聚合物的粘弹性
聚合物的粘弹性

3.粘弹性:聚合物材料组合了固体的弹性和液体的粘性两者的特 征,这种行为叫做粘弹性。粘弹性的表现: 力学松弛 4.线性粘弹性: 组合了服从虎克定律的理想弹性固体的弹性和 服从牛顿流动定律的理想液体的粘性两者的特征,就是线性粘 弹性。否则为非线性粘弹性. 5.力学松弛:聚合物的力学性质随时间变化的现象,叫力 学松弛。力学性质受到,T, t,的影响,在不同条件下, 可以观察到不同类型的粘弹现象。
动态 粘弹性
滞后现象
力学损耗 (内耗)
在一定温度和和交变应力下,应变滞后于应力 变化.
的变化落后于的变化,发生滞后现象,则每一 个循环都要消耗功
3
聚合物的粘弹性
7.3.1 高聚物的线性粘弹性 静态粘弹性
(1)蠕变 在恒温下施加较小的恒定外力时,材料的形变随时间而
逐渐增大的力学松弛现象。 如挂东西的塑料绳慢慢变长。
t2 )
0 (t→)
E2-高弹模量 特点:高弹形变是逐渐回复的.
8
(t)
聚合物的粘弹性
无化学交联的线性高聚物,发生分 子间的相对滑移,称为粘性流动.
t (t)
t1 t2
t
图3 理想粘性流动蠕变
(t)=
0 (t<t1)
0 3
t (t1
t
t2 )
0 3
t2 (t
t2 )
3-----本体粘度
Creep recovery 蠕变回复
•撤力一瞬间,键长、键角等次级运动立即回复,形变直线下降 •通过构象变化,使熵变造成的形变回复 •分子链间质心位移是永久的,留了下来
11
聚合物的粘弹性
理想交联聚合物(不存在粘流态):形变: 1+2
第四节 聚合物的粘弹性

Company Logo
Logo
普通粘、弹概念
一、基本概念
弹:外力→形变→应力→储存能量
外力撤除→能量释放→形变恢复
能量完全以弹性能的形式储存,然后又全
部以动能的形式释放,没有能量的损耗。
粘:外力→形变→应力→应力松弛→能量耗散
外力撤除→形变不可恢复
Company Logo
(7 2)
t1 t2
t
Company Logo
Logo (3)粘性流动(e3): •受力时分子间无交联的线形聚合物,则会产生分子 间的相对滑移,它与时间成线性关系,外力除去后, 粘性形变不能恢复,是不可逆形变
e3
s0 e3 t
t1
(7 3)
t2
Company Logo
Logo
(3)如果温度接近Tg(附近几十度),应力 松弛可以较明显地被观察到,如软PVC丝,用 它来缚物,开始扎得很紧,后来就会慢慢变 松,就是应力松弛比较明显的例子。 (4)只有交联聚合物应力松弛不会减到零 (因为不会产生分子间滑移),而线形聚合 物的应力松弛可减到零。
Company Logo
Logo
7.1.2 应力松弛
在恒定温度、恒定应变的条件下,聚合物内部的应
力随时间的增加而逐渐减小的现象。 例如:拉伸一块未交联的橡 胶到一定长度,并保持长度不 变,随着时间的增加,这块橡 胶的回弹力会逐渐减小,这是 因为里面的应力在慢慢减小, 最后变为0。因此用未交联的 橡胶来做传动带是不行的。
Company Logo
Logo
(1)在一定温度和恒定应力作用下,观察试样 应变随时间增加而逐渐增大的蠕变现象; (2)在一定温度和恒定应变条件下,观察试样 内部的应力随时间增加而逐渐衰减的应力松 弛现象; (3)在一定温度和循环(交变)应力作用下, 观察试样应变滞后于应力变化的滞后现象。 以上3种现象统称聚合物的力学松弛现象。蠕 变、应力松弛属于静态粘弹性,滞后现象属 于动态粘弹性。
聚合物的粘弹性

t
0e
τ——松弛时间
应力松驰的原因:
当聚合物一开始被拉长时,其中分子处于不平衡的构象, 要逐渐过渡到平衡的构象,也就是链段要顺着外力的方向运 动,因而产生内部应力,与外力相抗衡。通过链段热运动调 整分子构象,使缠结点散开,分子链相互滑移,逐渐恢复蜷 曲的原状,内应力逐渐减少或消除。
聚合物的粘弹性说课
复
t2
t
1.3 弹性与粘性比较
弹性
粘性
能量储存 形变回复 虎克固体
E
E(,,T)
模量与时间无关
能量耗散
永久形变
牛顿流体
.
d
dt
E (,,T,t)
模量与时间有关
理想弹性体的应力取决于 ,理想粘性体的应力取决于 。
二. 粘弹性
聚合物
牛顿流体
非牛顿流体应变速率与 应力的关系
聚合物 虎克固体
t
与理想弹性体有区别
让学生 亲自经历运用科 学方法进行探索 。
让学生在实验过 程中自己摸索, 从而发现“新” 的问题或探索出 “新”的规律。
六、教学设计
提出问题 导入新课
提供条件 学生思考
引导分析 提出新疑
讨论问题 得出结论
布置作业 能力迁移
七、说课综述
在教学的过程中,我始终努力贯彻以教师为主导, 以学生为主体,以问题为基础,以能力、方法为主线, 有计划培养学生的思维能力、解决问题的能力。并且 从实际出发,充分利用各种教学手段来激发学生的学 习兴趣,体现了对学生创新意识的培养。
聚合物的粘弹性
一. 粘、弹基本概念 弹 – 由于物体的弹性作用使之射出去。
粘 – 象糨糊或胶水等所具有的、能使一个
物质附着在另一个物体上的性质。
高分子物理--聚合物的粘弹性ppt课件

粘弹体的应力与应变的相位关系
一、 粘弹性现象 (二) 动态粘弹性
力学损耗:由于滞后,周期性应力应变变化过程将伴随能量消耗, 称之为力学损耗。 损耗的大小同滞后角有关,常以tanδ 表示
橡胶拉伸与回缩的应力-应变关系示意图
一、 粘弹性现象 (二) 动态粘弹性
聚合物的内耗与频率的关系
表示在复平面上的复模量 E* D* ﹦1
一、 粘弹性现象 (三) 粘弹性参数
G*﹦G1+iG2
J* ﹦ J1 - iJ2
tan δ ﹦ E2 / E 1
﹦ D2 / D 1 ﹦ G2 / G 1 ﹦ J2 / J 1
链段运动的松弛时间同 作用频率(速率)相匹 配时(ω ~ 1/τ ),粘 弹性现象最显著。
二、 粘弹性的数学描述
(一) Boltzmann叠加原
在Δ σ31 、、
u2 、 ……
u3 、 Δ σn
……
un时刻,对试样加应力Δ σ1 、 Δ σ2 、
ε(t)﹦ ∑Δσi D(t-ui)
i: 1→ n
连续对试样加应力,变化率为? σ (u)/? u
t﹥ un
ε(t)﹦ ∫ D(t-u)(? σ (u)/? u) du u:- ∞ → t
ηs*﹦ηs1-ηs2 ηs1 ﹦(σ0/γ0 ω)sinδ ηs2 ﹦(σ0/γ0 ω)cosδ
ηs1 ﹦G2/ω
ηs2 ﹦G 1/ω
二、 粘弹性的数学描述
(一) Boltzmann叠加原
1. 数理学表达式
在零时刻,对试样加应力σ0 ε0 (t)﹦σ0 D(t)
在u1时刻,对试样加应力σ1 ε1 (t)﹦σ1 D(t-u1)
粘性响应 理想液体
粘弹性

外力的方向运动以减小或者消除内部应力,如果T很高(>>Tg),链运动摩擦
阻力很小,应力很快松弛掉了,所以观察不到,反之,内摩擦阻力很大,链段 运动能力差,应力松弛慢,也观察不到.只有在Tg温度附近的几十度的范围
内应力松弛现象比较明显.(链由蜷曲变为伸展,以消耗外力)
21
第8章 聚合物的粘弹性
0
玻璃态 高弹态 粘流态 t
2 0
0 0
sin tcost - dt
W 0 0sin
又称为力学损耗角,常用tan表示内耗的大小
33
第8章 聚合物的粘弹性
③内耗的表达
当 t 0sin t时, 应力 ( t ) 0sin t
展开 : ( t ) 0 cos sin t 弹性形变的动力 0sin cost 消耗于克服摩擦阻力
27
第8章 聚合物的粘弹性
③滞后现象与哪些因素有关?
a.化学结构:刚性链滞后现象小,柔性链滞后现象大.
b.温度:当不变的情况下,T很高滞后几乎不出现,温度很低, 也无滞后.在Tg附近的温度下,链段既可运动又不太容易,此 刻滞后现象严重。 c. : 外力作用频率低时,链段的运动跟的上外力 的 变化,滞 后现象很小. 外力作用频率不太高时,链段可以运动,但是跟不上外力的变 化,表现出明显的滞后现象.
外力作用频率很高时,链段根本来不及运动,聚合物好像 一块刚性的材料,滞后很小
28
第8章 聚合物的粘弹性
2.内耗:
①内耗产生的原因: 当应力与形变的变化相一致时,没有滞后现象,每次形变所 作的功等于恢复形变时所作的功,没有功的消耗
如果形变的变化跟不上应力的变化,发生滞后现象,则每 一次循环变化就会有功的消耗(热能),称为力学损耗,也叫内 耗. 外力对体系所做的功:一方面用来改变链段的构象(产生 形变),另一方面提供链段运动时克服内摩擦阻力所需要的能量 .
7 粘弹性

t
18
第7章 聚合物的黏弹性
2、应力松弛 Stress Relaxation
• 在恒定温度和形变下,维持此形变所需的应力随时间增加而逐渐衰减
0e
0
t
松弛时间 交联高分子 应力衰减至某一平衡值
Crosslinked polymer
Linear polymer
0
t
未交联高分子 应力最终衰减至零
4
第7章 聚合物的黏弹性
5. 力学松弛 聚合物的力学性质随时间变化的现象,叫力学松弛。 包括蠕变及其回复,应力松弛和动态力学实验等。 蠕变 静态的黏弹性 力学松弛 动态黏弹性 力学损耗(内耗)
5
应力松弛 滞后现象
第7章 聚合物的黏弹性
二、静态黏弹性 应力或应变恒定,不同时间时,聚合物材料所表现出来 的黏弹现象。
恒值 (t>t2)
=
t1
t2
t
3-----本体粘度
分子间滑移,不可恢复
11
图3 理想粘性流动蠕变
第7章 聚合物的黏弹性
当聚合物受力时,以上三种形变同时发生,聚合物的总形变 方程:
2+3 1
1 2 3
t
( t ) 1 2 3 -t
(1 e ) t E1 E2 3
32
tanδ由小到大的顺序:
第7章 聚合物的黏弹性
内耗受温度影响较大
Tg以下,高聚物受外力作用后形变很小, 仅键长、键角变化,速度快,几乎跟得上 应力变化,内耗小
Tg Tf
T Tan
温度升高,高分子向高弹态过渡。链段开始运动,而体系粘度还很大, 链段运动时受到摩擦阻力比较大,高弹形变显著落后于应力的变化,内 耗也大 温度进一步升高,链段运动比较自由,内耗变小 因此,在玻璃化转变区域出现内耗峰 温度继续升高,高分子向粘流态过渡。由于分之间互相滑移,内耗急剧 增加
《聚合物的粘弹性》课件

《聚合物的粘弹性》PPT 课件
聚合物是一类重要的材料,本课件将深入探讨聚合物的粘弹性及其应用。让 我们一起来揭开这个精彩的科学领域吧!
I. 聚合物概述
定义和分类
聚合物是由许多重复单元组成的大分子化合物,可分为线性、交联和支化等不同类型。
聚合过程及特点
聚合过程是单体分子结合形成高分子链的化学反应,聚合物具有高分子量、可塑性和可再生 等特点。
3
色散力谱技术
色散力谱技术结合了动态力学和谱学的原理,可精确测量聚合物的粘弹性参数。
V. 聚合物的粘弹性对应用的影响
1 聚合物加工
了解聚合物的粘弹性特性有助于优化聚合物加工过程,提高产品质量和生产效率。
2 材料性能预测
粘弹性参数可以用于预测聚合物在不同应力和环境条件下的性能,指导材料设计和选择。
3 涂层和粘合剂
应用领域和意义Biblioteka 聚合物在塑料、纤维、涂料等众多领域有着广泛的应用,对现代社会的发展起着重要作用。
II. 粘弹性基础知识
1 弹性和黏性
弹性是物体恢复原状的能力,而黏性则描述了物体抵抗形变的能力,聚合物同时具备这 两种特性。
2 变形与应力的关系
聚合物的变形与施加的应力成正比,其应力-应变曲线可用来描述聚合物的力学性质。
聚合物的粘弹性特性对于涂层和粘合剂的粘附性和耐久性具有重要影响。
VI. 新颖的聚合物复合材料
粘弹性调控
通过调控聚合物复合材料的粘 弹性,可以实现材料性能的改 良和特定应用的实现。
复合材料制备及性能
聚合物复合材料结合了不同材 料的优点,具有良好的力学性 能和多样化的用途。
未来发展方向
聚合物复合材料在领域中的应 用潜力巨大,未来将继续研究 新的材料和创新的应用。
第七章聚合物的粘弹性

二、Kelvin模型
——由弹性模量为E的弹簧和粘度为η的粘壶并联
受到应力σ作用后两部分应变相同:
ε=ε1 =ε2
E
η
总应力等于两部分的应力之和: σ=σ1 +σ2 σ1 = Eε; σ2 =ηdε/dt ; Kelvin模型的运动方程式为: σ= Eε +ηdε/dt
σ
1.恒定应变观察应力随时间变化——应力松弛
令τ =η /E —— 松弛时间
or ( t ) e o
E t
(t)观察应变随时间的变化——蠕变
dσ/dt = 0, Maxwell 运动方程变为: 解该微分方程的边界条件是:
(t )
σ(t)=σo dε/dt = σo/η,
t
o (t) o t
应力由两部分组成: 1)与应变同相位的应力σoCosδSinωt
——弹性形变的动力
2)与应变相差90度相位的应力σoSinδCosωt ——消耗在克服内摩擦阻力上的力(内耗)
定义两个模量 储存模量E’——同相位的应力与应变的比值:
损耗模量E”——相差90度相位的应力振幅与应变振 幅的比值: o E sin
3)温度——温度太高,链段运动很快,完全可 以跟上应力的变化,无滞后现象。温度太低, 链段运动很慢,形变完全来不及发展,滞后 现象不明显。只有在Tg附近几十度的温度范 围内,链段能够充分运动但又跟不上应力的 变化,才会出现明显的滞后现象。
力学损耗
聚合受到交变应力作用时如果不发生滞后,每 一次形变过程外力所做的功都可以以弹性储能的形 式完全释放出来,用来恢复原来的形状,在一个应 力交变循环过程中没有能量损耗。
影响滞后的因素
1)聚合物的链结构——刚性链聚合物由于链段根本 无法运动,所以滞后现象不明显;柔性链聚合物 链段的运动很容易发生,滞后现象比较严重。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7章聚合物的粘弹性
7.1基本概念
弹:外力→形变→应力→储存能量→外力撤除→能量释放→形变恢复
粘:外力→形变→应力→应力松驰→能量耗散→外力撤除→形变不可恢复
理想弹性:
服从虎克定律
σ=E·ε
应力与应变成正比,即应力只取决于应变。
理想粘性:服从牛顿流体定律
应力与应变速率成正比,即应力只取决于应变速率。
总结:理想弹性体理想粘性体
虎克固体牛顿流体
能量储存能量耗散
形状记忆形状耗散
E=E(σ.ε.T) E=E(σ.ε.T.t)
聚合物是典型的粘弹体,同时具有粘性和弹性。
E=E(σ.ε.T.t)
但是高分子固体的力学行为不服从虎克定律。
当受力时,形变会随时间逐渐发展,因此弹性模量有时间依赖性,而除去外力后,形变是逐渐回复,而且往往残留永久变形(γ∞),说明在弹性变形中有粘流形变发生。
高分子材料(包括高分子固体,熔体及浓溶液)的力学行为在通常情况下总是或多或少表现为弹性与粘性相结合的特性,而且弹性与粘性的贡献随外力作用的时间而异,这种特性称之为粘弹性。
粘弹性的本质是由于聚合物分子运动具有松弛特性。
7.2聚合物的静态力学松弛现象
聚合物的力学性质随时间的变化统称为力学松弛。
高分子材料在固定应力或应变作用下观察到的力学松弛现象称为静态力学松弛,最基本的有蠕变和应力松弛。
(一)蠕变
在一定温度、一定应力的作用下,聚合物的形变随时间的变化称为蠕变。
理想弹性体:σ=E·ε。
应力恒定,故应变恒定,如图7-1。
理想粘性体,如图7-2,
应力恒定,故应变速率为常数,应变以恒定速率增加。
图7-3 聚合物随时间变化图
聚合物:粘弹体,形变分为三个部分;
①理想弹性,即瞬时响应:则键长、键角提供;
②推迟弹性形变,即滞弹部分:链段运动
③粘性流动:整链滑移
注:①、②是可逆的,③不可逆。
总的形变:
(二)应力松弛
在一定温度、恒定应变的条件下,试样内的应力随时间的延长而逐渐减小的现象称为应力松弛。
理想弹性体:,应力恒定,故应变恒定
聚合物:
由于交联聚合物分子链的质心不能位移,应力只能松弛到平衡值。
应力松弛的原因是由于试样所承受的应力逐渐消耗于克服链段运动的内摩擦力。
一般分子间有化学键交联的聚合物,由于不发生粘流形变,应力可以不松弛至零。
蠕变及应力松弛过程有强的温度依赖性,当温度低于Tg时,由于τ很大,蠕变及应力松弛过程很慢,
往往很长时间才能察觉;而当温度远大于Tg时,τ很小,蠕变及应力松弛过程极快,也不易察觉;而温度在Tg附近时,τ与测定时间尺度同数量级,因此蠕变及应力松弛现象最为明显。
7.3描述聚合物粘弹性的力学模型
聚合物的粘弹性,如应力松弛,蠕变可以用弹簧(模拟纯弹性形变)与粘壶(模拟纯粘性形变)组合的模型进行近似的定量描述。
(一)Maxwell模型
将弹性模量为G的弹簧与粘度为η的粘壶串联,即为麦克斯韦尔模型。
如图7-7。
由于串联,当施加应力σ时,
总形变等于粘壶和弹簧形变之和:
所以当形变恒定时,所以
积分,并令t=0,
得:
式中,定义为松弛时间;
当t=τ时,从上式知因此松弛时间τ等于应力松弛至起始应力的1/e时所经的时间。
松弛时间越长,该模型越接近理想弹性体。
麦克斯韦尔模型可以描述应力松弛过程,但不能描述蠕变过程。
Maxwell模型总结:
(1)麦克斯韦尔模型可以描述应力松弛过程。
(2)对交联聚合物不适用,因为交联聚合物的应力不可能松弛到零。
(3)无法描述聚合物的蠕变。
Maxwell element 描述的是理想粘性体的蠕变响应。
(二)Voigt(或Kelvin)模型
将弹性模量为G的弹簧与粘度为η的粘壶并联,即为沃伊特模型,如图7-8。
因为是并联,所以应力σ等于弹簧及粘壶所承受的应力之和,即
总形变为:
当应力恒定时,积分,并令t=0,=0,得
Kelvin模型总结:
(1)无法描述聚合物的应力松弛。
Kelvin element 描述的是理想弹性体的应力松弛响应。
(2)不能反映线形聚合物的蠕变,因为线形聚合物蠕变中有链的质心位移,形变不能完全回复。
表7-7各种力学模型对照表
7.4时温等效原理
从分子运动的松弛性质可以知道,同一个力学松弛现象,既可在较高的温度下、较短的时间内观察到,也可以在较低的温度下、较长时间内观察到。
因此,升高温度与延长时间对分子运动和黏弹性都是等效的。
这就是时温等效原理。
借助一个移动因子,就可以将某一温度和时间下测定的力学数据,变为另一个温度和时间下的力学数据。
式中:和分别是温度T时的松弛时间和时间尺度;和分别是参考温度时的松弛时间和时间尺度。
图7-8时温等效原理示意图
因而不同温度下获得的黏弹性数据均可通过沿着时间周的平移叠合在一起。
用降低温度或升高温度的办法得到太短时间或太长时间无法得到的力学数据。
设定一个参考温度,参考温度的曲线不动,低于参考温度的曲线往左移动,高于参考温度的曲线往右移动,各曲线彼此叠合成光滑的组合曲线(图7-8)。
不同温度下的曲线的平移量不同,对于大多数非晶高聚物,与T的关系符合经验的WLF 方程
式中:C1、C2为经验常数。
为了是C1和C2有普适性,参考温度往往是特定值。
经验发现,若以聚合物的作为参考温度,C1=17.44,C2=51.6(这是平均值,实际上对各种聚合物仍有不小的差别)。
此方程适用范围为~+100℃
反过来若固定C1=8.86,C2=101.6,对每一种聚合物都能找到一个特定温度为参考温度,理论上可以证明,这个参考温度大约在 +50℃附近。
符合时温等效原理的物质称为热流变简单物质。
图7-9利用时温等效原理将不同温度下测得的聚异丁烯应力松弛数据换成T=25℃的数据(右上插图给出了在不同温度下曲线需要移动的量)
7.5波兹曼叠加原理
这个原理指出高聚物的力学松弛行为是其整个历史上诸松弛过程的线性加和的结果。
对于蠕变过程,每个负荷对高聚物的变形的贡献是独立的,总的蠕变是各个负荷引起的蠕变的线性加和。
对于应力松弛,每个应变对高聚物的应力松弛的贡献也是独立的,高聚物的总应力等于历史上诸应变引起的应力松弛过程的线性加和。
力学模型提供了描述聚合物黏弹性的微分表达式,Boltzmann叠加原理可以得出描述聚合物黏弹性的积分表达式。
从聚合物力学行为的历史效应可以推求黏弹性的积分表达式。
对于蠕变实验,Boltzmann叠加方程式为:
对应于应力松弛实验,Boltzmann叠加方程式为:
Boltzmann方程不能解,实际应用是用它的加和方程。
例如在蠕变实验中,t=0时,
如果时刻后再加一个应力,则引起的形变为
根据Boltzmann原理,总应变是两者的线性加和(如图8-6所示):
图8-6相继作用在试样上的两个应力所引起的应变的线性加和
符合Boltzmann叠加原理的性质又叫线性黏弹性,反之为非线性黏弹性。
高分子材料的小形变都可以在线性黏弹性范围内处理。