第1讲加减法中的巧算
第1讲 巧算

4.解:
原式=20022002×1999-1999×10001×2002
=1999×(20022002-10001×2002)
=1999×0=0
5.解:
1993×1995×1997×1999积的末位数,等于这四个末位数的积的个位数。3×5×7×9积的个位数是5,同理1992×1994×1996×1998的积的末位数,等于这四个末位数的积的个位数,2×4×6×8的个位数是4。故1993×1995×1997×1999-1992×1994×1996×1998的差的末位是1。
思路剖析
此题目中加数的一个最大特点就是与整十、整百、整千、整万相差不大,那我们就先把它们凑成整十、整百、整千……的数,然后再进行计算,类似于给每个加数找了个基准数,这种方法叫做凑整法。
解答
8+98+998+9998+99998+999998
=(10+100+1000+10000+100000+1000000)-2×6
[例7]计算99999×22222+33333×33334
思路剖析
看到题目应联想到它相似于乘法分配律:(a+b)×c=a×c+b×c中等号的右边,但题目中缺少一个共同的“c”。若找到“c”我们就可以逆用乘法分配律来解决此问题。在寻找“c”的过程中,我们立足于变化其中一个算式,使之得到与另一算式共同的部分。从题目中易发现:可从33333×33334中变化得到99999。解法二中我们将尝试变化99999×22222,得到33333。
6.解:
原式=[(2000-1)×99+2000×100+2000-l+2000-2000+100]÷4000
第1讲 加减法的巧算

第1讲加减法的巧算在进行加减运算时,为了又快又准确,除了要熟练地掌握计算法则外,还需要掌握一些巧算方法。
加减法的巧算主要是“凑整”,就是将算式中的数分成若干组,使每组的运算结果都是整十、整百、整千……的数,再将各组的结果求和。
这种“化零为整”的思想是加减法巧算的基础。
先讲加法的巧算。
加法具有以下两个运算律:加法交换律:两个数相加,交换加数的位置,它们的和不变。
即a+b=b+a,其中a,b各表示任意一数。
例如,5+6=6+5。
一般地,多个数相加,任意改变相加的次序,其和不变。
例如,a+b+c+d=d+b+a+c=…其中a,b,c,d各表示任意一数。
加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者,先把后两个数相加,再与第一个数相加,它们的和不变。
即a+b+c=(a+b)+c=a+(b+c),其中a,b,c各表示任意一数。
例如,4+9+7=(4+9)+7=4+(9+7)。
一般地,多个数(三个以上)相加,可先对其中几个数相加,再与其它数相加。
我们在进行计算时,要根据题目的具体情况灵活进行,选择合理的方法。
1.计算:(1)289+96 (2)64+2005(3)925-199 (4)487-302我们观察上面的算式可以发现:这几题参与运算的数中都有一个数接近整十、整百或整千,那么计算时,我们就可以根据这一特征,运用加减法的运算性质进行计算。
(1)中的96接近100,把96看作100来计算,这样就多加了4,最后再减去4,就得到正确的结果。
即:多加的要减去。
(2)中的接近,把看作来计算,这样就,最后再就得到正确的结果。
即:。
(3)中的接近,把看作来计算,这样就,最后再就得到正确的结果。
即:。
(4)中的接近,把看作来计算,这样就,最后再就得到正确的结果。
即:。
1计算:(1)276+1002接近,把看作来计算,这样就,最后再就得到正确的结果。
(2)985-398接近,把看作来计算,这样就,最后再就得到正确的结果。
第一讲巧算加减法

第一讲巧算加减法巧算加减法加减法是我们日常生活中经常使用的运算方法,掌握巧算加减法可以有效提升计算速度和准确性。
本文将为大家介绍一些巧妙的方法,帮助我们更加轻松地进行加减法计算。
一、进位与退位法进位与退位法是我们在进行加减法运算中经常使用的一种方法。
当我们进行多位数加减运算时,经常遇到进位或退位的情况,利用进位与退位法可以更快速地进行计算。
1. 进位法进位法适用于两个数相加的情况,当两个数的个位相加超过10时,就需要进位。
例如,计算58 + 47:首先,将58的个位数8与47的个位数7相加得15,需要进位,这里我们将进位的1记录下来。
接着,将58的十位数5与47的十位数4相加得9,再加上刚刚记录的进位1,得到的结果是10。
最后,将58和47的百位数相加得到1。
将这三个数依次写下来,就得到了答案:105。
2. 退位法退位法适用于两个数相减的情况,当被减数的某一位小于减数的对应位时,需要向高位借位,即退位。
例如,计算76 - 38:首先,将76的个位数6与38的个位数8进行相减,由于6小于8,需要退位。
我们将退位的1记录下来,然后将76的十位数7减去1,得到6。
最后,将76的百位数减去38的百位数,得到3。
将这三个数依次写下来,就得到了答案:38。
二、加法进位法的应用进位法不仅适用于两个数相加,还可以用于大数加法的计算。
下面以三位数加法为例,介绍加法进位法的应用:例如,计算586 + 247:从个位数开始计算,将6与7相加得到13,13的个位数是3,将3写在个位数的位置上,然后将13的十位数与个位数的位置上的数字相加得到4。
接下来,将13的百位数与十位数相加,再加上5,得到的结果是14。
将14的个位数4写在百位数的位置上,最后将14的十位数写在十位数的位置上,就得到了答案:833。
三、巧算减法术巧算减法术是帮助我们在进行减法运算时更加迅速的方法。
下面将介绍两种常用的巧算减法术。
1. 减法转加法法有时,我们进行减法运算时,发现被减数与减数相差较大,计算起来比较困难。
第1讲 加减法巧算+讲义

第1讲加减法巧算【知识点汇总】加减法巧算原理:制造好算的数一、凑整:(1)如果两个数前面的符号相同,则将末位和为10的两个数放在一起算。
例如:−36和−164;36和164(2)如果两个数前面的符号不同,则将末位相同的两个数放在一起算。
例如:−36和136二、脱括号、添括号的原则:(1)括号前面是加号,脱去或添上括号不变号。
例如:36+(125+164)=36+125+164;136+(125−36)=136+125−36(2)括号前面是减号,脱去或添上括号变符号。
例如:136−(125+36)=136−125−36;164−(125−36)=164−125+36三、基准数法:(1)对于靠近整十整百整千的数,可以把这个数写成整十、整百、整千加上或者减去一个较小的数的形式。
例如:99+999+9999=(100−1)+(1000−1)+(10000−1)四、位置原理:例如:123+312+231−222=(1+3+2−2)×100+(2+1+3−2)×10+(3+2+1−2)×1【例1】(1)计算:73+119+231+69+381+17(2)计算:375−138+247−175+139−237【练习1】(1)计算:36+97+32+64+168+103(2)计算:2468−192+532+392−224+1234【例2】(1)计算:162−(162−135)−(35−19)(2)计算:163−(50−18)−(153−76)+(124−18)【练习2】(1)计算:123−(23−45)−(45−67)(2)计算:437−(200−83)+(63−53)【例3】(1)计算:280−24−76−65−35(2)计算:267−162+84−38−147+116【练习3】(1)计算:379−13−158−87−42(2)计算:981+145−181−323+55−77【例4】(1)计算:999+599+199(2)计算:1206−199−297−398【练习4】(1)计算:99+999+9999(2)计算:2345−299+398−1198【例5】计算:246+462+624−888【作业】1.计算:345+779+6552.计算:25−89+127+175+373+2893.计算:622−(357−78)−(600−457)4.计算:1001−97−396−2985.计算:3579−862−138−734+2346.计算:334+343+433−111。
第一讲:加减法中的简便运算【三年级秋季班】

第一讲:加减法中的简便运算【三年级秋季班】知识导航1、简便运算的核心是凑整,凑整先算。
加减法叫一级运算,乘除法叫二级运算。
2、在运算中,同级运算可以带符号搬家。
要改变运算顺序可以加上或去掉括号。
加号,乘号和等号后面加括号(或去括号),括号里面不变号;减号除号后面加括号(或去括号),括号里面要变号。
3、运用运算定律可以使计算简便,常用的运算定律有:加法交换律:a+b=b+a;乘法交换律:a×b=b×a;加法结合律:(a+b)+c=a+(b+c);乘法结合律:(a×b)×c= a×(b×c);乘法分配律:(a+b) ×c =a×c +b×c精典例题例1:计算: 18+43+54+57+82思路点拨根据尾数凑整求和,1对9,2对8,3对7,6对4,5对5。
=(43+57)+(18+82)+54=100+100+54=254模仿练习用简便方法计算下面各题。
(1)45+226+724+655 (2)37+23+24+111+89=(724+226)+(45+655) =(37+23)+(111+89)+24=1000+700 =60+200+24=1700 =284例2:2000-53-40-60-47思路点拨连减的性质:连续减去几个数,等于减去这几个数的和。
=2000-(53+40+60+47)=2000-(53+47+40+60)=2000-200=1800模仿练习用简便方法计算下面各题。
(1) 213-86-114 (2)2006-563-437-484-516 =213-(86+114) =2006-(563+437+484+516) =213-200 =2006-2000=13 =6(3)1000-90-80-70-60-50-40-30-20-10=1000-(90+80+70+60+50+40+30+20+10)=1000-50×9=1000-450=550例3:想一想,怎样计算更加简便。
三年级奥数第一讲加减巧算

• (2)6854-876-97 • =6854-(1000-124)-(100-3) • =6854-1000+124-100+3 • =5854+24+3 • =5881;
• (3)397-146+288-339 • =397+3-3-146+288+12-12-
339
• =(397+3)+(288+12)-(146+3 +12+339)
24) • =1300+2000-100 • =3200。
• 4.加补凑整法 • 例4计算:(1)512-382; • (2)6854-876-97; • (3)397-146+288-339。
• 解:(1)512-382 • =(500+12)-(400-18)
• =500+12-400+18 • =(500-400)+(12+18) • =100+30 • =130;
• 在连减或加、减混合运算中, 如果算式中没有括号,那么计 算时可以带着运算符号“搬 家”。
• 例如,
• a-b-c=a-c-b,a-b+c= a+c-b,
• 其中a,b,c各表示一数。
• 在加、减法混合运算中,去括号 时:如果括号前面是“+”号,
那么去掉括号后,括号内的数的
运算符号不变;如果括号前面是 “-”号,那么去掉括号后,括号 内的数的运算符号“+”变为“”,“-”变为“+”。
•
知识回顾 Knowledge Review
54 • =70+100+54=224;
Байду номын сангаас
• (2)(1350+49+68)+(51+32+ 1650)
• =1350+49+68+51+32+1650 • =(1350+1650)+(49+51)+(68+
二年级奥数第1讲——加减法中的简便运算

加减法中的简便运算1、进一步理解加法运算律,会运用加法运算律进行一些简便运算。
2、初步认识“从一个数里连续减去两个数,等于从这个数里减去两个减数的和”的运算规律,会运用这种规律进行简便计算。
3、感受数学规律的确定性和普遍适应性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。
一:凑整法例1、计算2+4+6+8+10+12+14+16+18随堂练习1、11+13+15+17+19+21+23+25+27+29例2、计算2+12+16+18+17+12+13随堂练习2、计算1+13+15+17+11+14+!9例3、计算9+18+17+26+11+19随堂练习3、8+17+16+25+13+12+19例4、计算3998+407+89随堂练习4、798+4003+91二:灵活应用运算法则,改变运算顺序,使运算过程中尽量出现小的数或相同的数例5、38+37—36—35+34+33—32—31+30+29—28—27+26随堂练习5、40+39+38—37—36—35+34+33+32—31—30—29+28+27+26—25—24—23例6、15+14—13+12+11—10+9+8—7+6+5—4+3+2—1随堂练习6、50+49+48—47+46+45+44—43+42+41+40—39例7、(2+4+6+8+10)—(1+3+5+7+9)随堂练习7、(2+4+6+......+20)—(1+3+5+7+9+ (19)1、同级运算:括号外面是减号的,添上或去掉括号,括号里面的加减符号要改变,加号要变成减号,减号要变成加号括号外面是加号的,添上或去掉括号,不变去括号后,可以将数与前面的符号一起移动(带着符号搬家),第一个数前面的为加号可以省略2、简便计算方法:(1)加法A+B=B+A (A+B)+C=A+(B+C)(2)减法A-B-C=A-(B+C) A-B+C=A-(B-C)64+97 999+99+9随堂练习1、98+113 109+98+3例2、运用加法的交换律和结合律计算:345+27+655+373随堂练习2、329+67+233+271例3、运用减法中的凑整计算:375-98 534-109 随堂练习3、562-205 624-96869-(69+34)500-56-44随堂练习4、521-173-127 237-(29+137)例5、找基数巧算:93+92+88+89+90+86+91+87随堂练习5、72+70+75+74+67+66例6、运用加减法的性质计算:500-82-18-83-17-86-14-85-15 随堂练习6、1000-76-24-64-36-55-45巩固练习:(作业)一:1、计算1+3+11+17+19+292、44—40+36—32+28—243、(82+84+86+88+90)—(80+82+84+86+88)4、(2+4+6+8+......+100)-(1+3+5+7+ (99)5、48+46—47—45+44+42—43—41+40+38—39—376、2+3+4+5+15+16+17+18+207、5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+208、22—20+18—16+14—12+10—8+6—4+2—09、51—52+53—54+55—56+57—58+59—60+6110、5999+604+48+205二:1、597+27 751+30092、19+199+1999 203+33+60033、89+667+233+911 89+123+567+377+511+2334、423—97 781—2075、635—426—174558—(229+258)6、203+200+198+205+1967、821—68—32—81—19—23—77—44—568、393+4992+1995+294+989、879+(263—379)—663 602—593+494—39810、2222200000—22222 5371860000000—53718611、20+19—18—17+16+15—14—13+12+11—10—9+8+7—6—5+4+3—2—1。
第1讲.加减法巧算.教师版.doc

第一讲:加减法巧算教学目标本讲知识点属于计算板块的部分,难度并不大。
要求学生熟记加减法运算规则和运算律,并在计算中运用凑整的技巧。
知识点拨一、基本运算律及公式㈠加法加法交换律:两个数相加,交换加数的位置,他们的和不变。
即:a+b=b+a其中a,b各表示任意一数.例如,7+8=8+7=15.总结:多个数相加,任意交换相加的次序,其和不变.加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再与第一个数相加,他们的和不变。
即:a+b+c=(a+b)+c=a+(b+c)其中a,b,c各表示任意一数.例如,5+6+8=(5+6)+8=5+(6+8).总结:多个数相加,也可以把其中的任意两个数或者多个数相加,其和不变。
㈡减法在连减或者加减混合运算中,如果算式中没有括号,那么计算时要带数字前面的运算符号“搬家”.例如:a-b-c=a-c-b,a-b+c=a+c-b,其中a,b,c各表示一个数.去括号时::如果括号前面是“+”号,那么去掉括号后,括号内的数的运算符在加减法混合运算中,,去括号时在加减法混合运算中号不变;如果括号前面是“-”号,那么去掉括号后,括号内的数的运算符号“+”变为“-”,“-”变为“+”.如:a+(b-c)=a+b-ca-(b+c)=a-b-ca-(b-c)=a-b+c在加、减法混合运算中,添括号时:如果添加的括号前面是“+”,那么括号内的数的原运算符号不变;如果添加的括号前面是“-”,那么括号内的数的原运算符号“+”变为“-”,“-”变为“+”。
如:a+b-c=a+(b-c)a-b+c=a-(b-c)a-b-c=a-(b+c)二、加减法中的速算与巧算㈠凑整法凑整法就是将算式中的数分成若干组,使每组的运算结果都是整十、整百、整千……的数再将各组的结果相加.①借数凑整法.有些算式中直接凑整不明显,这时可“借数”或“拆数”凑整.②分组凑整法.把几个互为“补数”的减数先加起来,再从被减数中减去,或先减去那些与被减数有相同尾数的减数.“补数”就是两个数相加,如果恰好凑成整十、整百、整千……,就把其中的一个数叫做另一个数的“补数”.㈡找“基准数”法当几个数比较接近于某一整数的数相加时,选这个整数为“基准数”(要注意把多加的数减去,把少加的数加上)㈢数字拆分法根据位值原理将数字进行拆分,然后在凑整或者简单的提取公因数法进行计算。