转变为线性规划问题:Minimize c T x1Subject to Ax1=b1x1>=0 利用 Matlab 编写对偶纯真形法程序,可求得:最优解为 x1*=[4 0 0 0 0 0 0 0 0 0 0 0 0] T对应的最优值 c T x1=201.2.2 算例 2(b2=[4;0;-4;0;0;0;0] T)Minimize c T x2Subject to Ax2=b2X2>=0 利用 Matlab 编写对偶纯真形法程序,可求得:最优解为 x2*=[0 4 0 0 0 0 0 0 0 0 0 0 0]T对应的最优值 c T x2=201.2.3 算例 3(b3=[0;-4;4;0;0;0;0] T)MinimizeTc x3Subject to Ax3=b3X3>=0 利用 Matlab 编写对偶纯真形法程序,可求得:最优解为 x3*=[4 0 0 0 4 0 0 0 0 0 0 0 0] T对应的最优值 c T x3=40算例4(b4=[4;0;0;0;0;0;-4]T )Minimize c T x4Subject to Ax4=b4X4>=0利用 Matlab 编写对偶纯真形法程序,可求得:最优解为 x4*=[4 0 0 4 0 0 0 0 0 4 0 0 0] T对应的最优值 c T x4=601.3 计算结果及结果说明算例1(b1=[4;-4;0;0;0;0;0]T)算例 1 中,由 b1 可知,节点 2 为需求节点,节点 1 为供应节点,由节点 1 将信息传输至节点 2 的最短路径为弧 1。
最优化方法及其应用课后答案

1 2( ( ⎨最优化方法部分课后习题解答1.一直优化问题的数学模型为:习题一min f (x ) = (x − 3)2 + (x − 4)2⎧g (x ) = x − x − 5 ≥ 0 ⎪ 11 2 2 ⎪试用图解法求出:s .t . ⎨g 2 (x ) = −x 1 − x 2 + 5 ≥ 0 ⎪g (x ) = x ≥ 0 ⎪ 3 1 ⎪⎩g 4 (x ) = x 2 ≥ 0(1) 无约束最优点,并求出最优值。
(2) 约束最优点,并求出其最优值。
(3) 如果加一个等式约束 h (x ) = x 1 −x 2 = 0 ,其约束最优解是什么? *解 :(1)在无约束条件下, f (x ) 的可行域在整个 x 1 0x 2 平面上,不难看出,当 x =(3,4) 时, f (x ) 取最小值,即,最优点为 x * =(3,4):且最优值为: f (x * ) =0(2)在约束条件下, f (x ) 的可行域为图中阴影部分所示,此时,求该问题的最优点就是在约束集合即可行域中找一点 (x 1 ,x 2 ) ,使其落在半径最小的同心圆上,显然,从图示中可以看出,当 x *=15 , 5 ) 时, f (x ) 所在的圆的半径最小。
4 4⎧g (x ) = x −x − 5 = 0⎧ 15 ⎪x 1 = 其中:点为 g 1 (x) 和 g 2 (x ) 的交点,令 ⎪ 1 1 2 ⎨2 求解得到: ⎨ 45即最优点为 x *= ⎪⎩g 2 (x ) = −x 1 −x 2 + 5 = 015 , 5 ) :最优值为: f(x * ) = 65 ⎪x =⎪⎩ 2 44 48(3).若增加一个等式约束,则由图可知,可行域为空集,即此时最优解不存在。
2.一个矩形无盖油箱的外部总面积限定为 S ,怎样设计可使油箱的容量最大?试列出这个优化问题的数学模型,并回答这属于几维的优化问题. 解:列出这个优化问题的数学模型为:max f (x ) = x 1x 2 x 3⎧x 1x 2 + 2x 2 x 3 + 2x 1x 3 ≤ S ⎪ s .t . ⎪x 1 > 0⎪x 2 > 0 ⎪⎩x 3 > 0该优化问题属于三维的优化问题。
最优化方法部分课后习题解答(1-7)

最优化方法部分课后习题解答习题一1.一直优化问题的数学模型为:22121122123142min ()(3)(4)5()02()50..()0()0f x x xg x x x g x x x s t g x x g x x =−+−⎧=−−≥⎪⎪⎪=−−+≥⎨⎪=≥⎪=≥⎪⎩试用图解法求出:(1)无约束最优点,并求出最优值。
(2)约束最优点,并求出其最优值。
(3)如果加一个等式约束,其约束最优解是什么?12()0h x x x =−=解:(1)在无约束条件下,的可行域在整个平面上,不难看出,当=(3,4)()f x 120x x *x 时,取最小值,即,最优点为=(3,4):且最优值为:=0()f x *x *()f x (2)在约束条件下,的可行域为图中阴影部分所示,此时,求该问题的最优点就是()f x 在约束集合即可行域中找一点,使其落在半径最小的同心圆上,显然,从图示中可12(,)x x 以看出,当时,所在的圆的半径最小。
*155(,)44x =()f x 其中:点为和的交点,令求解得到:1()g x 2()g x 1122125()02()50g x x x g x x x ⎧=−−=⎪⎨⎪=−−+=⎩1215454x x ⎧=⎪⎪⎨⎪=⎪⎩即最优点为:最优值为:=*155(,)44x =*()f x 658(3).若增加一个等式约束,则由图可知,可行域为空集,即此时最优解不存在。
2.一个矩形无盖油箱的外部总面积限定为S,怎样设计可使油箱的容量最大?试列出这个优化问题的数学模型,并回答这属于几维的优化问题.解:列出这个优化问题的数学模型为:该优化问题属于三维的优化问题。
123122313123max ()220..00f x x x x x x x x x x S x s t x x =++≤⎧⎪>⎪⎨>⎪⎪>⎩32123sx y z v⎛⎞=====⎜⎟⎝⎠习题二3.计算一般二次函数的梯度。
北航最优化方法最新最全答案2015版详解

部分习题参考解答
刘红英 编
北京航空航天大学数学与系统科学学院 2015 年 5 月
内容简介
本书是《数学规划基础》(刘红英,夏勇,周水生,北京航空航天大学出版社,2012.10)的 配套教学辅导材料,较详细地给出了该教材各章后部分习题的参考解答.
前言
本习题解答自 2008 年春季开始编写,当时由硕士研究生阎凤玉提供部分习题解答, 经讨论和确认后,由作者首次录入排版. 后来陆续参加习题解答修订的硕士研究生包括王 浩、欧林鑫、朱丽媛、易彩霞和杨茜,其中的数值结果由欧林鑫提供. 作者在此向他们的 辛勤劳动表示衷心的感谢.
本解答得到了?项目的资助,在此表示感谢. 由于这些参考解答尚未经过特别严格的校对,仅供参考. 任何意见、建议或其它反馈 都可以发送至liuhongying@,在此深表感谢.
刘红英 2015.5 于北京
目录
第一章 引言
1
第二章 线性规划: 基本理论与方法
3
第三章 线性规划:应用及扩展
maximize 200x + 60y + 206z
subject to 3x + y + 5z ≤ 8000000
5x + y + 3z ≤ 5000000
x, y, z ≥ 0, 且 x, y, z 是整数.
忽略掉整性要求后,调用 Matlab 中的 linprog.m 函数求解,得最优解 x = 0, y = 500000, z = 1500000,自动满足整性要求.
(x)(∇ri
(x))T
2A(x)T A(x).
1.6 考虑向量值函数 f (x) : Rn → Rm ,设 f 的每个分量函数 fi(x) 在 x′ 都可微. 写出 f 在 x′ 的Taylor展式,请用 A(x)T 表示 ∇f (x)T (= [∇f1(x), · · · , ∇fm(x)]).
北航最优化方法作业答案co_lcp

第 8 章 约束优化:线性约束规划
数学规划基础
LHY-SMSS-BUAA
线性等式约束规划
f (x) 是 n 元函数;ai 是 n 维常向量; bi 是常数 有解时 凸规划 ⊙ f(x) 是凸函数 KKT点即为全局极小点 f(x) 严格凸 :有唯一的极小点 ⊙ f(x) 是非凸函数 可能存在不是全局解的局部解 找全局解是NP-难问题 引入矩阵 ,使得 且 非奇异 解的情况: 无可行解、无界、有解
约束优化:线性约束规划
Constrained Optimization: Linearly Constrained Programming
第 8 章 约束优化:线性约束规划
数学规划基础
LHY-SMSS-BUAA
二次规划(quadratic programming)
G 是 n 阶对称方阵 d,ai 是 n 维常向量 解的情况:无可行解、无界、有解 有解时: ⊙ G半正定 KKT点即为全局极小点 凸规划 G 正 定 :有唯一的极小点 ⊙ G不定 可能存在不是全局解的局部解 找全局解是NP-难问题
第 8 章 约束优化:线性约束规划
数学规划基础
LHY-SMSS-BUAA
等式约束二次规划-广义消元法(续)
第 8 章 约束优化:线性约束规划
数学规划基础
LHY-SMSS-BUAA
第 8 章 约束优化:线性约束规划
数学规划基础
LHY-SMSS-BUAA
实用二次规划算法概述
⊙ 经典的积极集法(active-set methods)
有价证券的组合优化(续)
Markowitz引入风险容许参数(risk tolerance parameter)
找出“最优的”证券投资组合! ⊙ 参数 ,设定值依赖于投资者的个人偏好
北航2015年考研991科目的答案

北航2015年考研991科目的答案一、单项选择题1.C 2.A 3.D 4.B 5.C 6.B 7.D 8.A 9.C 10.D 二、填空题1.顺序2.O(m) 3.log2k+1 4.235 5.2(n-1) 6.该有向图中不存在回路7.2.9 8.m-1 9.插入排序法10.9三、综合题1.答:(1)多个堆栈共享一个连续的存储空间,可以充分利用存储空间,只有在整个存储空间都用完时才能产生溢出,其缺点是当一个堆栈溢出时需要向左、右栈查询有无空闲单元。
若有,则需要移动相应元素和修改相关的栈底和栈顶指针的位置。
当各个堆栈接近溢出时,查询空闲单元、移动元素和修改栈底栈顶指针位置的操作频繁,计算复杂,并且耗费时间。
(2)每个堆栈仅用一个顺序存储空间时,操作简便。
但难以确定初始分配存储空间的大小,空间分配少了,容易产生溢出,空间分配多了,容易造成空间浪费;并且各个堆栈不能共享空间。
(3)一般情况下,分别建立多个链接堆栈不考虑堆栈的溢出(仅受用户内存空间限制),缺点是堆栈中各元素要通过指针链接,比顺序存储结构多占用存储空间。
2.(T->lchild==NULL && T->rchild==NULL) T->lchild T->rchild3.(由于图表显示限制,此题答案见指定教材(《数据结构教程第二版》(2012年4月第7次印刷)) 第418页8-16题)4.(1).根据α=散列表中存入的元素数/散列表的长度,得到表的长度为18,因此,合适的散列函数应该为H(k)=k MOD 17。
(2).(由于图表显示限制,此题答案见指定教材(《数据结构教程第二版》(2012年4月第7次印刷)) 第428页9-15题)四、算法设计题SORT(int A[ ], int n){ int ,i, j, min, max, temp; i=1;while(i<=n/2){ min=i; max=i;for(j=i+1;j<n-i+1;j++){ if(A[j]<A[min])min=j; if(A[j]>A[max]) max=j;} /* 确定某趟排序的最小值元素和最大值元素*/ if(min!=i){temp=A[min]; A[min]=A[i]; A[i]=temp; } /* 交换A[min]与A[i]的位置*/ if(max!=n-i+1) if(max==i){temp=A[min]; A[min]=A[n-i+1]; A[n-i+1]=temp; } /* 交换A[min]与A[n-i+1]的位置*/ else{temp=A[max]; A[max]=A[n-i+1]; A[n-i+1]=temp; /* 交换A[max]与A[n-i+1]的位置*/ } i++; } }五、填空题1.break a/q 2.a[n-1]>=a[n-2] FUNC2(a, n-1) 3.(*(a+i)+i) (*(a+i)+N-i-1) 4.i!=0 n%10+′0′5.ch-=30 ch-=266.*(s+i) t++ 7.strlen(p)-1 p<q 8.ch & 24 9.4 &number 10.argv[1],“rb”argv[2], “wb”六、简答题1.答:通常有下列三种方式:(1)参数传递方式:函数调用时根据实参传递给形参内容的不同又分为值传递与地址传递两种。
最优化方法练习题答案

练习题一1、建立优化模型应考虑哪些要素? 答:决策变量、目标函数和约束条件。
2、讨论优化模型最优解的存在性、迭代算法的收敛性及停止准则。
答:针对一般优化模型()()min ()..0,1,2, 0,1,,i j f x s t g x i m h x j p≥===,讨论解的可行域D ,若存在一点*X D ∈,对于X D ∀∈ 均有*()()f X f X ≤则称*X 为优化模型最优解,最优解存在;迭代算法的收敛性是指迭代所得到的序列(1)(2)(),,,K X X X ,满足(1)()()()K K f X f X +≤,则迭代法收敛;收敛的停止准则有(1)()k k x x ε+-<,(1)()()k k k x x x ε+-<,()()(1)()k k f x f x ε+-<,()()()(1)()()k k k f x f x f x ε+-<,()()k f x ε∇<等等。
练习题二1、某公司看中了例2.1中厂家所拥有的3种资源R 1、R2、和R 3,欲出价收购(可能用于生产附加值更高的产品)。
如果你是该公司的决策者,对这3种资源的收购报价是多少?(该问题称为例2.1的对偶问题)。
解:确定决策变量 对3种资源报价123,,y y y 作为本问题的决策变量。
确定目标函数 问题的目标很清楚——“收购价最小”。
确定约束条件 资源的报价至少应该高于原生产产品的利润,这样原厂家才可能卖。
因此有如下线性规划问题:123min 170100150w y y y =++1231231235210..23518,,0y y y s t y y y y y y ++≥⎧⎪++≥⎨⎪≥⎩ *2、研究线性规划的对偶理论和方法(包括对偶规划模型形式、对偶理论和对偶单纯形法)。
答:略。
3、用单纯形法求解下列线性规划问题:(1)⎪⎪⎩⎪⎪⎨⎧≥≤+-≤++≤-++-=0,,43222..min32131321321321x x x x x x x x x x x t s x x x z ; (2)⎪⎪⎩⎪⎪⎨⎧=≥=++=+-=+-+-=)5,,2,1(052222..4min53243232132 i x x x x x x x x x x t s x x z i解:(1)引入松弛变量x 4,x 5,x 6123456min 0*0*0*z x x x x x x =-++++12341232 =22 5 =3..13 6=41,2,3,4,5,60x x x x x x x x s t x x x x x x x x x +-+⎧⎪+++⎪⎨-++⎪⎪≥⎩因检验数σ2<0,故确定x 2为换入非基变量,以x 2的系数列的正分量对应去除常数列,最小比值所在行对应的基变量x 4作为换出的基变量。
最优化方法习题答案

习题一1.1利用图解法求下列线性规划问题: (1)21x x z max +=⎪⎪⎩⎪⎪⎨⎧≥≤+≥+0x ,x 5x 2x 2x x 3.t .s 212121 解:根据条件,可行域为下面图形中的阴影部分,,有图形可知,原问题在A 点取得最优值,最优值z=5(2)21x 6x z min -=⎪⎪⎩⎪⎪⎨⎧≥≤+-≤+0x ,x 7x x 1x x 2.t .s 212121 解:图中阴影部分表示可行域,由图可知原问题在点A 处取得最优值,最优值z=-6.(3)21x 2x 3z max +=⎪⎪⎩⎪⎪⎨⎧≥-≥-≤+-0x ,x 4x 2x 1x x .t .s 212121 解:如图所示,可行域为图中阴影部分,易得原线性规划问题为无界解。
(4)21x 5x 2z min -=⎪⎪⎩⎪⎪⎨⎧≥≤+≥+0x ,x 2x x 6x 2x .t .s 212121 解:由图可知该线性规划可行域为空,则原问题无可行解。
1.2 对下列线性规划问题,找出所有的基解,基可行解,并求出最优解和最优值。
(1)4321x 6x 3x 2x 5z min -+-=⎪⎪⎩⎪⎪⎨⎧≥=+++=+++0x ,x ,x ,x 3x 2x x x 27x 4x 3x 2x .t .s 432143214321 解:易知1x 的系数列向量⎪⎪⎭⎫ ⎝⎛=21p 1,2x 的系数列向量⎪⎪⎭⎫ ⎝⎛=12p 2,3x 的系数列向量⎪⎪⎭⎫⎝⎛=13p 3,4x 的系数列向量⎪⎪⎭⎫⎝⎛=24p 4。
①因为21p ,p 线性无关,故有⎪⎩⎪⎨⎧--=+--=+43214321x 2x 3x x 2x 4x 37x 2x ,令非基变量为0x x 43==,得⎪⎪⎩⎪⎪⎨⎧=-=311x 31x 21,所以得到一个基解)0,0,311,31(x )1(-=是非基可行解; ②因为31p ,p 线性无关,可得基解)0,511,0,52(x)2(=,543z 2=;③因为41p ,p 线性无关,可得基解611,0,0,31(x )3(-=,是非基可行解;④因为32p ,p 线性无关,可得基解)0,1,2,0(x )4(=,1z 4-=;⑤因为42p ,p 线性相关,42x ,x 不能构成基变量; ⑥因为43p ,p 线性无关,可得基解)1,1,0,0(x )6(=,3z 6-=;所以)6()4()2(x ,x ,x是原问题的基可行解,)6(x 是最优解,最优值是3z -=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
将此问题化成线性规划.
minimize f (x)
x∈Rn
subject to Ax = b
x ≥ 0.
5
解: 引入变量 t ,所给问题等价于
minimize t subject to f (x) = t,
Ax = b, x ≥ 0.
考虑问题
minimize t
subject to f (x) ≤ t, Ax = b,
4. 单纯形法的练习:习题2.10,习题2.11,习题2.12,习题2.13,习题2.20(说明单纯形 法的效率的一般性例子中,自变量为三个时所得问题),习题2.21(说明单纯形法采用最小 相对费用系数进基原则确定进基变量时,如果所求解问题是退化的,则单纯形法会出现 循环!),习题2.31.
5. 两阶段法的练习:习题2.14-习题2.16;大 M 法的练习:习题2.18.
2u1 − 2v1 + u3 − v3 = 3, ui, vi, s ≥ 0, i = 1, 2, 3.
方法2: 引入非负变量 t1, t2, t3 ,将原问题转化成等价问题
minimize t1 + t2 + t3 subject to x + y ≤ 1,
2x + z = 3, |x| = t1, |y| = t2, |z| = t3.
(c)
minimize subject to
x1 + 4x2 + x3 x1 − 2x2 + x3 = 4 x1 − x3 = 1
x2 ≥ 0, x3 ≥ 0.
解:
(c) 由于变量 x1 无限制,可利用约束 x1 = x3 + 1 对其消去. 因此,得其标准形
minimize 4x2 + 2x3 subject to −2x2 + 2x3 = 3
(c) ∇f (x) = Ax − b, ∇2f (x) = A;
(d)
f (x)
=
∑m
i=1
ri2(x),
∇f
(x)
=
2
∑m
i=1
ri(x)∇ri(x)
=
2A(x)T r(x),
∇2f (x)
= =
2 2
∑m ∑mi=1
i=1
ri(x)∇2ri(x) ri(x)∇2ri(x)
+ +
2
∑n
i=1
∇ri
该问题的最优值与
minimize t1 + t2 + t3 subject to x + y ≤ 1,
2x + z = 3, |x| ≤ t1, |y| ≤ t2, |z| ≤ t3.
的最优值相同,将这个问题的最优解投影到 (x, y, z) 所在的空间可以得到原问题的解. 这个问题可以写成线性规划问题:
1.7 假设在点 x′ 有 g′ ̸= 0,证明在所有单位向量 pT p = 1 中,函数沿方向向量 p = g′/∥g′∥2 的斜率最大. 称该方向是函数的最速上升(steepest ascent)方向.
证:记 g′ = ∇f (x′) . 因为函数可微,由方向导数与梯度的关系知函数沿方向 p 的方 向导数,即斜率为 pT g′ . 设 θ 为方向向量 p 与梯度向量 g′ 的夹角,则由向量夹角 的定义和 ∥p∥2 = 1 ,有
x2 ≥ 0, x3 ≥ 0.
再把约束 2x3 = 3 + 2x2 代入目标函数,得6x2 + 4, 又因为 x2 ≥ 0 ,所以其最小值 为 4,最优解为 x1 = 2.5, x2 = 0, x3 = 1.5 .
3
4
第二章 线性规划: 基本理论与方法
2.2 将下面的问题化成线性规划
minimize |x| + |y| + |z| subject to x + y ≤ 1
0
1 0 0 3
1 0 1 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
,
x =
x1 x2 x3 x4 x5 x6
,
b =
4 2 3 6
(x)(∇ri
(x))T
2A(x)T A(x).
1.6 考虑向量值函数 f (x) : Rn → Rm ,设 f 的每个分量函数 fi(x) 在 x′ 都可微. 写出 f 在 x′ 的Taylor展式,请用 A(x)T 表示 ∇f (x)T (= [∇f1(x), · · · , ∇fm(x)]).
写成向量形式,即
f (x) = f (x′) + A(x′)(x − x′) + o(∥x − x′∥),
(1.1)
这里 o(∥x − x′∥) 表示
பைடு நூலகம்
f (x) − f (x′) − A(x′)(x − x′)
lim
x→x′
∥x − x′∥
= 0.
这里的式(1.1)即为 f 在 x′ 的Taylor展式,其中的矩阵 A(x) 称为雅可比(Jacob)矩阵, 它的第 i 行为 fi(x) 在 x 处的梯度向量的转置.
x ≥ 0,
因为该问题关于 t 最小化,故将最优解代入第一个不等式,必有等号成立,即问题的 最优解和最优值与上一个问题的相同. 从而所给问题等价于线性规划问题
minimize t subject to cTi x + di ≤ t,
Ax = b, x ≥ 0.
i = 1, · · · , p,
2.5 考虑问题
本解答得到了?项目的资助,在此表示感谢. 由于这些参考解答尚未经过特别严格的校对,仅供参考. 任何意见、建议或其它反馈 都可以发送至liuhongying@,在此深表感谢.
刘红英 2015.5 于北京
目录
第一章 引言
1
第二章 线性规划: 基本理论与方法
3
第三章 线性规划:应用及扩展
2x + z = 3.
方法1: 令 x = u1 − v1, |x| = u1 + v1, u1 ≥ 0, v1 ≥ 0, 类似地表示 y 和 z ,则可将原问题 重新编述为
minimize u1 + u2 + u3 + v1 + v2 + v3 subject to u1 − v1 + u2 − v2 + s = 1,
pT g′ = ∥pT ∥2∥g′∥2 cos θ ≤ ∥pT ∥2∥g′∥2 = ∥g′∥2,
其中等式成立当且仅当 θ = 0 ,即 p 与梯度向量 g′ 同方向. 又因为 p 为单位向量,所 以当 p = g′/∥g′∥2 时,函数沿该方向的斜率(也即方向导数)最大.
第二章 线性规划: 基本理论与方法
maximize 200x + 60y + 206z
subject to 3x + y + 5z ≤ 8000000
5x + y + 3z ≤ 5000000
x, y, z ≥ 0, 且 x, y, z 是整数.
忽略掉整性要求后,调用 Matlab 中的 linprog.m 函数求解,得最优解 x = 0, y = 500000, z = 1500000,自动满足整性要求.
23
第四章 无约束优化:基础
27
第六章 无约束优化:线搜索法
31
第六章 无约束优化:信赖域法
37
5
第一章 引言
1.2 (该练习的目的是提高你的建模技巧,同时熟悉利用计算机求解线性优化问题) 一个 原油精练场有 8 百万桶原油 A 和 5 百万桶原油 B 用以安排下个月的生产. 可用这些 资源来生产售价为 38 元/桶的汽油,或者生产售价为 33 元/桶的民用燃料油. 有三种 生产过程可供选择,各自的生产参数如下:
6. 修正单纯形法的练习:习题2.17,习题;单纯形法的矩阵表示:2.19.
7. 习题2.11,习题2.12(c),2.32是关于灵敏度分析的练习,这也可以看成是单纯形法 的应用,是难点.
8. 关于对偶性的练习:习题2.22-习题2.36.
2.1 将下面的线性规划问题化成标准形,并求解第 3 个问题(c):
解: 为了具体,考虑 m = 2, n = 3 给出,再表示成一般形式. 此时
(
)(
)
f (x) = f1(x) = f1(x1, x2, x3) .
f2(x)
f2(x1, x2, x3)
因为函数 f1(x) 和 f2(x) 可微,则由多元函数的Taylor展式,有
fi(x) = fi(x′) + ∇fi(x′)T (x − x′) + o(∥x − x′∥), i = 1, 2.
数学规划基础
部分习题参考解答
刘红英 编
北京航空航天大学数学与系统科学学院 2015 年 5 月
内容简介
本书是《数学规划基础》(刘红英,夏勇,周水生,北京航空航天大学出版社,2012.10)的 配套教学辅导材料,较详细地给出了该教材各章后部分习题的参考解答.
前言
本习题解答自 2008 年春季开始编写,当时由硕士研究生阎凤玉提供部分习题解答, 经讨论和确认后,由作者首次录入排版. 后来陆续参加习题解答修订的硕士研究生包括王 浩、欧林鑫、朱丽媛、易彩霞和杨茜,其中的数值结果由欧林鑫提供. 作者在此向他们的 辛勤劳动表示衷心的感谢.
(c)
1 2
xT
Ax
−
bT
x:
A 是对称的常矩阵,b 是常向量;
(d) r(x)T r(x): r(x) = (r1(x), · · · , rm(x))T 是依赖于 x 的 m 维向量,记 ∇rT 为 AT ,