信号与线性系统分析习题答案

合集下载

信号与线性系统分析-(吴大正-第四版)第三章习题答案

信号与线性系统分析-(吴大正-第四版)第三章习题答案

第三章习题3.1、试求序列k01(k)=2f ⎧⎪⎛⎫⎨ ⎪⎪⎝⎭⎩, 的差分(k)f ∆、(k)f ∇和i=-(i)kf ∞∑。

3.6、求下列差分方程所描述的LTI 离散系统的零输入相应、零状态响应和全响应。

1)()-2(-1)(),()2(),(-1)-1y k y k f k f k k y ε===3)()2(-1)(),()(34)(),(-1)-1y k y k f k f k k k y ε+==+= 5)1()2(-1)(-2)(),()3()(),(-1)3,(-2)-52k y k y k y k f k f k k y y ε++====3.8、求下列差分方程所描述的离散系统的单位序列响应。

2)()-(-2)()=y k y k f k5)()-4(-1)8(-2)()+=y k y k y k f k3.9、求图所示各系统的单位序列响应。

(a)(c)3.10、求图所示系统的单位序列响应。

3.11、各序列的图形如图所示,求下列卷积和。

(1)12()()f k f k *(2)23()()f k f k *(3)34()()f k f k *(4)[]213()-()()f k f k f k *3.13、求题3.9图所示各系统的阶跃响应。

3.14、求图所示系统的单位序列响应和阶跃响应。

3.15、若LTI 离散系统的阶跃响应()()()0.5k g k k ε=,求其单位序列响应。

3.16、如图所示系统,试求当激励分别为(1)()()f k k ε= (2)()()0.5()kf k k ε=时的零状态响应。

3.18、如图所示的离散系统由两个子系统级联组成,已知()1=2cos4k h k π,()()2=k h k k a ε,激励()()()=--1f k k a k δδ,求该系统的零状态响应()zs k y 。

(提示:利用卷积和的结合律和交换律,可以简化运算。

)3.22、如图所示的复合系统有三个子系统组成,它们的单位序列响应分别为()()1=h k k ε,()()2=-5h k k ε,求复合系统的单位序列响应。

信号与线性系统分析 (吴大正 第四版)第四章习题答案

信号与线性系统分析 (吴大正 第四版)第四章习题答案

第四章习题4、6 求下列周期信号得基波角频率Ω与周期T。

(1) (2)(3) (4)(5) (6)4、7 用直接计算傅里叶系数得方法,求图4-15所示周期函数得傅里叶系数(三角形式或指数形式)。

图4-154、10 利用奇偶性判断图4-18示各周期信号得傅里叶系数中所含有得频率分量。

图4-184-11 某1Ω电阻两端得电压如图4-19所示,(1)求得三角形式傅里叶系数。

(2)利用(1)得结果与,求下列无穷级数之与(3)求1Ω电阻上得平均功率与电压有效值。

(4)利用(3)得结果求下列无穷级数之与图4-194、17 根据傅里叶变换对称性求下列函数得傅里叶变换(1)(2)(3)4、18 求下列信号得傅里叶变换(1) (2)(3) (4)(5)4、19 试用时域微积分性质,求图4-23示信号得频谱。

图4-234、20 若已知,试求下列函数得频谱: (1) (3) (5)(8) (9)4、21 求下列函数得傅里叶变换(1)(3)(5)4、23 试用下列方式求图4-25示信号得频谱函数(1)利用延时与线性性质(门函数得频谱可利用已知结果)。

(2)利用时域得积分定理。

(3)将瞧作门函数与冲激函数、得卷积之与。

图4-254、25 试求图4-27示周期信号得频谱函数。

图(b)中冲激函数得强度均为1。

图4-274、27 如图4-29所示信号得频谱为,求下列各值[不必求出] (1) (2)(3)图4-294、28 利用能量等式计算下列积分得值。

(1) (2)4、29 一周期为T 得周期信号,已知其指数形式得傅里叶系数为,求下列周期信号得傅里叶系数(1) (2)(3) (4)4、31 求图4-30示电路中,输出电压电路中,输出电压对输入电流得频率响应,为了能无失真得传输,试确定R1、R2得值。

图4-304、33 某LTI系统,其输入为,输出为式中a为常数,且已知,求该系统得频率响应。

4、34 某LTI系统得频率响应,若系统输入,求该系统得输出。

信号与线性系统分析吴大正习题答案1_2

信号与线性系统分析吴大正习题答案1_2

1-1画出下列各信号的波形【式中r(t) t (t)】为斜升函数。

(2) f(t) e N, t (4) f(t) (si nt) (7) f(t) 2k (k) 解:各信号波形为(2) f(t) e N, t (3) f(t) sin( t) (t) (5) f (t) r(sint) (10) f(k) [1 ( 1)k] (k)(hl(3) f(t) sin( t) (t)(4) f(t) (si nt)(d)(5) f(t) r(si nt)(7) f(t) 2k (k)(10) f(k) [1 ( 1)k] (k)2卜〔■■ 4* *0::2 3 4 5( 5 21-2画出下列各信号的波形[式中r(t)t (t)为斜升函数]。

(1) f(t) 2 (t 1) 3 (t1) (t 2)(2) f (t) r(t)2r(t1) r(t 2)(5) f(t)r(2t) (2 t)(8) f(k)k[ (k)(k 5)](11) f(k)k(k 7)](12) f(k)2k[ (3k) ( k)] sin( )[ (k)6解:各信号波形为⑴ f(t) 2 (t 1) 3 (t 1) (t 2)(5)f(t) r(2t) (2 t)r(t) 2r(t 1)r(t 2)j/O)Z\1 a7(b)⑵ f(t)4P -OF ■"■(8)f(k) k[ (k) (k 5)]O3)2 13,2<k(11)f(k) sin(~6)[ (k) (k 7)]fa)■MB -»r1.4 1 L_ K _o! 2 3 4 5 6(k)(12)f(k) 2k[ (3k) ( k)]g 8.I~o| 1 2 3 k(I)1-3写出图仁3所示各波形的表达式解图示各波形的表示式分别为:(a) /(f) — 2e(z — 1)—€(『一1) — F (t — 2.) (b)/ (t ) — (t —1)e (r — 1)—2(/—1)c ( f —1) — (t — 3)c ( / 一3)(= 10sint7rZ )_£(?) 一 M — 1 丿_= 1 — 2(r + 2) £(? + 2) — £(r + l)] + (r — 1) c(t H-l) —— 1)12.Ar>1.LIo i tb/(r)正菠函數—1 O l 23(b) I AO(d)1-4写出图1-4所示各序列的闭合形式表达式解图示各序列的闭台形式表示式分别为:(a)/(A)=讥+ 2) (b)/(A) = —3)——7)(c)/«) =e(-^+2) (d)f(k)= (一1)¥⑷1-5判别下列各序列是否为周期性的。

信号与线性系统分析课后答案吴大正

信号与线性系统分析课后答案吴大正
第一章
1-1画出下列各信号的波形(式中 )为斜升函数。
解:各信号波形为
(2)
(3)
(4)
(5)
(7)
(10)
1-2画出下列各信号的波形[ 为斜升函数]。
(1) (2)
(5) (8)
(11) (12)
解:各信号波形为
(1)
(2)
(5)
(8)
(11)
(12)
1-3写出图1-3所示各波形的表达式。
1-4写出图1-4所示各序列的闭合形式表达式。
(3) (4)
(5) (6)
解:
1-9已知信号的波形如图1-11所示,分别画出 和 的波形。
解:由图1-11知, 的波形如图1-12(a)所示( 波形是由对 的波形展宽为原来的两倍而得)。将 的波形反转而得到 的波形,如图1-12(b)所示。再将 的波形右移3个单位,就得到了 ,如图1-12(c)所示。 的波形如图1-12(d)所示。
图4-30
4.33某LTI系统,其输入为 ,输出为
式中a为常数,且已知 ,求该系统的频率响应 。
(1) (2) (3) (4)
3.13、求题3.9图所示各系统的阶跃响应。
3.14、求图所示系统的单位序列响应和阶跃响应。
3.15、若LTI离散系统的阶跃响应 ,求其单位序列响应。
3.16、如图所示系统,试求当激励分别为(1) (2) 时的零状态响应。
3.18、如图所示的离散系统由两个子系统级联组成,已知 , ,激励 ,求该系统的零状态响应 。(提示:利用卷积和的结合律和交换律,可以简化运算。)
(3) (4)
(5)
1-25设激励为 ,下列是各系统的零状态响应 。判断各系统是否是线性的、时不变的、因果的、稳定的?

自考信号与线性系统分析内部题库含答案

自考信号与线性系统分析内部题库含答案

单项选择题。

1. 已知序列3()cos()5f k k π=为周期序列,其周期为 () A . 2 B. 5 C. 10 D. 122. 题2图所示()f t 的数学表达式为 ( )图题2A .()10sin()[()(1)]f t t t t πεε=+- B. ()10sin()[()(1)]f t t t t πεε=-- C. ()10sin()[()(2)]f t t t t πεε=-- D. ()10sin()[()(2)]f t t t t πεε=+- 3.已知sin()()()t f t t dt tπδ∞-∞=⎰,其值是 ()A .π B. 2π C. 3π D. 4π4.冲激函数()t δ的拉普拉斯变换为 ( ) A . 1 B. 2 C. 3 D. 45.为了使信号无失真传输,系统的频率响应函数应为 ( ) A . ()djwt H jw e= B. ()djwt H jw e-= C. ()djwt H jw Ke= D. ()djwt H jw Ke-=6.已知序列1()()()3kf k k ε=,其z 变换为 ()A .13z z + B.13z z - C.14z z + D.14z z -7.离散因果系统的充分必要条件是 ( A ) A .0,0)(<=k k h B. 0,0)(>=k k h C. 0,0)(<<k k h D. 0,0)(>>k k h8.已知()f t 的傅里叶变换为()F jw ,那么(3)f t +的傅里叶变换为 ( ) A .()jwF jw e B. 2()j wF jw eC. 3()j wF jw eD. 4()j wF jw e9.已知)()(k k f k εα=,)2()(-=k k h δ,那么()()f k h k *的值为( ) A .)1(1--k k εα B.)2(2--k k εα C. )3(3--k k εα D. )4(4--k k εα10.持续系统的零输入响应的“零”是指( A ) A. 鼓励为零 B. 系统的初始状态为零 C. 系统的冲激响应为零 D. 系统的阶跃响应为零 11. 已知序列k j ek f 3)(π=为周期序列,其周期为 ( )A . 2 B. 4 C. 6 D. 812. 题2图所示()f t 的数学表达式为 ( )A .)1()1()(--+=t t t f εε B.)1()1()(-++=t t t f εε C. )1()()(--=t t t f εε D. )1()()(-+=t t t f εε13.已知)2()(),1()(21-=-=t t f t t f εδ,那么 12()()f t f t *的值是 ( ) A .)(t ε B. )1(-t ε C. )2(-t ε D. )3(-t ε14.已知ωωj j F =)(,那么其对应的原函数为 ( ) A .)(t δ B.)('t δ C. )(''t δ D. )('''t δ15.持续因果系统的充分必要条件是 ( ) A . 0,0)(==t t h B. 0,0)(<=t t h C. 0,0)(>=t t h D. 0,0)(≠=t t h16.单位阶跃序列)(k ε的z 变换为 ( )A .1,1<+z z z B. 1,1>+z z z C. 1,1<-z z z D. 1,1>-z z z 17.已知系统函数ss H 1)(=,那么其单位冲激响应()h t 为 ( )A .)(t ε B. )(t t ε C. )(2t t ε D. )(3t t ε18.已知()f t 的拉普拉斯变换为()F s ,那么)5(t f 的拉普拉斯变换为 ( ) A .)5(s F B.)5(31s F C. )5(51s F D. )5(71s Ft19.已知)2()(2-=-k k f k εα,)2()(-=k k h δ,那么()()f k h k *的值为( ) A .)1(1--k k εα B. )2(2--k k εαC.)3(3--k k εα D. )4(4--k k εα20.已知)(t f 的傅里叶变换为)(ωj F ,那么)(jt F 的傅里叶变换为( ) A. )(ωπ-fB. )(ωπfC. )(2ωπ-fD. )(2ωπf21. 以下微分或差分方程所描述的系统是时变系统的是 ( ) A . )(2)()(2)(''t f t f t y t y -=+ B. )()(sin )('t f t ty t y =+ C. )()]([)(2't f t y t y =+ D. )()2()1()(k f k y k y k y =--+22. 已知)()(),()(21t t f t t t f εε==,那么)()(21t f t f *的值是 ( ) A .)(1.02t t ε B. )(3.02t t ε C. )(5.02t t ε D. )(7.02t t ε23.符号函数)sgn(t 的频谱函数为 ( )A .ωj 1 B. ωj 2 C. ωj 3 D. ωj 4 24.持续系统是稳固系统的充分必要条件是 ( ) A . M dt t h ≤⎰∞∞-)( B. M dt t h ≥⎰∞∞-)(C.M dt t h ≤⎰∞∞-)( D.M dt t h ≥⎰∞∞-)(25.已知函数)(t f 的象函数)5)(2()6()(+++=s s s s F ,那么原函数)(t f 的初值为 ( )A . 0 B. 1 C. 2 D. 3 26.已知系统函数13)(+=s s H ,那么该系统的单位冲激响应为 ( ) A .)(t etε- B.)(2t e t ε- C.)(3t e t ε- D. )(4t e t ε-27.已知)2()(),1()(1-=-=-k k h k k f k δεα,那么)()(k h k f *的值为 ( )A .)(k kεαB.)1(1--k k εαC.)2(2--k k εαD. )3(3--k k εα28. 系统的零输入响应是指( ) A.系统无鼓励信号 B. 系统的初始状态为零C. 系统的鼓励为零,仅由系统的初始状态引发的响应D. 系统的初始状态为零,仅由系统的鼓励引发的响应 29.偶函数的傅里叶级数展开式中 ( )A .只有正弦项 B.只有余弦项 C. 只有偶次谐波 D. 只有奇次谐波 10. 已知信号()f t 的波形,那么)2(t f 的波形为 ( ) A .将()f t 以原点为基准,沿横轴紧缩到原先的12B. 将()f t 以原点为基准,沿横轴展宽到原先的2倍C. 将()f t 以原点为基准,沿横轴紧缩到原先的14D. 将()f t 以原点为基准,沿横轴展宽到原先的4倍 填空题1. 已知象函数223()(1)s F s s +=+,其原函数的初值(0)f +为___________________。

信号与线性系统分析吴大正习题答案2

信号与线性系统分析吴大正习题答案2

11-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。

(2)∞<<-∞=-t et f t,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f kε= (10))(])1(1[)(k k f kε-+=解:各信号波形为 (2)∞<<-∞=-t et f t,)((3))()sin()(t t t f επ=(4))fε=t)(sin(t(5))tf=r(t)(sin2(7))t(kf kε=)(2(10))f kεk-=(k+(])1()1[341-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。

(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f (5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε (11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k---=εε 解:各信号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t rt rt rtf(5))2()2()(ttrtf-=ε56(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(kkkf k---=εε71-3 写出图1-3所示各波形的表达式。

81-4 写出图1-4所示各序列的闭合形式表达式。

91-5 判别下列各序列是否为周期性的。

如果是,确定其周期。

(2)) 63cos()443cos()(2ππππ+++=kkkf(5))sin(2cos3)(5tttfπ+=解:10111-6 已知信号)(t f 的波形如图1-5所示,画出下列各函数的波形。

信号与线性系统分析 (吴大正 第四版)第四章习题答案

信号与线性系统分析 (吴大正 第四版)第四章习题答案

创作编号:BG7531400019813488897SX 创作者: 别如克*第四章习题4.6 求下列周期信号的基波角频率Ω和周期T 。

(1)t j e 100 (2))]3(2cos[-t π (3))4sin()2cos(t t + (4))5cos()3cos()2cos(t t t πππ++(5))4sin()2cos(t t ππ+ (6))5cos()3cos()2cos(t t t πππ++4.7 用直接计算傅里叶系数的方法,求图4-15所示周期函数的傅里叶系数(三角形式或指数形式)。

图4-154.10 利用奇偶性判断图4-18示各周期信号的傅里叶系数中所含有的频率分量。

图4-184-11 某1Ω电阻两端的电压)(t u 如图4-19所示,(1)求)(t u 的三角形式傅里叶系数。

(2)利用(1)的结果和1)21(=u ,求下列无穷级数之和 (7)151311+-+-=S (3)求1Ω电阻上的平均功率和电压有效值。

(4)利用(3)的结果求下列无穷级数之和 (7)151311222++++=S图4-194.17 根据傅里叶变换对称性求下列函数的傅里叶变换(1)∞<<-∞--=t t t t f ,)2()]2(2sin[)(ππ (2)∞<<-∞+=t t t f ,2)(22αα (3)∞<<-∞⎥⎦⎤⎢⎣⎡=t t t t f ,2)2sin()(2ππ4.18 求下列信号的傅里叶变换(1))2()(-=-t e t f jt δ (2))1(')()1(3-=--t e t f t δ(3))9sgn()(2-=t t f (4))1()(2+=-t e t f t ε(5))12()(-=tt f ε4.19 试用时域微积分性质,求图4-23示信号的频谱。

图4-234.20 若已知)(j ])([ωF t f F =,试求下列函数的频谱:(1))2(t tf (3)dtt df t )( (5))-1(t)-(1t f (8))2-3(t f e jt (9)tdt t df π1*)(4.21 求下列函数的傅里叶变换(1)⎩⎨⎧><=000,1,)(j ωωωωωF (3))(3cos 2)(j ωω=F(5)ωωωω1)(2n -20sin 2)(j +=∑=j n e F4.23 试用下列方式求图4-25示信号的频谱函数创作编号:BG7531400019813488897SX创作者:别如克*(1)利用延时和线性性质(门函数的频谱可利用已知结果)。

(完整版)信号与线性系统分析_(吴大正_第四版)习题答案

(完整版)信号与线性系统分析_(吴大正_第四版)习题答案

1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。

(2)∞<<-∞=-t et f t,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f kε= (10))(])1(1[)(k k f kε-+=解:各信号波形为 (2)∞<<-∞=-t et f t,)((3))()sin()(t t t f επ=(4))(sin )(t t f ε=(5))f=rt)(sin(t (7))t(k=f kε)(2(10))f kεk=(k+-((])11[)1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。

(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k ---=εε解:各信号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k---=εε1-3 写出图1-3所示各波形的表达式。

1-4 写出图1-4所示各序列的闭合形式表达式。

1-5 判别下列各序列是否为周期性的。

如果是,确定其周期。

(2))63cos()443cos()(2ππππ+++=k k k f (5))sin(2cos 3)(5t t t f π+=解:1-6 已知信号)(t f 的波形如图1-5所示,画出下列各函数的波形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信号与线性系统课后答案
第一章 信号与系统(一)
1-1画出下列各信号的波形【式中)()
(t t t r ε=】为斜升函数。

(2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 解:各信号波形为 (2)∞<<-∞=-t e t f t ,)(
(3))()sin()(t t t f επ=
(4))
t fε=
(sin
)(t
(5))
t f=
r
)(t
(sin
(7))(
t f kε
2
)(k
=
(10))(])1
k
(k
f kε
(
)
1[
=
-
+
1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。

(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f
(5)
)2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε
(11))]7()()[6
sin()(--=k k k k f εεπ (12)
)]()3([2)(k k k f k
---=εε 解:各信号波形为 (1)
)2()1(3)1(2)(-+--+=t t t t f εεε
(2)
)2()1(2)()(-+--=t r t r t r t f
(5)
)2()2()(t t r t f -=ε
(8)
)]5()([)(--=k k k k f εε
(11)
)]7()()[6
sin()(--=k k k k f εεπ
(12)
)]()3([2)(k k k f k ---=εε
1-3 写出图1-3所示各波形的表达式。

1-4 写出图1-4所示各序列的闭合形式表达式。

1-5 判别下列各序列是否为周期性的。

如果是,确定其周期。

(2))63cos()443cos()(2
π
πππ+++=k k k f (5))sin(2cos 3)(5t t t f π+=
解:
1-6 已知信号
)(t f 的波形如图1-5所示,画出下列各函数的波形。

(1))()1(t t f ε- (2))1()1(--t t f ε (5)
)21(t f - (6))25.0(-t f
(7)dt
t df )
( (8)dx x f t ⎰∞-)(
解:各信号波形为 (1)
)()1(t t f ε-
(2)
)1()1(--t t f ε
(5)
)21(t f -
(6)
)25.0( t f
(7)dt t df )(
(8)
dx x f t


-)(
1-7 已知序列
)(k f 的图形如图1-7所示,画出下列各序列的图形。

(1))()2(k k f ε- (2))2()2(--k k f ε
(3))]4()()[2(---k k k f εε (4))2(--k f (5)
)1()2(+-+-k k f ε (6))3()(--k f k f
解:
1-9 已知信号的波形如图1-11所示,分别画出
)(t f
和dt
t df )(的波形。

解:由图1-11知,)3(t f -的波形如图1-12(a)所示()3(t f -波形是由对)23(t f -的波形展宽为原来的
两倍而得)。


)3(t f -的波形反转而得到)3(+t f 的波形,如图1-12(b)所示。

再将)3(+t f 的波形右移3
个单位,就得到了
)(t f ,如图1-12(c)所示。

dt
t df )(的波形如图1-12(d)所示。

1-10 计算下列各题。

(1)[]{})()2sin(cos 22
t t t dt
d ε+ (2))]([)1(t
e dt d t t δ--
(5)
dt t t
t )2()]4
sin([2
++⎰

∞-δπ (8)
dx x x t
)(')1(δ⎰

--
1-12 如图1-13所示的电路,写出
(1)以)(t u C 为响应的微分方程。

(2)以)(t i L 为响应的微分方程。

1-20 写出图1-18各系统的微分或差分方程。

1-23 设系统的初始状态为)0(x ,激励为)(⋅f ,各系统的全响应)(⋅y 与激励和初始状态的关系如下,试分析各系统是否是线性的。

(1)⎰+=-t t dx x xf x e t y 0
)(sin )0()( (2)⎰+=t dx x f x t f t y 0)()0()()( (3)⎰+=t
dx x f t x t y 0)(])0(sin[)(
(4))2()()0()5.0()(-+=k f k f x k y k
(5)∑=+=k
j j f kx k y 0)
()0()(
1-25 设激励为)(⋅f ,下列是各系统的零状态响应)(⋅zs y 。

判断各系统是否是线性的、时不变的、因果的、稳定的?
(1)dt t df
t y zs )()(= (2))()(t f t y zs = (3))2cos()()(t t f t y zs π= (4))()(t f t y zs -= (5))1()()(-=k f k f k y zs
(6))()2()(k f k k y zs -= (7)∑==k
j zs j f k y 0
)()( (8))1()(k f k y zs -=
1-28 某一阶LTI离散系统,其初始状态为)0(x。

已知当激励为)(
)
(
1k
k

=时,其全响应为
若初始状态不变,当激励为)(k f-时,其全响应为)(]1
)5.0(2[
)
(
2k
k
y kε
-
=
若初始状态为)0(2x,当激励为)(
4k
f时,求其全响应。

第二章
2-1 已知描述系统的微分方程和初始状态如下,试求其零输入响应。

(1)1)0(',1)0(),()(6)('5)(''-===++-y y t f t y t y t y (4)0)0(',2)0(),()()(''===+-y y t f t y t y
2-2 已知描述系统的微分方程和初始状态如下,试求其+0值)0(+y 和)0('+y 。

(2))()(,1)0(',1)0(),('')(8)('6)(''t t f y y t f t y t y t y δ====++-- (4))()(,2)0(',1)0(),(')(5)('4)(''2t e t f y y t f t y t y t y t ε====++-- 解:
2-4 已知描述系统的微分方程和初始状态如下,试求其零输入响应、零状态响应和全响应。

(2))()(,2)0(',1)0(),(3)(')(4)('4)(''t e t f y y t f t f t y t y t y t
ε---===+=++
解:
2-8 如图2-4所示的电路,若以)(t i S 为输入,)(t u R 为输出,试列出其微分方程,并求出冲激响应和阶跃响应。

2-12 如图2-6所示的电路,以电容电压)(t u C 为响应,试求其冲激响应和阶跃响应。

2-16 各函数波形如图2-8所示,图2-8(b)、(c)、(d)均为单位冲激函数,试求下列卷积,并画出波形图。

(1))(*)(21t f t f (2))(*)(31t f t f (3))(*)(41t f t f
(4)
)(*)(*)(221t f t f t f (5))3()(2[*)(341--t f t f t f
波形图如图2-9(a)所示。

波形图如图2-9(b)所示。

波形图如图2-9(c)所示。

波形图如图2-9(d)所示。

波形图如图2-9(e)所示。

相关文档
最新文档