高等数学上_复旦大学出版_习题五答案

合集下载

高等数学复旦大学出版社习题答案五

高等数学复旦大学出版社习题答案五
(2)L′(x)=R′(x)-C′(x)=5-2x.
在总利润最大的基础上再多生产100台时,利润的增量为
ΔL(x)= .
即此时总利润减少1万元.
21.某企业投资800万元,年利率5%,按连续复利计算,求投资后20年中企业均匀收入率为200万元/年的收入总现值及该投资的投资回收期.
解:投资20年中总收入的现值为
在(3,0)处的切线是y=2x+6
两切线交点是( ,3).故所求面积为
(7)
(8)摆线x=a(tsint),y=a(1cost)的一拱(0t2)与x轴;
解:当t=0时,x=0,当t=2时,x=2a.
所以
(8)
(9)极坐标曲线ρ=asin3φ;
解:

(9)
(10)ρ=2acosφ;
解:

(10)
2.求下列各曲线所围成图形的公共部分的面积:
1.求下列各曲线所围图形的面积:
(1) 与x2+y2=8(两部分都要计算);
解:如图D1=D2
解方程组 得交点A(2,2)
(1)
∴ ,

(2) 与直线y=x及x=2;
解: .
(2)
(3)y=ex,y=ex与直线x=1;
解: .
(3)
(4)y=lnx,y轴与直线y=lna,y=lnb.(b>a>0);
≈0.385386万元=3853.86元.
yt′=3asin2tcost
xt′2+yt′2=9a2sin2tcos2t,利用曲线的对称性,

9.求对数螺线 相应θ=0到θ=φ的一段弧长.
解:

10.求半径为R,高为h的球冠的表面积.

高等数学上复旦第三版 课后习题答案

高等数学上复旦第三版  课后习题答案

283高等数学上(修订版)(复旦出版社)习题六 无穷数级 答案详解1.写出下列级数的一般项: (1)1111357++++ ;(2)22242462468x x x x x ++++⋅⋅⋅⋅⋅⋅ ;(3)35793579a a a a -+-+ ;解:(1)121n U n =-; (2)()2!!2n n xU n =;(3)()211121n n n a U n ++=-+; 2.求下列级数的和: (1)()()()1111n x n x n x n ∞=+-+++∑;(2)()1221n n n n ∞=+-++∑;(3)23111555+++ ; 解:(1)()()()()()()()111111211n u x n x n x n x n x n x n x n =+-+++⎛⎫-=⎪+-++++⎝⎭284从而()()()()()()()()()()()()()()11111211212231111111211n S x x x x x x x x x n x n x n x n x x x n x n ⎛-+-= +++++++⎝⎫++-⎪+-++++⎭⎛⎫-=⎪++++⎝⎭因此()1lim 21n n S x x →∞=+,故级数的和为()121x x +(2)因为()()211n U n n n n =-+-++- 从而()()()()()()()()324332215443211211211221n S n n n n n n n n =-+-----+-++---+-++-=+-++-=+-+++所以lim 12n n S →∞=-,即级数的和为12-. (3)因为21115551115511511145n nn n S =+++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎣⎦=-⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎣⎦ 从而1lim 4n n S →∞=,即级数的和为14. 3.判定下列级数的敛散性: (1) ()11n n n ∞=+-∑;(2)()()11111661111165451n n +++++⋅⋅⋅-+ ; (3) ()23133222213333n n n --+-++- ;285(4)311115555n +++++ ; 解:(1) ()()()3212111n S n n n =+++-+--=+-从而lim n n S →∞=+∞,故级数发散. (2) 1111111115661111165451111551n S n n n ⎛⎫=-+-+-++-⎪-+⎝⎭⎛⎫=- ⎪+⎝⎭从而1lim 5n n S →∞=,故原级数收敛,其和为15. (3)此级数为23q =-的等比级数,且|q |<1,故级数收敛. (4)∵15n n U =,而lim 10n n U →∞=≠,故级数发散. 4.利用柯西审敛原理判别下列级数的敛散性:(1) ()111n n n +∞=-∑;(2)1cos 2nn nx∞=∑; (3)1111313233n n n n ∞=⎛⎫+- ⎪+++⎝⎭∑. 解:(1)当P 为偶数时,()()()()122341111112311111231111112112311n n n pn n n n p U U U n n n n pn n n n pn p n p n n p n n n +++++++++++----=++++++++-+--=++++⎛⎫⎛⎫-=----- ⎪ ⎪+-+-++++⎝⎭⎝⎭<+当P 为奇数时,286()()()()1223411111123111112311111112311n n n pn n n n p U U U n n n n pn n n n pn p n p n n n n +++++++++++----=++++++++-+-+=++++⎛⎫⎛⎫-=---- ⎪ ⎪+-++++⎝⎭⎝⎭<+因而,对于任何自然数P ,都有12111n n n p U U U n n++++++<<+ , ∀ε>0,取11N ε⎡⎤=+⎢⎥⎣⎦,则当n >N 时,对任何自然数P 恒有12n n n pU U U ε++++++< 成立,由柯西审敛原理知,级数()111n n n +∞=-∑收敛. (2)对于任意自然数P ,都有()()()1212121cos cos cos 12222111222111221121112212n n n p n n n p n n n p n p n p nU U U x n p x xn n ++++++++++++++++=+++≤+++⎛⎫- ⎪⎝⎭=-⎛⎫=- ⎪⎝⎭<于是, ∀ε>0(0<ε<1),∃N =21log ε⎡⎤⎢⎥⎣⎦,当n >N 时,对任意的自然数P都有12n n n p U U U ε++++++< 成立,由柯西审敛原理知,该级数收敛. (3)取P =n ,则287()()()()()121111113113123133213223231131132161112n n n pU U U n n n n n n n n n n ++++++⎛⎫=+-+++- ⎪++++++⋅+⋅+⋅+⎝⎭≥++++⋅+≥+> 从而取0112ε=,则对任意的n ∈N ,都存在P =n 所得120n n n p U U U ε++++++> ,由柯西审敛原理知,原级数发散.5.用比较审敛法判别下列级数的敛散性. (1)()()111465735n n ++++⋅⋅++ ;(2)22212131112131nn +++++++++++ (3)1πsin 3n n ∞=∑;(4) 3112n n∞=+∑;(5)()1101nn a a∞=>+∑;(6)()1121nn ∞=-∑.解:(1)∵ ()()21135n U nn n =<++而211n n ∞=∑收敛,由比较审敛法知1n n U ∞=∑收敛. (2)∵221111n n n U n n n n++=≥=++ 而11n n∞=∑发散,由比较审敛法知,原级数发散.(3)∵ππsinsin 33lim lim ππ1π33n nn n n n→∞→∞=⋅=288而1π3n n ∞=∑收敛,故1πsin 3n n ∞=∑也收敛.(4)∵33321112n U nnn=<=+ 而3121n n∞=∑收敛,故3112n n∞=+∑收敛.(5)当a >1时,111n n n U a a =<+,而11n n a ∞=∑收敛,故111nn a∞=+∑也收敛. 当a =1时,11lim lim 022n n n U →∞→∞==≠,级数发散. 当0<a <1时,1lim lim 101n n n n U a →∞→∞==≠+,级数发散. 综上所述,当a >1时,原级数收敛,当0<a ≤1时,原级数发散.(6)由021limln 2xx x →-=知121lim ln 211nx n→∞-=<而11n n∞=∑发散,由比较审敛法知()1121nn ∞=-∑发散.6.用比值判别法判别下列级数的敛散性:(1) 213n n n ∞=∑;(2)1!31nn n ∞=+∑; (3)232333*********nn n +++++⋅⋅⋅⋅ ; (1) 12!n n n n n ∞=⋅∑解:(1) 23n n n U =,()2112311lim lim 133n n n n n n U n U n ++→∞→∞+=⋅=<, 由比值审敛法知,级数收敛.289(2) ()()111!311lim lim 31!31lim 131n n n n n nn n n U n U n n ++→∞→∞+→∞++=⋅++=⋅++=+∞所以原级数发散.(3) ()()11132lim lim 2313lim 21312n nn n n n n nn U n U n n n +++→∞→∞→∞⋅=⋅⋅+=+=> 所以原级数发散.(4) ()()1112!1lim lim 2!1lim 21122lim 1e 11n nn n n n n nnn n n U n n U n n n n n +++→∞→∞→∞→∞⋅+=⋅⋅+⎛⎫= ⎪+⎝⎭==<⎛⎫+ ⎪⎝⎭故原级数收敛.7.用根值判别法判别下列级数的敛散性:(1) 1531nn n n ∞=⎛⎫⎪+⎝⎭∑;(2)()[]11ln 1nn n ∞=+∑;(3) 21131n n n n -∞=⎛⎫⎪-⎝⎭∑;(4) 1nn n b a ∞=⎛⎫⎪⎝⎭∑,其中a n →a (n →∞),a n ,b ,a 均为正数.解:(1)55lim lim 1313n n n n n U n →∞→∞==>+, 故原级数发散.(2) ()1lim lim 01ln 1n n n n U n →∞→∞==<+,290故原级数收敛.(3)121lim lim 1931nn nn n n U n -→∞→∞⎛⎫==< ⎪-⎝⎭, 故原级数收敛.(4) limlim nn n n n nb b b a a a →∞→∞⎛⎫== ⎪⎝⎭, 当b <a 时,ba <1,原级数收敛;当b >a 时,b a>1,原级数发散;当b =a 时,b a=1,无法判定其敛散性.8.判定下列级数是否收敛?若收敛,是绝对收敛还是条件收敛?(1)1111234-+-+ ;(2)()()1111ln 1n n n ∞-=-+∑;(3) 2341111111153535353⋅-⋅+⋅-⋅+ ;(4)()21121!n n n n ∞-=-∑; (5)()()1111n n R n αα∞-=∈-∑;(6) ()11111123nn n n ∞=⎛⎫-++++ ⎪⎝⎭∑ . 解:(1)()111n n U n -=-,级数1n n U ∞=∑是交错级数,且满足111n n >+,1lim 0n n →∞=,由莱布尼茨判别法级数收敛,又11121n n n U n∞∞===∑∑是P <1的P级数,所以1n n U ∞=∑发散,故原级数条件收敛.(2)()()111ln 1n n U n -=-+,()()1111ln 1n n n ∞---+∑为交错级数,且()()11ln ln 12n n >++,()1lim 0ln 1n n →∞=+,由莱布尼茨判别法知原级数收敛,但由于()11ln 11n U n n =≥++291所以,1n n U ∞=∑发散,所以原级数条件收敛.(3)()11153n n n U -=-⋅民,显然1111115353n n n n n n U ∞∞∞=====⋅∑∑∑,而113nn ∞=∑是收敛的等比级数,故1n n U ∞=∑收敛,所以原级数绝对收敛.(4)因为2112lim lim 1n n n n nU U n ++→∞→∞==+∞+. 故可得1n n U U +>,得lim0n n U →∞≠, ∴lim 0n n U →∞≠,原级数发散. (5)当α>1时,由级数11n nα∞=∑收敛得原级数绝对收敛. 当0<α≤1时,交错级数()1111n n n α∞-=-∑满足条件:()111n n αα>+;1lim 0n n α→∞=,由莱布尼茨判别法知级数收敛,但这时()111111n n n nn αα∞∞-===-∑∑发散,所以原级数条件收敛.当α≤0时,lim0n n U →∞≠,所以原级数发散. (6)由于11111123n nn ⎛⎫⋅>++++ ⎪⎝⎭而11n n∞=∑发散,由此较审敛法知级数()11111123nn n n ∞=⎛⎫-⋅++++ ⎪⎝⎭∑ 发散. 记1111123n U nn ⎛⎫=⋅++++ ⎪⎝⎭ ,则292()()()()()()1222111111123111111112311111111231110n n U U n n n n n n n n n n n n n n +⎛⎫⎛⎫-=-++++- ⎪⎪+⎝⎭⎝⎭+⎛⎫=-++++ ⎪⎝⎭++⎛⎫⎛⎫-=++++ ⎪ ⎪⎝⎭+++⎝⎭>即1n n U U +>又01111lim lim 12311d n n n n U n n x n x→∞→∞⎛⎫=++++ ⎪⎝⎭=⎰ 由0111lim d lim 01t t t t x t x→+∞→+∞==⎰ 知lim 0n n U →∞=,由莱布尼茨判别法,原级数()11111123nn n n ∞=⎛⎫-⋅++++ ⎪⎝⎭∑ 收敛,而且是条件收敛.9.判别下列函数项级数在所示区间上的一致收敛性.(1) ()1!1nn x n ∞=-∑,x ∈[-3,3]; (2) 21nn x n ∞=∑,x ∈[0,1];(3) 1sin 3n n nx∞=∑,x ∈(-∞,+∞); (4)1!nxn e n -∞=∑,|x |<5; (5)3521cos n nxn x∞=+∑,x ∈(-∞,+∞)解:(1)∵()()3!!11nnx n n ≤--,x ∈[-3,3],而由比值审敛法可知()13!1nn n ∞=-∑收敛,所以原级数在 [-3,3]上一致收敛.(2)∵221nx n n≤,x ∈[0,1],293而211n n∞=∑收敛,所以原级数在[0,1]上一致收敛. (3)∵1sin 33n n nx ≤,x ∈(-∞,+∞),而113nn ∞=∑是收敛的等比级数,所以原级数在(-∞,+∞)上一致收敛. (4)因为5!!nnx ee n n -≤,x ∈(-5,5), 由比值审敛法可知51!nn e n ∞=∑收敛,故原级数在(-5,5)上一致收敛.(5)∵53523cos 1nxn xn≤+,x ∈(-∞,+∞),而5131n n∞=∑是收敛的P -级数,所以原级数在(-∞,+∞)上一致收敛.10.若在区间Ⅰ上,对任何自然数n .都有|U n (x )|≤V n (x ),则当()1n n V x ∞=∑在Ⅰ上一致收敛时,级数()1n n U x ∞=∑在这区间Ⅰ上也一致收敛.证:由()1n n V x ∞=∑在Ⅰ上一致收敛知, ∀ε>0,∃N (ε)>0,使得当n >N 时,∀x ∈Ⅰ有|V n +1(x )+V n +2(x )+…+V n +p (x )|<ε,于是,∀ε>0,∃N (ε)>0,使得当n >N 时,∀x ∈Ⅰ有|U n +1(x )+U n +2(x )+…+U n +p (x )|≤V n +1(x )+V n +2(x )+…+V n +p (x ) ≤|V n +1(x )+V n +2(x )+…+V n +p (x )|<ε,因此,级数()1n n U x ∞=∑在区间Ⅰ上处处收敛,由x 的任意性和与x 的无关294性,可知()1n n U x ∞=∑在Ⅰ上一致收敛.11.求下列幂级数的收敛半径及收敛域:(1)x +2x 2+3x 3+…+nx n +…; (2)1!nn x n n ∞=⎛⎫⎪⎝⎭∑;(3)21121n n x n -∞=-∑; (4)()2112nn x n n∞=-⋅∑; 解:(1)因为11limlim 1n n n n a n a n ρ+→∞→∞+===,所以收敛半径11R ρ==收敛区间为(-1,1),而当x =±1时,级数变为()11n n n ∞=-∑,由lim(1)0n x nn →-≠知级数1(1)nn n ∞=-∑发散,所以级数的收敛域为(-1,1).(2)因为()()1111!11lim lim lim lim e 1!11nn n n n n n n n na n n n a n n n n ρ-+-+→∞→∞→∞→∞⎡⎤+⎛⎫⎛⎫==⋅===+ ⎪⎢⎥ ⎪+⎝⎭+⎝⎭⎣⎦ 所以收敛半径1e R ρ==,收敛区间为(-e,e).当x =e 时,级数变为1e nn n n n∞=∑;应用洛必达法则求得()10e e1lim 2xx x x →-+=-,故有111lim 12n n n a n a +→∞⎛⎫-=-<⎪⎝⎭由拉阿伯判别法知,级数发散;易知x =-e 时,级数也发散,故收敛域为(-e,e).(3)级数缺少偶次幂项.根据比值审敛法求收敛半径.211212221lim lim 2121lim21n n n n n nn U x n U n x n x n x ++-→∞→∞→∞-=⋅+-=⋅+= 所以当x 2<1即|x |<1时,级数收敛,x 2>1即|x |>1时,级数发散,故295收敛半径R =1.当x =1时,级数变为1121n n ∞=-∑,当x =-1时,级数变为1121n n ∞=--∑,由1121lim 012n n n→∞-=>知,1121n n ∞=-∑发散,从而1121n n ∞=--∑也发散,故原级数的收敛域为(-1,1). (4)令t =x -1,则级数变为212nn t n n∞=⋅∑,因为()()2122lim lim 1211n n n na n na n n ρ+→∞→∞⋅===⋅++ 所以收敛半径为R =1.收敛区间为 -1<x -1<1 即0<x <2.当t =1时,级数3112n n ∞=∑收敛,当t =-1时,级数()31112n n n ∞=-⋅∑为交错级数,由莱布尼茨判别法知其收敛.所以,原级数收敛域为 0≤x ≤2,即[0,2] 12.利用幂级数的性质,求下列级数的和函数: (1)21n n nx∞+=∑;(2) 22021n n x n +∞=+∑;解:(1)由()321lim n n n x n x nx++→∞+=知,当|x |=<1时,原级数收敛,而当|x |=1时,21n n nx ∞+=∑的通项不趋于0,从而发散,故级数的收敛域为(-1,1).记 ()23111n n n n S nxxnxx ∞∞+-====∑∑易知11n n nx∞-=∑的收敛域为(-1,1),记()111n n S n xx ∞-==∑296则()1011xn n x S x x x∞===-∑⎰ 于是()()12111x S x x x '⎛⎫== ⎪-⎝⎭-,所以()()()3211x S x x x =<-(2)由2422221lim 23n n n x n x n x++→∞+=⋅+知,原级数当|x |<1时收敛,而当|x |=1时,原级数发散,故原级数的收敛域为(-1,1),记()2221002121n n n n x x S x x n n ++∞∞====++∑∑,易知级数21021n n x n +∞=+∑收敛域为(-1,1),记()211021n n x S x n +∞==+∑,则()21211n n S x x x∞='==-∑, 故()1011d ln 21xx S x x x +'=-⎰ 即()()1111ln 021x S S x x +-=-,()100S =,所以()()()11ln 121x xS xS x x x x+==<-13.将下列函数展开成x 的幂级数,并求展开式成立的区间: (1)f (x )=ln(2+x ); (2)f (x )=cos 2x ; (3)f (x )=(1+x )ln(1+x ); (4)()221x f x x=+;(5)()23xf x x=+; (6)()()1e e 2x x f x -=-; (7)f (x )=e x cos x ;(8)()()212f x x =-.解:(1)()()ln ln 2ln 2ln 11222x x f x x ⎛⎫⎛⎫===++++ ⎪ ⎪⎝⎭⎝⎭由于()()0ln 111n nn x x n ∞==+-+∑,(-1<x ≤1)故()()110ln 11221n nn n x x n +∞+=⎛⎫=+- ⎪⎝⎭+∑,(-2≤x ≤2)297因此()()()11ln ln 22121n nn n x x n +∞+==++-+∑,(-2≤x ≤2) (2)()21cos 2cos 2x f x x +==由()()20cos 1!2nnn x x n ∞==-∑,(-∞<x <+∞)得()()()()()220042cos 211!!22n n n nn n n x x x n n ∞∞==⋅==--∑∑ 所以()()22011()cos cos 222114122!2n nn n f x x x x n ∞===+⋅=+-∑,(-∞<x <+∞) (3)f (x )=(1+x )ln(1+x ) 由()()()10ln 111n nn x x n +∞==+-+∑,(-1≤x ≤1)所以()()()()()()()()()()()()()1120111111111111111111111111111n nn n n nn n n n n nn n n n n n n n n n x f x x n x x n n x x x n n n n x xn n x xn n +∞=++∞∞==++∞∞+==+∞+=-∞+==+-+=+--++=++--+++--=+⋅+-=++∑∑∑∑∑∑∑ (-1≤x ≤1)(4)()2222111x f x x xx==⋅++由于()()()2211!!2111!!21n n n n x n x∞=-=+-+∑ (-1≤x ≤1)298故()()()()221!!2111!!2n n n n x f x x n ∞=⎛⎫-+=- ⎪⎝⎭∑()()()()2211!!211!!2n n n n x xn ∞+=-=+-∑ (-1≤x ≤1) (5)()()()()2202111313133133nn n n nn n xf x x x x x x ∞=+∞+==⋅+⎛⎫=⋅- ⎪⎝⎭=-<∑∑(6)由0e !nxn x n ∞==∑,x ∈(-∞,+∞)得()01e !n nxn x n ∞-=⋅-=∑,x ∈(-∞,+∞)所以()()()()()()0002101e e 2112!!1112!,!21x x n n n n n n n n n n f x x x n n x n x x n -∞∞==∞=+∞==-⎛⎫-=- ⎪⎝⎭=⋅⎡⎤--⎣⎦=∈-∞+∞+∑∑∑∑(7)因为e cos x x 为()()1e cos sin x x i e x i x +=+的实部, 而()()[]()10002011!1!ππ2cos sin !44ππ2cos sin !44nxi n nn n nn n n n n ex i n x i n x i n x n n i n ∞+=∞=∞=∞==+=+⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦⎛⎫=⋅+ ⎪⎝⎭∑∑∑∑299取上式的实部.得2π2cos4cos !n xn n n e x x n ∞==⋅∑(-∞<x <+∞)(8)由于()1211n n nx x ∞-==-∑ |x |<1而()211412f x x =⋅⎛⎫- ⎪⎝⎭,所以()111001422n n n n n n x x f n x --∞∞+==⋅⎛⎫=⋅= ⎪⎝⎭∑∑ (|x |<2) 14.将()2132f x x x =++展开成(x +4)的幂级数.解:21113212x x x x =-++++而()()()0101113411431314413334713nn nn n x x x x x x x ∞=∞+==+-++=-⋅+-+⎛+⎫⎛⎫=-< ⎪⎪⎝⎭⎝⎭+=--<<∑∑又()()()0101122411421214412224622nn nn n x x x x x x x ∞=∞+==+-++=-+-+⎛+⎫⎛⎫=-< ⎪⎪⎝⎭⎝⎭+=--<<-∑∑300所以()()()()()2110011013244321146223n nn n n n nn n n f x x x x x x x ∞∞++==∞++==++++=-+⎛⎫=-+-<<- ⎪⎝⎭∑∑∑15.将函数()3f x x =展开成(x -1)的幂级数. 解:因为()()()()()2111111!2!m nmm mm m m x xx x n---+=++++++-<<所以()()[]()()()33221133333331121222222211111!2!!n f x x x n x x x n ==+-⎛⎫⎛⎫⎛⎫⎛⎫----+ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=+++++---(-1<x -1<1) 即()()()()()()()()()()()()()2323133131313251111111222!23!2!3152111022!n nnnn n f x x x x x n n x x n ∞=⋅⋅⋅⋅⋅⋅--+--=+++++----⋅⋅⋅⋅⋅⋅--=+-<<⋅∑ 16.利用函数的幂级数展开式,求下列各数的近似值: (1)ln3(误差不超过0.0001); (2)cos20(误差不超过0.0001)解:(1)35211ln 213521n x x x x x x n -+⎛⎫=+++++ ⎪--⎝⎭,x ∈(-1,1)令131x x +=-,可得()11,12x =∈-,301故()35211111112ln3ln 212325222112n n -+⎡⎤+++++==⎢⎥⋅⋅⋅-⎣⎦-又()()()()()()()()()()2123212121232521242122112222123222212112222123252111222212112211413221n n n n n n n n n n n r n n n n n n n n n n +++++++++-⎡⎤++=⎢⎥⋅⋅++⎣⎦⎡⎤⋅⋅++=+++⎢⎥⋅⋅+++⎣⎦⎛⎫<+++ ⎪⎝⎭+=⋅+-=+ 故5810.000123112r <≈⨯⨯61010.000033132r <≈⨯⨯. 因而取n =6则35111111ln32 1.098623252112⎛⎫=≈++++ ⎪⋅⋅⋅⎝⎭(2)()()2420ππππ909090cos 2cos 11902!4!!2nn n ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==-+-++-∵24π906102!-⎛⎫ ⎪⎝⎭≈⨯;48π90104!-⎛⎫⎪⎝⎭≈ 故2π90cos2110.00060.99942!⎛⎫⎪⎝⎭≈-≈-≈17.利用被积函数的幂级数展开式,求定积分0.5arctan d xx x⎰(误差不超过0.001)的近似值.302解:由于()3521arctan 13521n n x x x x x n +=-+-++-+ ,(-1≤x ≤1) 故()2420.50.5000.5357357arctan d d 113521925491111111292252492nx x x x x x x n x x x x ⎡⎤=-+-++-⎢⎥+⎣⎦⎛⎫=-+-+ ⎪⎝⎭=-⋅+⋅-⋅+⎰⎰ 而3110.013992⋅≈,5110.0013252⋅≈,7110.0002492⋅≈. 因此0.535arctan 11111d 0.487292252x x x ≈-⋅+⋅≈⎰ 18.判别下列级数的敛散性:(1)111n nnn nn n +∞=⎛⎫+ ⎪⎝⎭∑;(2)21cos 32n n nx n ∞=⎛⎫ ⎪⎝⎭∑; (3)()1ln 213nn n n ∞=+⎛⎫+ ⎪⎝⎭∑.解:(1)∵122111n nnnnn nn n n n n n n +⎛⎫>= ⎪+⎝⎭⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭ 而()22211221lim lim 10111nnn n n n nn n --++→∞→∞⎡⎤⎛⎫-⎛⎫==≠+⎢⎥⎪ ⎪+⎝⎭+⎝⎭⎣⎦故级数2211nn n n ∞=⎛⎫⎪+⎝⎭∑发散,由比较审敛法知原级数发散. (2)∵2cos 3022n nnx n n ⎛⎫⎪⎝⎭<≤ 由比值审敛法知级数12n n n ∞=∑收敛,由比较审敛法知,原级数21cos 32nn nx n ∞=⎛⎫ ⎪⎝⎭∑303收敛. (3)∵()()ln ln 220313nnn n n ++<<⎛⎫+ ⎪⎝⎭ 由()()()()11ln 33lim lim 3ln 21ln 3lim3ln 2113nn n n n nn U n U n n n ++→∞→∞→∞+=⋅++=+=< 知级数()1ln 23nn n ∞=+∑收敛,由比较审敛法知,原级数()1ln 213n n n n ∞=+⎛⎫+ ⎪⎝⎭∑收敛. 19.若2lim n nn U →∞存在,证明:级数1n n U ∞=∑收敛. 证:∵2lim n n n U →∞存在,∴∃M >0,使|n 2U n |≤M , 即n 2|U n |≤M ,|U n |≤2M n而21n Mn ∞=∑收敛,故1n n U ∞=∑绝对收敛. 20.证明,若21n n U ∞=∑收敛,则1nn U n∞=∑绝对收敛. 证:∵222211111222n n n nU U n U U n n n+=⋅≤=+⋅而由21n n U ∞=∑收敛,211n n∞=∑收敛,知 22111122n n U n ∞=⎛⎫+⋅ ⎪⎝⎭∑收敛,故1n n U n∞=∑收敛, 因而1nn U n∞=∑绝对收敛.30421.若级数1n n a ∞=∑与1n n b ∞=∑都绝对收敛,则函数项级数()1cos sin n n n a nx b nx ∞=+∑在R 上一致收敛.证:U n (x )=a n cos nx +b n sin nx ,∀x ∈R 有()cos sin cos sin n n n n n n n U a nx b nx a nx b nx a b x =+≤+≤+由于1n n a ∞=∑与1n n b ∞=∑都绝对收敛,故级数()1n n n a b ∞=+∑收敛.由魏尔斯特拉斯判别法知,函数项级数()1cos sin n n n a nx b nx ∞=+∑在R 上一致收敛.22.计算下列级数的收敛半径及收敛域:(1) 1311nn n n x n ∞=⎛⎫+ ⎪+⎝⎭∑;(2)()1πsin12nnn x ∞=+∑; (3) ()2112nn n x n ∞=-⋅∑解:(1)()111lim 1331lim 3123311311lim lim lim 22313e e 3n n nn nn nnn n n a a n n n n n n n n n n ρ+→∞+→∞→∞→∞→∞-=+⎛⎫⎛⎫++=⋅ ⎪ ⎪+⎝⎭+⎝⎭⎛⎫++++⎛⎫+=⋅⋅ ⎪ ⎪++⎝⎭+⎝⎭=⋅⋅=∴133R ρ==, 又当33x =±时,级数变为()113133311333nnnn n n n n n n ∞∞==⎛⎫⎛⎫⎛⎫++=±± ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭∑∑, 因为33333lim 033nn n en -→∞⎛⎫+=≠ ⎪+⎝⎭305所以当33x =±,级数发散,故原级数的收敛半径33R =,收敛域(-33,33). (2) 111ππsin122lim lim lim ππ2sin 22n n n n n n nnna a ρ+++→∞→∞→∞==== 故12R ρ==,又∵πsinπ2limsin 2lim ππ0π22n n n n n n→∞→∞⋅==≠.所以当(x +1)=±2时,级数()1πsin12n n n x ∞=+∑发散, 从而原级数的收敛域为-2<x +1<2,即-3<x <1,即(-3,1)(3) ()212121lim lim 221n n n n n na n a n ρ++→∞→∞⋅===⋅+ ∴2R =,收敛区间-2<x -1<2,即-1<x <3. 当x =-1时,级数变为()2111nn n∞=-∑,其绝对收敛,当x =3时,级数变为211n n ∞=∑,收敛. 因此原级数的收敛域为[-1,3]. 23.将函数()0arctan d xtF t x t=⎰展开成x 的幂级数. 解:由于()21arctan 121n nn t t n +∞==-+∑306所以()()()()()20002212000arctan d d 121d 112121nxx n n n n xnnn n t t F t t x t n t x t n n ∞=+∞∞====-+==--++∑⎰⎰∑∑⎰(|x |≤1)24.判别下列级数在指定区间上的一致收敛性:(1)()113n nn x ∞=-+∑,x ∈[-3,+∞); (2)1n n n x ∞=∑,x ∈(2,+∞); (3)()()222211n nx x n n ∞=⎡⎤+++⎣⎦∑,x ∈(-∞,+∞);解:(1)考虑n ≥2时,当x ≥-3时,有()1111133333nn n n nx x --=<<+-+ 而1113n n ∞-=∑收敛,由魏尔斯特拉斯判别法知,级数()113nnn x ∞=-+∑在[-3,+∞)上一致收敛. (2)当x >2时,有2n nn nx=< 由1112lim 122n n nn n +→∞+=<知级数12n n n ∞=∑收敛,由魏尔斯特拉斯判别法知,级数1n n nx ∞=∑在(2,+∞)上一致收敛. (3)∀x ∈R 有()()()22224322111nn n x n n nx n n n ≤<=⎡⎤+⋅+++⎣⎦而311n n ∞=∑收敛,由魏尔斯特拉斯判别法知,级数()()222211n n x x n n ∞=⎡⎤+++⎣⎦∑在(-∞,+∞)上一致收敛. 25.求下列级数的和函数:307(1)()211121n n n x n ∞-=--∑; (2)2121n n x n +∞=+∑; (3)()11!1n n nxn ∞-=-∑; (4)()11n n x n n ∞=+∑.解:(1)可求得原级数的收敛半径R =1,且当|x |=1时,级数()111121n n n ∞-=--∑是收敛的交错级数,故收敛域为[-1,1] 记()()()()22111111112121n n n n n n x x S x xS x x n n -∞∞--=====----∑∑ 则S 1(0)=0,()()122121111n n n S x x x∞--='==-+∑ 所以()()1121d arctan 01xS S x x x x-==+⎰ 即S 1(x )=arctan x ,所以S (x )=x arctan x ,x ∈[-1,1].(2)可求得原级数的收敛半径R =1,且当|x |=1时,原级数发散.记()21021n n x S x n +∞==+∑则()22011n n S x x x ∞='==-∑ ()200111d d ln 121xxx S x x x x x +'==--⎰⎰,即()()11ln 021xS S x x+-=-,S (0)=0 所以()11ln 21xS x x+=-,(|x |<1)(3)由()11!lim lim 0!1n n n n n a n n a n +→∞→∞+==-知收敛域为(-∞,+∞).记()()11!1n n n S x x n ∞-==-∑则()()()1011d e !!11nn xx n n x x S x x x x n n -∞∞=====--∑∑⎰,所以()()()e 1e x x S x x x '==+,(-∞<x <+∞)(4)由()()()112lim111n n n n n →∞++=+知收敛半径R =1,当x =1时,级数变为308()111n n n ∞=+∑,由()2111n n n <+知级数收敛,当x =-1时,级数变为()()111n n n n ∞=-+∑是收敛的交错级数,故收敛域为[-1,1].记()()11nn x S x n n ∞==+∑则S (0)=0,()()111n n x xS x n n +∞==+∑,()[]1111n n x xS x x∞-=''==-∑ (x ≠1) 所以()[]()0d ln 1xxS x x x ''=--⎰ 即()[]()ln 1xS x x '=--()[]()()()00d ln 1d 1ln 1xxxS x x x x x x x '=--=--+⎰⎰ 即()()()1ln 1xS x x x x =--+当x ≠0时,()()111ln 1S x x x⎛⎫=+-- ⎪⎝⎭,又当x =1时,可求得S (1)=1(∵()1lim lim 111n n S x n →∞→∞⎛⎫=-= ⎪+⎝⎭) 综上所述()()[)()0,01,1111ln 1,1,00,1x S x x x x x =⎧⎪==⎪⎨⎛⎫⎪+--∈- ⎪⎪⎝⎭⎩ 26.设f (x )是周期为2π的周期函数,它在(-π,π]上的表达式为()32π0,0π.x f x x x -<≤⎧=⎨<≤⎩ 试问f (x )的傅里叶级数在x =-π处收敛于何值?解:所给函数满足狄利克雷定理的条件,x =-π是它的间断点,在x =-π处,f (x )的傅里叶级数收敛于()()[]()33ππ11π22π222f f -+-+-=+=+30927.写出函数()21π00πx f x x x --≤≤⎧=⎨<≤⎩的傅里叶级数的和函数. 解:f (x )满足狄利克雷定理的条件,根据狄利克雷定理,在连续点处级数收敛于f (x ),在间断点x =0,x =±π处,分别收敛于()()00122f f -++=-,()()2πππ122f f -++-=,()()2πππ122f f -+-+--=,综上所述和函数.()221π00π102π1π2x x x S x x x --<<⎧⎪<<⎪⎪=-=⎨⎪⎪-=±⎪⎩28.写出下列以2π为周期的周期函数的傅里叶级数,其中f (x )在[-π,π)上的表达式为:(1)()π0π,4ππ0;4x f x x ⎧≤<⎪⎪=⎨⎪--≤<⎪⎩(2)()()2πx π=-≤≤f x x ;(3)()ππ,π,22ππ,,22ππ,π;22⎧--≤<-⎪⎪⎪=-≤<⎨⎪⎪≤<⎪⎩x f x x x x (4)()()cosππ2=-≤≤x f x x .310解:(1)函数f (x )满足狄利克雷定理的条件,x =n π,n ∈z 是其间断点,在间断占处f (x )的傅里叶级数收敛于()()ππ0044022f f +-⎛⎫+- ⎪+⎝⎭==,在x ≠n π,有()π0π-ππ011π1πcos d cos d cos d 0ππ4π4n a f x nx x nx x nx x -⎛⎫==-+= ⎪⎝⎭⎰⎰⎰ ()π0π-ππ011π1πsin d sin d sin d ππ4π40,2,4,6,,1,1,3,5,.n b f x nx x nx x nx xn n n-⎛⎫==-+ ⎪⎝⎭=⎧⎪=⎨=⎪⎩⎰⎰⎰于是f (x )的傅里叶级数展开式为()()11sin 2121n f x n x n ∞==--∑(x ≠n π) (2)函数f (x )在(-∞,+∞)上连续,故其傅里叶级数在(-∞,+∞)上收敛于f (x ),注意到f (x )为偶函数,从而f (x )cos nx 为偶函数,f (x )sin nx 为奇函数,于是()π-π1sin d 0πn b f x nx x ==⎰,2π20-π12πd π3a x x ==⎰,()()ππ22-π0124cos d cos d 1ππnn a f x nx x x nx x n ===-⋅⎰⎰ (n =1,2,…) 所以,f (x )的傅里叶级数展开式为:()()221π41cos 3nn f x nx n∞==+-⋅∑ (-∞<x <∞)(3)函数在x =(2n +1)π (n ∈z )处间断,在间断点处,级数收敛于0,当x ≠(2n +1)π时,由f (x )为奇函数,有a n =0,(n =0,1,2,…)311()()()πππ2π002222πsin d sin d sin d ππ212π1sin 1,2,π2n nb f x nx x x nx x nx x n n n n ⎡⎤==+⎢⎥⎣⎦=--+=⎰⎰⎰ 所以()()12112π1sin sin π2n n n f x nx n n ∞+=⎡⎤=-⋅+⎢⎥⎣⎦∑ (x ≠(2n +1)π,n ∈z )(4)因为()cos 2xf x =作为以2π为周期的函数时,处处连续,故其傅里叶级数收敛于f (x ),注意到f (x )为偶函数,有b n =0(n =1,2,…),()()ππ-π0π0π1212cos cos d cos cos d π2π2111cos cos d π2211sin sin 12211π224110,1,2,π41n n x xa nx x nx xn x n x x n x n x n n n n +==⎡⎤⎛⎫⎛⎫=++- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎡⎤⎛⎫⎛⎫+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎢⎥=+⎢⎥+-⎢⎥⎣⎦⎛⎫=-= ⎪-⎝⎭⎰⎰⎰所以f (x )的傅里叶级数展开式为:()()12124cos 1ππ41n n nxf x n ∞+==+--∑ x ∈[-π,π]29.将下列函数f (x )展开为傅里叶级数: (1)()()πππ42x f x x =--<<(2)()()sin 02πf x x x =≤≤解:(1) ()ππ0-ππ11ππcos d d ππ422x a f x nx x x -⎛⎫==-= ⎪⎝⎭⎰⎰[]()ππππ-π-πππ1π11cos d cos d x cos d π4242π1sin 001,2,4n x a nx x nx x nx x nx n n--⎛⎫=-=- ⎪⎝⎭=-==⎰⎰⎰312()ππππ-π-π1π11sin d sin d xsin d π4242π11n n x b nx x nx x nx x n-⎛⎫=-=- ⎪⎝⎭=-⋅⎰⎰⎰故()()1πsin 14n n nxf x n∞==+-∑ (-π<x <π)(2)所给函数拓广为周期函数时处处连续, 因此其傅里叶级数在[0,2π]上收敛于f (x ),注意到f (x )为偶函数,有b n =0,()ππ0πππ011cos0d sin d ππ24sin d ππa f x x x x x x x --====⎰⎰⎰ ()()()()()()ππ0ππ02222cos d sin cos d ππ1sin 1sin 1d π211π10,1,3,5,4,2,4,6,π1n na f x nx x x nx x n x n x x n n n n -===+--⎡⎤⎣⎦-⎡⎤=+-⎣⎦-=⎧⎪-=⎨=⎪-⎩⎰⎰⎰所以()()2124cos2ππ41n nxf x n ∞=-=+-∑ (0≤x ≤2π) 30.设f (x )=x +1(0≤x ≤π),试分别将f (x )展开为正弦级数和余弦级数. 解:将f (x )作奇延拓,则有a n =0 (n =0,1,2,…)()()()()ππ0022sin d 1sin d ππ111π2πn nb f x nx x x nx x n==+--+=⋅⎰⎰从而()()()1111π2sin πnn f x nx n∞=--+=∑ (0<x <π)313若将f (x )作偶延拓,则有b n =0 (n =1,2,…)()()ππ00222cos d 1cos d ππ0,2,4,64,1,3,5,πn a f x nx x x nx x n n n ==+=⎧⎪=-⎨=⎪⎩⎰⎰ ()()ππ0π012d 1d π2ππa f x x x x -==+=+⎰⎰ 从而()()()21cos 21π242π21n n xf x n ∞=-+=--∑ (0≤x ≤π) 31.将f (x )=2+|x | (-1≤x ≤1)展开成以2为周期的傅里叶级数,并由此求级数211n n∞=∑的和. 解:f (x )在(-∞,+∞)内连续,其傅里叶级数处处收敛,由f (x )是偶函数,故b n =0,(n =1,2,…)()()11010d 22d 5a f x x x x -==+=⎰⎰()()()1112cos d 22cos d 0,2,4,64,1,3,5,πn a f x nx x x nx xn n n -==+=⎧⎪-=⎨=⎪⎩⎰⎰所以()()()221cos 21π542π21n n xf x n ∞=-=--∑,x ∈[-1,1]取x =0得,()2211π821n n ∞==-∑,故 ()()22222111111111π48212n n n n n n n n ∞∞∞∞=====+=+-∑∑∑∑ 所以211π6n n∞==∑31432.将函数f (x )=x -1(0≤x ≤2)展开成周期为4的余弦级数.解:将f (x )作偶延拓,作周期延拓后函数在(-∞,+∞)上连续,则有b n =0 (n =1,2,3,…)()()220201d 1d 02a f x x x x -==-=⎰⎰ ()()()222022221ππcos d 1cos d 2224[11]π0,2,4,6,8,1,3,5,πn nn x n xa f x x x x n n n n -==-=--=⎧⎪=⎨-=⎪⎩⎰⎰ 故()()()22121π81cos π221n n xf x n ∞=-=-⋅-∑(0≤x ≤2)33.设()()011,0,2cos π1222,1,2n n x x a f x s x a n x x x ∞=⎧≤≤⎪⎪==+⎨⎪-<<⎪⎩∑,-∞<x <+∞,其中()12cos πd n a f x n x x =⎰,求52s ⎛⎫- ⎪⎝⎭. 解:先对f (x )作偶延拓到[-1,1],再以2为周期延拓到(-∞,+∞)将f (x )展开成余弦级数而得到 s (x ),延拓后f (x )在52x =-处间断,所以515511122222221131224s f f f f +-+-⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=-+-=-+-⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎛⎫=+= ⎪⎝⎭34.设函数f (x )=x 2(0≤x <1),而()1s i n πn n s x b nx ∞==∑,-∞<x <+∞,其中()12sin πd n b f x n x x =⎰ (n =1,2,3,…),求12s ⎛⎫- ⎪⎝⎭. 解:先对f (x )作奇延拓到,[-1,1],再以2为周期延拓到(-∞,+∞),并将315f (x )展开成正弦级数得到s (x ),延拓后f (x )在12x =-处连续,故.211112224s f ⎛⎫⎛⎫⎛⎫-=--=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 35.将下列各周期函数展开成为傅里叶级数,它们在一个周期内的表达式分别为:(1)f (x )=1-x 2 1122x ⎛⎫-≤< ⎪⎝⎭;(2)()21,30,1,0 3.x x f x x +-≤<⎧=⎨≤<⎩解:(1) f (x )在(-∞,+∞)上连续,故其傅里叶级数在每一点都收敛于f (x ),由于f (x )为偶函数,有b n =0 (n =1,2,3,…)()()112221002112d 41d 6a f x x x x -==-=⎰⎰, ()()()()112221021222cos2n πd 41cos2n πd 11,2,πn n a f x x x x x x n n -+==--==⎰⎰所以()()12211111cos 2π12πn n f x n x n +∞=-=+∑ (-∞<x <+∞)(2) ()()303033011d 21d d 133a f x x x x x --⎡⎤==++=-⎢⎥⎣⎦⎰⎰⎰, ()()()()330330221πcos d 331π1π21cos d cos d 3333611,1,2,3,πn nn xa f x x n x n x x x x n n --==++⎡⎤=--=⎣⎦⎰⎰⎰316()()()()33033011πsin d 331π1π21sin d sin d 333361,1,2,πn n n xb f x x n x n x x x x n n --+==++=-=⎰⎰⎰ 而函数f (x )在x =3(2k +1),k =0,±1,±2,…处间断,故()()()122116π6π11cos 1sin 2π3π3n n n n x n x f x n n ∞+=⎧⎫⎡⎤=-+--+-⎨⎬⎣⎦⎩⎭∑ (x ≠3(2k +1),k =0,±1,±2,…)36.把宽为τ,高为h ,周期为T 的矩形波(如图所示)展开成傅里叶级数的复数形式.解:根据图形写出函数关系式()0,22,220,22T t u t h t T t ττττ⎧-≤<-⎪⎪⎪=-≤<⎨⎪⎪≤≤⎪⎩()()22022111d d d 2T l T l h c u t t u t t h t l T T Tτττ---====⎰⎰⎰ ()()π2π222π2π22222π2211e d e d 212πe d e d 2ππsin e 2ππn T n i t l i t l T T n l n n i t i t T T n i t T c u t t u t tl T h T n h t i t T T n i T h h n n i n T τττττττ----------==-⎛⎫⎛⎫==⋅- ⎪ ⎪⎝⎭⎝⎭⎛⎫⎡⎤=-= ⎪⎣⎦⎝⎭⎰⎰⎰⎰。

数学分析习题集5复旦大学

数学分析习题集5复旦大学


⒈ 对于

5.2
x→a +
lim
f ′( x ) = +∞ 或 − ∞ g ′( x )

的情况证明 L'Hospital 法则。 求下列极限: ⑴ lim
x→0
e x − e− x ; sin x
⑶ lim π
x→ 2
ln(sin x ) ; ( π − 2 x )2
sin 3 x ; tan 5 x xm − am ; lim n ⑷ x →a x − a n
x →+∞
26. 设 f ( x ) 在 ( a , + ∞ ) 上可导,并且 lim f ′( x ) = 0 ,证明 lim
x →+∞
27.设 f ( x ) 在 [ a , b] 连续,在 ( a, b) 二阶可导,证明存在 η ∈ ( a , b ) ,成立
2
f (x) = 0。 x
a+b ⎛b−a⎞ f (b) + f (a ) − 2 f ( )=⎜ ⎟ f " (η ) 。 2 ⎝ 2 ⎠ b−a ⎡a + b ⎤ (提示:在区间 ⎢ ) )。 , b ⎥ 上考虑函数 g ( x) = f ( x) − f ( x − 2 ⎦ ⎣ 2
⑴ 1) (1 + x) ln (1 + x) < x ;
2 2
1 1 1 1 −1 < − < 。 ln 2 ln(1 + x) x 2 14. 对于每个正整数 n ( n ≥ 2 ) ,证明方程 n x + x n −1 + " + x 2 + x = 1 在 (0,1) 内必有唯一的实根 x n ,并求极限 lim x n 。

高等数学上_复旦大学出版_习题五答案

高等数学上_复旦大学出版_习题五答案

(16) 对于任意的 y∈[0,h],过点(0,y)且垂直于 y 轴的平面截该立体为一椭圆,且该椭圆的半轴为: A a B b x1=A y , 同理可得该椭圆的另一半轴为: x 2 = B y. h h 故该椭圆面积为 A a B b A ( y )= x 1 x 2 = A y B y h h 从而立体的体积为
2 0 2 2
1 y
1+ y ′ 2 d x =2
0
1+
1 dx y2
=2
2 1 y2 1+ y 2 d =2 1+ y 2 d y y 2 0 0 2
= y 1+ y 2 +ln (y + 1+ y 2 ) =2 5 +ln(2+ 5)
0
(2) y =ln x , 3 ≤x≤ 8 ; 解:l = = (3) y =
∴D =
1 a 0
(x x 2 ax )d x
1 1 1 a = (1 a )· x2 x3 3 0 2 = 1 1 a )3 6( 1 9 1 a )3 = 6( 2 得 a=2. (13) 4. 求下列旋转体的体积: (1) 由 y = x 2 与 y 2 = x 3 围成的平面图形绕 x 轴旋转;
习题五
1. 求下列各曲线所围图形的面积: 1 (1) y = x2 与 x 2 + y 2 =8(两部分都要计算); 2 解:如图 D 1 = D 2
Байду номын сангаас
y = 1 x 2 解方程组 2 得交点 A(2,2) x 2 + y 2 =8
(1) 1 2 D 1 = 8 x 2 x 2 d x =π+ 2 3 0 4 ∴ D 1 + D 2 =2 π + , 3 4 4 D 3 + D 4 =8 π 2 π + =6 π . 3 3 1 (2) y = 与直线 y=x 及 x=2; x

复变函数与积分变换 复旦大学出版社 习题五答案

复变函数与积分变换   复旦大学出版社   习题五答案

习题五1. 求下列函数的留数. (1)()5e 1zf z z-=在z =0处.解:5e 1zz-在0<|z |<+∞的罗朗展开式为23454321111111112!3!4!2!3!4!zzzz zz z z z+++++-=+⋅+⋅+⋅+ ∴5e 111R es ,014!24z z ⎡⎤-=⋅=⎢⎥⎣⎦(2)()11e z f z -=在z =1处.解:11ez -在0<1z -| <+∞的罗朗展开式为()()()11231111111e112!3!!111z nz n z z z -=++⋅+⋅++⋅+----∴11R es e ,11z -⎡⎤=⎣⎦.2. 利用各种方法计算f (z )在有限孤立奇点处的留数. (1)()()2322z f z z z +=+解:()()2322z f z z z +=+的有限孤立奇点处有z =0,z =-2.其中z =0为二级极点z =-2为一级极点.∴()[]()()120013232324Res ,0lim lim 11!242z z z z z f z z z →→++--⎛⎫=⋅=== ⎪⎝+⎭+ ()[]2232R es ,2lim 1z z f z z→-+-==- 3. 利用罗朗展开式求函数()211sinz z+⋅在∞处的留数.解:()()()22235111sin 21sin11111213!5!z z z zzz z z z z +⋅=++⋅⎛⎫=++⋅-⋅+⋅+ ⎪⎝⎭∴()[]1R es ,013!f z =-从而()[]1R es ,13!f z ∞=-+5. 计算下列积分.(1)ctan πd z z ⎰ ,n 为正整数,c 为|z |=n 取正向.解:ccsin πtan πd d cos πz z z zz=⎰⎰.为在c 内tan πz 有12k z k =+(k =0,±1,±2…±(n -1))一级极点由于()()2sin π1R es ,πcos πk z kzf z z z =⎡⎤==-⎣⎦'∴()c1tan πd 2πi R es ,2πi 24i πk kz z f z z n n ⎛⎫=⋅⎡⎤=⋅-⋅=- ⎪⎣⎦⎝⎭∑⎰(2) ()()()10cd i 13zz z z +--⎰c :|z |=2取正向.解:因为()()()101i 13z z z +--在c 内有z =1,z =-i 两个奇点.所以()()()()[]()[]()()[]()[]()()10c10d 2πi Res ,i Res ,1i 132πi Res ,3Res ,πi3i zf z f z z z z f z f z =⋅-++--=-⋅+∞=-+⎰6. 计算下列积分. (1)π0cos d 54cos m θθθ-⎰因被积函数为θ的偶函数,所以ππ1cos d 254cos m I θθθ-=-⎰令π1π1sin d 254cos m I θθθ-=-⎰则有i π1π1ei d 254cos m I I θθθ-+=-⎰设i e z θ= d 1d i zz θ=2os 12c z zθ+=则()121211d i 2i 15421d 2i521mz mz zzI I zz z zzz ==+=⎛⎫+- ⎪⎝⎭=-+⎰⎰被积函数()()2521mzf z z z =-+在|z |=1内只有一个简单极点12z =但()()[]12211R es ,lim232521mmz zf z z z →⎡⎤==⎢⎥⎣⎦⋅'-+所以111πi 2πi 2i 3232mmI I +=⋅⋅=⋅⋅又因为π1π1sin d 254s 0co m I θθθ-=-=⎰∴π0cos d 54cos π32mm θθθ=⋅-⎰(2) 202πcos 3d 12cos aa θθθ+-⎰,|a|>1.解:令2π102cos 3d 12cos I a aθθθ+=-⎰2π202sin 3d 12cos I a aθθθ+=-⎰32π120i2e i d 12cos I I a a θθθ-++=⎰令z =e i θ.31d d i os 2c zz z zθθ==,则 ()()()3122123221321i d 1i 1221d i1112π2πi R es ,i 1z z zI I zz za az zzaz a z af z a a a ==+=⋅+-⋅+=-++--⎡⎤=⋅⋅=⎢⎥⎣⎦-⎰⎰得()1322π1I a a =-(3)()()2222d xx a x b ∞+-∞++⎰,a >0,b >0.解:令()()()22221R z z a z b =++,被积函数R (z )在上半平面有一级极点z =i a 和i b .故()[]()[]()()()()()()()()()()22222222i i 22222πi Res ,i Res ,i 112πi lim i limi 112πi 2i 2i πz a z b I R z a R z b z a z b z a z b z a z b a b a b a b ab a b →→=+⎡⎤=-+-⎢⎥++++⎣⎦⎡⎤=+⎢⎥--⎣⎦=+(4). ()2222d xx x a ∞++⎰,a >0.解:()()222222221d d 2xxx x x a x a -∞++∞∞=++⎰⎰令()()2222zR z z a =+,则z =±a i 分别为R (z )的二级极点故()()[]()[]()()()22222222i 0i 1d 2πi R es ,i R es ,i 2πi lim lim i i π2z a z a xx R z a R z a x a z z z a z a a-→∞→-=⋅⋅+-+⎛⎫''⎡⎤⎡⎤ ⎪=+⎢⎥⎢⎥ ⎪+-⎣⎦⎣⎦⎝⎭=⎰(5) ()222sin d x x x b xβ∞+⋅+⎰,β>0,b>0.解:()()()i 222222222cos sin ed d i d xxx x x xxx xx b x b x b βββ+++--∞∞∞∞∞∞-⋅⋅⋅=++++⎰⎰⎰而考知()()222zR z z b =+,则R (z )在上半平面有z =b i 一个二级极点.()()[]()i i 222i i ed 2πi R ese ,i e π2πi lim e i i 2z xzzbb xx R z b x b z z b b βββββ+--→∞∞⋅=⋅⋅+'⎡⎤=⋅=⋅⋅⎢⎥+⎣⎦⎰()222sin πd e2bbb xx x x βββ+--∞∞⋅=⋅+⎰从而()222sin ππd e44ebbx x bb xx b βββββ+-∞⋅=⋅=+⎰(6) 22i ed xx x a+-∞∞+⎰,a >0 解:令()221R z z a=+,在上半平面有z =a i 一个一级极点()[]i i i 22ieeeπd 2πi Res e ,i 2πi lim2πi i2iexzazaz a x R z a x az a a a -+-→∞∞=⋅⋅=⋅=⋅=++⎰7. 计算下列积分(1)()2sin 2d 1xx x x ∞++⎰解:令()()211R z z z =+,则R (z )在实轴上有孤立奇点z =0,作以原点为圆心、r 为半径的上半圆周c r ,使C R ,[-R , -r ], C r ,[r , R ]构成封闭曲线,此时闭曲线内只有一个奇点i ,于是:()()[]{}()222i 201e1eIm d Im 2πi Res ,i lim d 2211rr xizc I x R z z z z x x +-∞∞→⎡⎤==⋅-⎢⎥++⎣⎦⎰⎰而()202ed lim πi1rizc r z zz →⋅=-+⎰.故:()()2221e 1e πIm 2πi lim πi Im 2πi πi 1e 2222zi i z I z z i --→⎡⎤⎡⎤⎛⎫=⋅+=⋅-+=- ⎪⎢⎥⎢⎥+⎝⎭⎣⎦⎣⎦.(2)21d 2πi z Taz z⎰,其中T 为直线Re z =c ,c >0, 0<a <1解:在直线z =c +i y (-∞< y <+∞)上,令()ln 22ez z aa f z zz==,()ln 22ei c af c y c y⋅+=+,()ln 22ei d d c af c y y yc y⋅++--∞∞∞∞+=+⎰⎰收敛,所以积分()i i d c c f z z ∞∞+-⎰是存在的,并且()()()i i i i d limd limd c c c c ABR RR R f z z f z z f z z ++--→+∞→+∞∞∞==⎰⎰⎰其中AB 为复平面从c -i R 到c +i R 的线段.考虑函数f(z)沿长方形-R ≤x ≤c ,-R ≤y ≤R 周界的积分.<如下图>因为f (z )在其内仅有一个二级极点z =0,而且()[]()()20Res ,0lim ln z f z z f z a →'=⋅=所以由留数定理.()()()()d d d d 2πi ln ABBEEFFAf z z f z z f z z f z z a +++=⋅⎰⎰⎰⎰而()()()()i ln ln ln ln 22222eeeed d d d 0i x R ax aaCC aRCC R BE CR Rf z z x x x C R x RRRx R →+⋅⋅-+--∞==⋅+−−−→++⎰⎰⎰⎰≤≤.。

高等数学复旦大学出版第三版上册课后答案习题全 PDF 版本适合手机

高等数学复旦大学出版第三版上册课后答案习题全 PDF 版本适合手机

x x x x ] = 时,邮资 y = × 0.80 = ; 20 20 20 25 x x ⎡ x ⎤ ]≠ 时, 由题意知邮资 y = + 1⎥ × 0.80 . ⎢ 20 20 ⎣ 20 ⎦
当 x 不能被 20 整除时,即 [
⎧x ⎡ x⎤ x , 0 < x ≤ 2000且 ⎢ ⎥ = ; ⎪ ⎪ 25 ⎣ 20 ⎦ 20 综上所述有 y = ⎨ ⎪ ⎡ x + 1⎤ × 0.80, 0 < x ≤ 2000且 ⎡ x ⎤ ≠ x . ⎢ ⎪ ⎣ 20 ⎥ ⎦ ⎣ 20 ⎥ ⎦ 20 ⎩⎢
1− x 1− y 解得 x = , 1+ x 1+ y
所以函数 y =
1− x 1− x 的反函数为 y = ( x ≠ −1) . 1+ x 1+ x
y−1
(2) 由 y = ln( x + 2) + 1 得 x = e
−2,
(x ∈R) .
所以, 函数 y = ln( x + 2) + 1 的反函数为 y = e x −1 − 2
习题一
1. 下列函数是否相等,为什么?
(1) f ( x ) = x 2 , g (x ) = x ; x 2 −1 (3) f ( x ) = , g ( x ) = x + 1. x −1
解: (1)相等.
(2)y = sin2 (3x + 1),u = sin2 (3t + 1);
因为两函数的定义域相同 ,都是实数集 R; 由
4

f ( x) − f (− x) 为奇函数.
12. 某厂生产某种产品 , 年销售量为 106 件, 每批生产需要准备费 103 元, 而每件的年库存费为 0.05 元, 如果销售是均匀的 , 求准备费与库存费之和的总费用与年销售批数之间的函数 ( 销售 均匀是指商品库存数为批量的一半). 解: 设年销售批数为 x, 则准备费为 103x; 又每批有产品

高数上学期第五章习题部分解答打印稿

高数上学期第五章习题部分解答打印稿
选择题(3)解答
练习一2.填充题
填充题(1)解答
填充题(2)解答
由函数ex的马克劳林公式知
填充题(3)解答
填充题(4)解答
填充题(5)解答
综上讨论有:I3<I1<I2.
练习一3.估计积分值的大小
3(1)解答
定积分估值的基本原理是通过被积函数进行估值,即通过被积函数在积分区间上的最大
值和最小值进行估值。对本题
因为f(x)在[a,b]上连续,由连续函数的介值定理,存在[a,b],使得
练习二1.计算下列函数的导数
1(1)解答
这是一个变上限函数的求导问题。由于其上限是x的函数,且被积式中还含有自变量x,
因此需注意根据导数规则进行计算。
1(2)解答
1(3)解答
这是一个变上限隐函数的求导问题。由隐函数求导法,方程两边对自变量x求导有
9(2).解答
练习二10.解答
(1)求(x)的表达式
由于(x)是分段函数,故(x)也是分段函数,因而需逐段确定其表达式。
·当x[0,1)时,
·当x[1,2]时,
(2)考察(x)的连续性
由于(x)在其各子段上都是初等函数,要考察(x)的连续性只需考虑其在分段点
x=1处的连续性,即考察(x)在x=1处是否左连续和右连续。
练习四2.解答
此广义积分含参数k,因此需就k的不同取值进行讨论。
由定义,当k=1时
当k1时
练习四3.解答
以此类推可得In=nIn-1=n(n-1)In-2=…=n!I0.
练习四4.解答
(1)求曲线y=ex过原点的切线方程
设切点为(x0,y0),则曲线y=ex在点(x0,y0)处的切线斜率为ex0,

概率论与数理统计复旦大学出版社第五章课后答案

概率论与数理统计复旦大学出版社第五章课后答案

概率与数理统计习题五答案1•一颗骰子连续掷4次,点数总和记为X .估计P{10VXV18}.达到在76%与84%之间的概率不小于90%,问这批产品至少要生产多少件?【解】设至少要生产n 件产品才能满足要求,人 1,第i 个产品合格, 令X i0,第i 个产品不合格.'1,2,L ,n ,则X 1,X 2,L ,X n 相互独立且服从相同的(0— 1)分布,P P X i 1 0.8现要求n,使得nX i P 0.76— 0.84 0.9.n【解】设X i (i 123,4)表示第i 次掷的点数,则4X ii 1E(X i ) E(X i 2)112 16 612 1 2261 6 321 642 5 16 1 52 66 1 6 167 2 62 91 6 从而D(X i ) E(X i 2)[E(X i )]91 635 12又X i ,X 2,X 3,X 4独立同分布44从而 E(X) E( X i )E(X i ) i 1 i 114,所以44D(X) D( X i )D(X i )i 1i 1P{10 X 18} P{| X2.假设一条生产线生产的产品合格率是 4 35 12 35 3 141 4}1晳 0.271,4208要使一批产品的合格率742所以供应电能151X 15=2265 (单位).0.95 P{X m} P X140 m 140^42m 140742查表知耳便1.64,V 42,m=151.根据独立同分布的中心极限定理得整理得 普o.95'查表普1.64, n >268.96,故取 n=269.3. 某车间有同型号机床200部,每部机床开动的概率为0.7,假定各机床开动与否互不影响,开动时每部机床消耗电能15个单位.问至少供应多少单位电能才可以 95%的概率保证不致因供电不足 而影响生产.【解】设需要供应车间至少m 15个单位的电能,这么多电能最多能同时供给m 部车床工作,我们的问题是求把观察一部机床是否在工作看成一次试验,在 200次试验中,用X 表示正在工作的机床数目,则 X 〜B(200,0.7),E(X) np 200 0.7 140, D(X) np(1 p) 200 0.7 0.3根据题意,结合棣莫弗一拉普拉斯定理可得nX i 0.8ni 1p 0.76 n 0.8 n V n 0.8 0.2V n 0.8 0.20.84n 0.8n V n 0.8 0.20.84n 0.8n 0.76n J0.16 n』0.9,42,1P{ X 30}P{ X 30} 1 PX np 30 np J np(1 p) J np(1 p) 30 100 0.2 J100 0.2 0.81(2.5) 0.00624. 一加法器同时收到20个噪声电压V ( k 12L ,20),设它们是相互20独立的随机变量,且都在区间(0,10)上服从均匀分布.记V V k ,k 1求P{V > 105}的近似值.100/12(k 1,2,L ,20)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档