三角形培优解析

合集下载

初中培优竞赛含详细解析 第14讲 三角形

初中培优竞赛含详细解析 第14讲 三角形
在△ABC中,AC=BC, ,AD平分 交AC的延长线于点F,且垂足为E,则下列结论: 其中正确的有()A.1个B.2个C.3个D.4个
证明:∵ , ∴∠BDE=∠BFC
又∵∠ADC=∠BDE ∴∠BFC=∠ADC
在△BFC和△ADC中

∴ , ,所以、正确
∵AE是∠BAF的角平分线,AE⊥BF,所以△BAF是等腰三角形,AB=AF
易错点:因为蚂蚁爬行必须经过盒面,所以不能凭空理解为连接2点的距离就是最短距离.
8. (2、3) (数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、三角形、解答题)
如图所示,在Rt△ABC中, ,D是AB的中点, 交BC于E,连结CD.求 的值.
分析:我们根据直角三角形斜边上的中线等于斜边的一半,得到2个等腰三角形,可以分别求出两个角,即可解题.
证明:过K作KM∥BC交AB于M,如图.
∵KM∥BC∴
∵ ,∴ ,
又∵ , ∴
∴ 又∵ KA公用
∴ ,

∵ ,
∴ , 又∵

详解:在Rt△ABC中,D为AB的中点,所以 所以 因为 所以
所以
因为DE上AB,所以 所以 所以
答: 的值为
技巧:在直角三角形中,已知中线,用定理可以迅速解题.
9. (2、3) (数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、三角形、解答题)
如图所示,在 中, 于D,AE平分 ,交CD于K,交BC于E,F是BE上的一点,且 求证:
分析:设直角三角形两直角边长分别为a,b,则有
求得 所以三角形的面积是24.
详解:24
技巧:因为直角三角形的面积就等于两条直角边乘积一半,所以我们求出ab即可解题.

八年级数学全等三角形(培优篇)(Word版含解析)

八年级数学全等三角形(培优篇)(Word版含解析)

八年级数学全等三角形(培优篇)(Word版含解析)一、八年级数学轴对称三角形填空题(难)1.如图,在菱形ABCD中,ZABC=120° , AB=10cm,点P是这个菱形内部或边上的一点.若以P,B f C为顶点的三角形是等腰三角形,则P, A(P, A两点不重合)两点间的最短距离为____________ c m .【答案】1OJJ-1O【解析】解:连接3D,在菱形A3CD中,T Z ABC=120° , AB=BC=AD=CD=10 , :. Z A=Z C=60° ,二△ ABD , △ BCD都是等边三角形,分三种情况讨论:①若以边8C为底,则3C垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了"直线外一点与直线上所有点连线的线段中垂线段最短",即当点P与点D重合时,必最小,最小值^4=10 ;②若以边P3为底,ZPCB为顶角时,以点C为圆心,BC长为半径作圆,与AC相交于一点,则弧3D (除点8外)上的所有点都满足APBC是等腰三角形,当点P在AC上时,AP 最小,最小值为lOjJ-10 ;③若以边PC为底,ZPBC为顶角,以点3为圆心,BC为半径作圆,则弧AC上的点&与点D均满足APBC为等腰三角形,当点P与点A重合时,必最小,显然不满足题意,故此种情况不存在;综上所述,必的最小值为10>/3-10 (cm).故答案为:10x/I—10 .点睹:本题考查菱形的性质、等边三角形的性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.2.在等腰△遊中,肋丄肚交直线%于点以若妙丄万G则△磁的顶角的度数为【答案】30。

或150。

或90°【解析】试题分析:分两种情况:①3C为腰,②BC为底,根据直角三角形30。

角所对的直角边等于斜边的一半判断岀ZACD=3O°,然后分AD在^ABC内部和外部两种情况求解即可.解:①BC为腰,VAD丄 BC 于点D t AD= - BC f2:.ZACD二30。

全等三角形问题培优

全等三角形问题培优

全等三角形问题培优在初中数学学习中,全等三角形是一个很重要的概念。

全等三角形指的是具有相等边长和相等内角的两个三角形。

在解决问题时,我们常常要运用全等三角形的性质。

本文将从这一角度出发,介绍全等三角形问题的培优方法。

一、全等三角形的定义和性质全等三角形是指具有相等边长和相等内角的两个三角形。

在解决问题时,我们可以利用全等三角形的性质来简化计算过程和证明过程。

1. 边边边(SSS)全等条件:如果两个三角形的三边分别相等,则这两个三角形全等。

2. 边角边(SAS)全等条件:如果两个三角形的一个边和其夹角分别相等,并且另一边也相等,则这两个三角形全等。

3. 角边角(ASA)全等条件:如果两个三角形的两个角和夹在两个角之间的边分别相等,则这两个三角形全等。

利用这些全等条件,我们可以在解决问题过程中找到相应的全等三角形,从而得出答案。

二、全等三角形的应用1. 边长和角度比较在问题中,经常会出现两个或多个三角形的边长或内角需要进行比较的情况。

利用全等三角形的性质,我们不需要逐一计算每个边长或者每个内角的数值,只需要通过观察边长和角度的关系,找到全等三角形,就可以简化计算过程。

例如,已知三角形ABC和三角形DEF的三个内角分别相等,我们可以得出这两个三角形全等。

如果已知三角形ABC的一条边的长度为a,而三角形DEF的相应边的长度为b,那么我们就可以直接得出三角形DEF的边长与a的比较结果。

2. 证明问题在几何证明中,全等三角形是常常被用到的工具。

通过找到一个或多个全等三角形,我们可以得到所求证的结论。

例如,我们需要证明两条线段相等,可以通过构造两个全等三角形,使得所求线段等于全等三角形中的某条边。

然后,利用全等三角形的性质,我们可以得到所求线段等于另一条边,从而得到所需要证明的结论。

3. 问题求解在解决具体问题时,全等三角形也是一个很有用的工具。

通过观察问题中的几何关系,我们可以找到并利用全等三角形来简化问题的求解过程。

等边三角形的培优

等边三角形的培优

等边三角形的培优等边三角形是初中数学中一个非常重要的几何图形,它具有独特的性质和广泛的应用。

在数学学习中,对于等边三角形的深入理解和掌握,对于提高学生的几何思维能力和解题能力有着至关重要的作用。

接下来,让我们一起深入探讨等边三角形的培优知识。

一、等边三角形的定义和性质等边三角形,又称正三角形,是指三边长度相等的三角形。

其性质如下:1、三条边相等:这是等边三角形最基本的特征,也是其名称的由来。

2、三个角相等,且均为 60°:由于三角形内角和为 180°,等边三角形的三个角相等,所以每个角都是 180°÷3 = 60°。

3、三线合一:等边三角形的高线、中线、角平分线重合,这一性质在解决很多与等边三角形相关的问题时非常有用。

4、是轴对称图形:有三条对称轴,分别是三边的垂直平分线。

二、等边三角形的判定1、三边相等的三角形是等边三角形。

2、三个角都相等的三角形是等边三角形。

3、有一个角是 60°的等腰三角形是等边三角形。

三、等边三角形中的重要线段1、高线等边三角形的高线同时也是中线和角平分线。

假设等边三角形的边长为 a,那么高线的长度可以通过勾股定理求得:h =√3a / 22、中线中线将等边三角形的对边平分,并且长度等于边长的一半。

3、角平分线角平分线将对应角平分,每个角的角平分线长度相等。

四、等边三角形的面积等边三角形的面积公式为:S =√3a² / 4其中 a 为等边三角形的边长。

五、等边三角形在几何证明中的应用1、证明线段相等在一个几何图形中,如果已知或能证明某个三角形是等边三角形,那么其三条边必然相等,可以利用这一性质证明其他线段相等。

2、证明角相等因为等边三角形的三个角都是 60°,所以可以通过证明一个三角形是等边三角形来得出角相等的结论。

3、构造全等三角形通过构造等边三角形,可以创造出更多的相等条件,从而有助于证明两个三角形全等。

培优专题03 证明三角形全等的基本思路-解析版

培优专题03 证明三角形全等的基本思路-解析版

∴ VACE ≌ VDCE
∴ AE = DE ,
∴S△ACE:S△ACD=1:2,
同理可得,S△ABE:S△ABD=1:2,
∵S△ABC=12 cm2 ,
∴阴影部分的面积为
S△ACE+S△ABE=
1 2
S△ABC=
1 2
×12=6 cm2 .
故答案为 6.
【点睛】本题主要考查了全等三角形的判定与性质及三角形面积的等积变换,解题关键是明确三角形的中


A.DF∥ AC
B.∠A=∠D
C.CF=BE
D.AC=DF
【答案】D
【分析】直接利用三角形全等判定条件逐一进行判断即可.
【详解】A. 由 DF∥AC 可得∠ACB=∠DFE,由 AB∥DE,可得∠ABC=∠DEF,又因 AB=DE,利用 AAS
可得△ABC≌△DEF,故本选项不符合题意;
B. 由 AB∥DE,可得∠ABC=∠DEF,又因∠A=∠D,AB=DE,利用 ASA 可得△ABC≌△DEF,故本选项
B.0.8cm
C.4.2cm
D.1.5cm
【答案】B
【分析】根据 BE ^ CE , AD ^ CE 得 ÐE = ÐADC ,则 ÐCAD + ÐACD = 90° ,再由 ÐACB = 90° ,得
ÐBCE + ÐACD = 90° ,则∠BCE = ∠CAD,从而证出 DBCE≌DCAD ,进而得出 BE 的长.
ìBD = CD ïíÐADB = ÐEDC , ïî AD = DE
\DABD≌DECD(SAS) , \CE = AB = 3 , 在 DACE 中, CE - AC < AE < CE + AC ,

培优专题02 与三角形有关的线段和角的问题-解析版

培优专题02 与三角形有关的线段和角的问题-解析版

培优专题02 与三角形有关的线段和角的问题1.(2022·全国·八年级专题练习)如图,在ABC V 中,20AB =,18AC =,AD 为中线.则ABD △与ACD △的周长之差为( )A .1B .2C .3D .4【答案】B 【分析】利用三角形中线的定义、三角形的周长公式进行计算即可得出结果.【详解】Q 在ABC V 中,AD 为中线,BD CD \=.ABD C AB BD AD =++Q △,ACD C AC CD AD =++△,20182ABD ACD C C AB AC \-=-=-=V V .故选:B .【点睛】本题考查三角形的中线的理解与运用能力.三角形中,连接一个顶点和它所对边的中点的线段叫做三角形的中线.明确三角形的中线的定义,运用两个三角形的周长的差等于两边的差是解本题的关键.2.(2022·全国·八年级专题练习)如图,ABC V 的面积是2,AD 是ABC V 的中线,13AF AD =,12CE EF =,则CDE △的面积为( )A .29B .16C .23D .49【答案】A【分析】根据中线的性质即可求出S △ACD ,然后根据等高时,面积之比等于底之比,即可依此求出3.(2022·四川成都·七年级期中)如图,ABC V 中,12Ð=Ð,G 为AD 中点,延长BG 交AC 于E ,F 为AB 上一点,且CF AD ^于H ,下列判断,其中正确的个数是( )①BG 是ABD V 中边AD 上的中线;②AD 既是ABC V 中BAC Ð的角平分线,也是ABE V 中BAE Ð的角平分线;③CH 既是ACD V 中AD 边上的高线,也是ACH V 中AH 边上的高线.A .0B .1C .2D .3【答案】C【分析】根据三角形的高,中线,角平分线的定义可知.【详解】解:①G 为AD 中点,所以BG 是ABD △边AD 上的中线,故正确;②因为12Ð=Ð,所以AD 是ABC V 中BAC Ð的角平分线,AG 是ABE △中BAE Ð的角平分线,故错误;③因为CF AD ^于H ,所以CH 既是ACD △中AD 边上的高线,也是ACH V 中AH 边上的高线,故正确.故选:C .【点睛】熟记三角形的高,中线,角平分线是解决此类问题的关键.4.(2018·江苏省江阴市第一中学七年级期中)如图,在长方形网格中,每个小长方形的长为2,宽为1,A 、B 两点在网格格点上,若点C 也在网格格点上,以A 、B 、C 为顶点的三角形面积为1,则满足条件的点C 个数是( )A .5B .6C .7D .8【答案】B 【分析】据三角形ABC 的面积为1,可知三角形的底边长为2,高为1,或者底边为1,高为2,可通过在正方形网格中画图得出结果.【详解】解:C 点所有的情况如图所示:由图可得共有6个,故选:B .【点睛】本题考查了三角形的面积的求法,此类题应选取分类的标准,才能做到不遗不漏,难度适中.5.(2022·江苏·七年级专题练习)如图, D 、E 分别在∆ABC 的边 BC 、AC 上,13CD BC =,13CE AC =,CD = 1 ,CE = 1 ,AC , AD 与 BE 交于点O ,已知∆ABC 的面积为 12,则∆ABO 的面积为()A .4B .5C .6D .76.(2019·天津市静海区第二中学八年级期中)如图,在△ABC 中,∠B=70°,∠C=40°,AD 是BC 边上的高,AE 是∠BAC 的平分线,则∠DAE 的度数是()A .15°B .16°C .70°D .18°7.(2021·安徽·中考真题)两个直角三角板如图摆放,其中90BAC EDF Ð=Ð=°,45E Ð=°,30C Ð=°,AB 与DF 交于点M .若//BC EF ,则BMD Ð的大小为( )A .60°B .67.5°C .75°D .82.5°【答案】C 【分析】根据//BC EF ,可得45FDB F Ð=Ð=°,再根据三角形内角和即可得出答案.【详解】由图可得6045B F Ð=°Ð=°,,∵//BC EF ,∴45FDB F Ð=Ð=°,∴180180456075BMD FDB B Ð=°-Ð-Ð=°-°-°=°,故选:C .【点睛】本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键.8.(2022·广西贵港·七年级期末)如图7,AB ⊥BC ,AE 平分∠BAD 交BC 于E ,AE ⊥DE ,∠1+∠2=90°,M ,N 分别是BA ,CD 延长线上的点,∠EAM 和∠EDN 的平分线交于点F .下列结论:①AB ∥CD ;②∠AEB +∠ADC =180°;③DE 平分∠ADC ;④∠F =135°,其中正确的有( )A .1个B .2个C .3个D .4个【答案】C 【分析】先根据AB ⊥BC ,AE 平分∠BAD 交BC 于点E ,AE ⊥DE ,∠1+∠2=90°,∠EAM 和∠EDN 的平分线交于点F ,由三角形内角和定理以及平行线的性质即可得出结论.【详解】解:标注角度如图所示:∵AB ⊥BC ,AE ⊥DE ,∴∠1+∠AEB =90°,∠DEC +∠AEB =90°,∴∠1=∠DEC ,又∵∠1+∠2=90°,∴∠DEC +∠2=90°,∴∠C =90°,∴∠B +∠C =180°,9.(2022·全国·八年级课时练习)如图,将ABC V 沿DH HG EF 、、翻折,三个顶点恰好落在点O 处.若140Ð=°,则2Ð的度数为( )A .12B .60°C .90°D .140°【答案】D【分析】根据翻折变换前后对应角不变,故∠B =∠EOF ,∠A =∠DOH ,∠C =∠HOG ,∠1+∠2+∠HOD +∠EOF +∠HOG =360°,进而求出∠1+∠2的度数.【详解】解:∵将△ABC 三个角分别沿DE 、HG 、EF 翻折,三个顶点均落在点O 处,∴∠B =∠EOF ,∠A =∠DOH ,∠C =∠HOG ,∠1+∠2+∠HOD +∠EOF +∠HOG =360°,∵∠HOD +∠EOF +∠HOG =∠A +∠B +∠C =180°,∴∠1+∠2=360°-180°=180°,∵∠1=40°,∴∠2=140°,故选:D .【点睛】此题主要考查了翻折变换的性质和三角形的内角和定理,根据已知得出∠HOD +∠EOF +∠HOG =∠A +∠B +∠C =180°是解题关键.10.(2022·全国·八年级专题练习)如图,a b ∥,一块含45°的直角三角板的一个顶点落在直线b 上,若15854¢Ð=°,则∠2的度数为( )A .1036¢°B .1046¢°C .10354¢°D .10454¢°【答案】C 【分析】设∠2的同位角为∠3,∠3的邻补角为∠5,三角板的一个锐角为∠4,根据等腰三角板的特点可求出∠4,根据三角形内角和即可求出∠5,再根据平角的性质即可求出∠3,进而根据两直线平行同位角相等即可求出∠2.【详解】设∠2的同位角为∠3,∠3的邻补角为∠5,三角板的一个锐角为∠4,如图,∵直角三角板含一个45°的锐角,∴该三角板为等腰三角形,∴∠4=45°,∵∠1=58°54′,又∵在三角形中有∠1+∠4+∠5=180°,∴∠5=180°-(∠1+∠4)=180°-(58°54′+45°)=180°-103°54′=76°6′,∵∠3+∠5=180°,∴∠3=180°-∠5=180°-76°6′=103°54′,∵a b ∥,∴∠2=∠3,∴∠2=103°54′,故选:C .【点睛】本题主要考查了平行线的性质以及三角形的内角和等知识,掌握两直线平行同位角相等是解答本题的关键.11.(2022·江苏·盐城市初级中学七年级期中)如图,AD 是ABC V 的高,45BAD Ð=°,65C =°∠,则BAC Ð=________.【答案】70°【分析】先由直角三角形的性质求得∠DAC ,然后再根据线段的和差求解即可.【详解】解:AD Q 是ABC V 的高,90ADC °\Ð=,∵65C =°∠=9025DAC C °\Ð-Ð=o ,254570BAC DAC BAD °°°\Ð=Ð+Ð=+=.故答案为:70°.【点睛】本题主要考查了角的和差、直角三角形的性质、三角形高的性质等知识点,掌握直角三角形两锐角互余是解答本题的关键.12.(2022·江苏·扬州中学教育集团树人学校七年级期中)如图,在△ABC 中,点D 在BC 上,点E 、F 在AB 上,点G 在DF 的延长线上,且∠B =∠DFB ,∠G =∠DEG ,若29BEG Ð=°,则∠BDE 的度数为_____.【答案】58°【分析】设BED x Ð=,则29G DEG x Ð=Ð=+°,再根据三角形的内角和定理可得1222EDG x Ð=°-,根据三角形的外角性质可得122B DFB x Ð=Ð=°-,然后在BDE V 中,根据三角形的内角和定理即可得.【详解】解:设BED x Ð=,29BEG Ð=°Q ,29BED G DEG BEG x Ð=Ð=Ð=++\а,1801222EDG G DEG x \Ð=°-Ð-Ð=°-,122BED B DFB EDG x \Ð=Ð=Ð=а-+,()()180********BED BDE B x x Ð+=\Ð=°-а-°-=+°,故答案为:58°.【点睛】本题考查了三角形的内角和定理、三角形的外角性质,熟练掌握三角形的内角和定理是解题关键.13.(2022·江苏·扬州市江都区第三中学七年级阶段练习)如图,∠A =45°,∠BCD =135°,∠AEB 与∠AFD 的平分线交于点P .下列结论:①EP ⊥FP ;②∠AEB +∠AFD =∠P ;③∠A =∠PEB +∠PFD .其中正确的结论是______.∵∠AEB与∠AFD的平分线交于点∴12BEPAEP AEB=Ð=ÐÐ∵∠BCD=135°,∴∠BCF=180°-∠BCD=45°14.(2022·全国·八年级专题练习)如图,在△ABC中,AM是△ABC的角平分线,AD是△ABC的高线.猜想∠MAD、∠B、∠C之间的数量关系,并说明理由.15.(2022·全国·八年级单元测试)在△ABC中,BC=8,AB=1;(1)若AC是整数,求AC的长;(2)已知BD是△ABC的中线,若△ABD的周长为10,求△BCD的周长.【答案】(1)8(2)17【分析】(1)根据三角形三边关系“两边之和大于第三边,两边之差小于第三边”得7<AC<9,根据AC是整数得AC=8;(2)根据BD是△ABC的中线得AD=CD,根据△ABD的周长为17和AB=1得AD+BD=9,即可求解.(1)由题意得:BC﹣AB<AC<BC+AB,∴7<AC<9,∵AC是整数,∴AC=8;(2)如图所示:∵BD是△ABC的中线,∴AD=CD,∵△ABD的周长为10,∴AB+AD+BD=10,∵AB=1,∴AD+BD=9,∴△BCD的周长=BC+BD+CD=BC+AD+CD=8+9=17.【点睛】本题考查的是三角形的三边关系、三角形的中线的定义,掌握三角形两边之和大于第三边、两边之差小于第三边是解题的关键.16.(2022·河南周口·七年级期末)如图.AD为△ABC的中线,BE为△ABD的中线,EF⊥BC于点F.(1)在△BEF中,请指出边EF上的高;(2)若BD=5,EF=2,求△ACD的面积;(3)若AB=m,AC=n,若△ACD的周长为a,请用含m,n,a的式子表示△ABD的周长.【答案】(1)边EF上的高是BF;(2)S△ACD=10;(3)△ABD的周长为m+a-n.【分析】(1)根据三角形高的定义即可得出边EF上的高是BF;(2)先求得△BDE的面积,然后根据三角形的中线将三角形分成两个三角形得到S△ABE=S△BDE=5,进一步得到S△ACD=S△ABD=10;(3)利用三角形周长公式即可求得.(1)解:∵EF⊥BC于点F,17.(2022·陕西渭南·七年级期末)如图,点A 在CB 的延长线上,点F 在DE 的延长线上,连接AF ,分别与BD 、CE 交于点G 、H .已知∠1=52°,∠2=128°.(1)探索BD 与CE 的位置关系,并说明理由;(2)若∠C =78°,求∠A 的度数.【答案】(1)BD CE ∥,理由见解析(2)50°【分析】(1)由152DGF Ð=Ð=°,∠2=128°,得到∠DGF +∠2=180°,利用“同旁内角互补,两直线平行”可证出BD CE ∥;(2)由BD CE ∥得到78ABD C Ð=Ð=°,由三角形内角和定理求解即可.(1)BD CE ∥,理由:∵152DGF Ð=Ð=°,∠2=128°,∴252128180DGF Ð+Ð=°+°=°,∴BD CE ∥.(2)∵BD CE ∥,∵78ABD C Ð=Ð=°,∴1801180785250A ABD Ð=°-Ð-Ð=°-°-°=°.【点睛】本题考查了平行线的判定与性质、三角形内角和定理,解题的关键是熟练掌握相关性质和定理.18.(2022·江苏·兴化市乐吾实验学校七年级阶段练习)(1)【问题背景】如图1的图形我们把它称为“8字形”,请说明A B C D Ð+Ð=Ð+Ð;(2)【简单应用】如图2,AP 、CP 分别平分BAD Ð、BCD Ð,若35ABC Ð=°,15ADC Ð=°,求P Ð的度数;(3)【问题探究】如图3,直线AP 平分BAD Ð的外角FAD Ð,CP 平分BCD Ð的外角BCE Ð,若35ABC Ð=°,29ADC Ð=°,请猜想P Ð的度数,并说明理由;(4)【拓展延伸】在图4中,若设C a Ð=,B b Ð=,13CAP CAB Ð=Ð,13CDP CDB Ð=Ð,试问P Ð与C Ð、B Ð之间的数量关系为:___.(用a 、b 表示P Ð,不必说明理由)【答案】(1)见解析(2)25P Ð=°(3)32P Ð=°;理由见解析。

培优专题25相似三角形的一线三等角模型-解析版

培优专题25相似三角形的一线三等角模型-解析版

A.-9
B.-12
C.-15
D.-18
【答案】A
【分析】根据∠AOB=90°,∠ABO=30°,可求出 OA 与 OB 的比,设出点 B 的坐标,再根据相似三角形的
性质,求出点 A 的坐标,可得 ab 的值,进而求出 m 的值.
【详解】解:过 A、B 分别作 AM⊥x 轴,BN⊥x 轴,垂足为 M、N,
3a 3b ∴B(-a,b),A( 3 , 3 ),
3 ∵点 A 在反比例函数 y= x 上,
33 ab
则 3 × 3 =3, ∴ab=9,
m ∵点 B 在反比例函数 y= x 上, ∴-a×b=m=-9, 故选 A.
【点睛】本题考查反比例函数的图象和性质,直角三角形的性质、相似三角形的判定和性质等知识,求出 反比例函数图象上点的坐标是解答前提的关键. 3.(2021·浙江·九年级专题练习)如图,正方形 ABCD 边长为 4,边 B过点 A,则矩形 EDFG 的面积是( )
2. 当一个直角放在平面直角坐标系中时,亦常构造“K 型图”解题
3. 由“K 型图”得到的相似比,基本都可以转化成“特定角”的正切值来计算
4. “K 型图”常和“A 字图”或“8 字图”类的平行相似结合在一起求长度
“K 型图”常见构造方法:过直角订单分别作水平或竖直的直线,再过直角两边顶点分别作直线的垂 线。 如图:
∵四边形 EDFG 为矩形,
∴∠EDF=∠F=90°,
∵∠ADF+∠ADE=90°,∠ADE+∠EDC=90°,
∴∠ADF=∠EDC,
∴△ADF∽△CDE,
AD DF
4 DF
∴ DE DC ,即 DE 4 ,
16
∴DF= DE ,

全等三角形各种类型证明培优

全等三角形各种类型证明培优

全等三角形各种类型证明培优题目要求证明全等三角形培优,需要说明全等三角形的各种类型。

全等三角形是指所有对应的边和角都相等的两个三角形。

培优是指三角形的三条高线交于同一点,这个点称为高心(或垂心)。

为了证明全等三角形培优,我们需要先了解全等三角形的几种类型:1. SAS(Side-Angle-Side)三边对应分别相等。

如果两个三角形的两边和夹角分别对应相等,则这两个三角形全等。

2. ASA(Angle-Side-Angle)两角和夹边分别相等。

如果两个三角形的两角和夹边分别对应相等,则这两个三角形全等。

3. SSS(Side-Side-Side)三边分别相等。

如果两个三角形的三边分别对应相等,则这两个三角形全等。

4. RHS(Right Angle-Hypotenuse-Side)直角三角形的斜边和一条直角边的长度分别相等。

如果两个直角三角形的斜边和一条直角边的长度分别对应相等,则这两个三角形全等。

现在我们来证明全等三角形培优。

为了证明三角形培优,我们需要先证明三角形的三条高线交于同一点。

首先,我们假设有一个三角形ABC,其三边分别为AB、BC、CA。

三条高线分别为AD、BE、CF,交于点H(高心)。

我们需要证明D、E、F三点共线。

首先,我们可以得知三角形ABC的外接圆,其圆心为O,半径为R。

三角形ABC的外接圆上的任意一条弦,其两端点和圆心构成的向量和为零。

接下来,我们可以根据这个结论来证明点D、E、F三点共线。

我们可以分别考虑三角形的三边上的垂足与圆心的连线:1.连线AO,交垂线AD于点M;2.连线BO,交垂线BE于点N;3.连线CO,交垂线CF于点P。

由于三角形ABC的外接圆上的任意一条弦,其两端点和圆心构成的向量和为零,我们可以得知AM+AN+AP=0。

又因为垂线AD、BE、CF分别垂直于边BC、AC、AB,我们可以得到AM⊥BC,AN⊥AC,AP⊥AB。

由于AM+AN+AP=0,我们可以得知三点M、N、P在一条直线上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有同学问我:“我听课能听懂,但是不会做题,这是怎么回事?”其实这样的同学大多数问题就出在这里:(1)你只听懂了浅层次的知识,没有深入,所掌握的东西达不到应用的高度;(2)有的同学浅尝辄止,会了一点就认为都会了,比如一个例题老师讲3种方法,他听懂一种就不再听其他解法了;(3)听懂了知识,但是没记住,或没弄明白怎么应用;(4)缺乏数学思想和数学方法的指导,像方程思想、分类讨论思想等都是重要的数学思想和方法;另外,还有些同学因为信心不足,认为数学很难,没有兴趣学,这样就失去了入门的过程,因此更没法深入。

知识点透析: 一.三角形的有关概念1.三角形的概念包涵三层含义: (1)不在同一条直线上;(2)三条线段;(3)首尾顺次相连.2.平时所说的三角形的角是指三角形的内角。

3.在表示三角形时,三个字母没有先后顺序,只要三个字母相同就表示同一个三角形。

二.三角形的分类1.三角形的两种分类方法是各自独立的,但是同一个三角形可以同属于两种不同类别,例如,等腰直角三角形既是等腰三角形,又是直角三角形。

2.等边三角形是特殊的等腰三角形,等边三角形也叫正三角形。

3.在等腰三角形中,若没有指明腰和底边或顶角和底角,则解题时要分类讨论。

三.三角形的高1.三角形的高是一条线段,即顶点到对边的垂直线段。

2.任意三角形都有三条高。

四.三角形的中线1.三角形的中线是一条线段,即顶点到其对边中点之间的线段。

2.三角形的一条中线将这个三角形分成两个面积相等的三角形。

五.三角形的角平分线1.三角形的角平分线是线段,不是直线,不是射线。

2.一个三角形有三条角平分线,他们在三角形的内部,且交于一点。

六.三角形的稳定性三角形的稳定性说明三角形三条边的长度确定后,其形状和大小也随之确定。

七.三角形的内角和定理1.三角形内角和定理适用于任意三角形。

2.在三角形中,已知任意两个角,可以求出第三个角。

3.已知三角形中三个内角的关系,可以求出各个内角的度数,通常利用方程的知识来解决。

4.直角三角形的两锐角互余。

八.三角形的外角1.在三角形的每个顶点处都有两个外角,这个两个外角相等。

2.三角形的外角等于与它不相邻的两个内角的和,特别注意“不相邻”。

3.三角形的一个外角大于与它不相邻的每一个内角。

九.多边形1.多边形是由不在同一直线上的线段首尾顺次相连接组成的封闭图形,多边形的边数大于等于3,有几条边就是几边形。

2.用大写字母表示多边形时,字母必须按顺/逆时针的顺序排列。

3.正多边形必须具备的两个条件:(1)边相等(2)角相等。

二者缺一不可。

A B C DE 十.多边形的内角和,外角和1. n 边形内角和公式:0180)2(⨯-n2. n 边形外角和公式:0360 常见考点:1.三角形三边关系的应用(1)三角形的三边长为3,8,x ,若x 为偶数,则x 的值有 个。

2.等腰三角形中周长和三边间的关系(2)等腰三角形的周长为10cm ,其中一边长为3cm,则另两边长分别为 3.三角形的中线与面积(3)如图,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且ABC S ∆= 42cm ,则EBF S ∆等于4.三角形的三边关系与绝对值的综合运用(4)已知a,b,c,为△ABC 的三边长,化简a b c a c b +++--。

5.以三角形为背景的规律探究(5)观察下列图形,则第n 个图形中三角形的个数是6.三角形的内角和(6)如图,∠ABC 的平分线与∠ACB 的平分线交于点O ,∠A=50度求∠BOC 的大小。

7.外角性质的应用(78.直角三角的判定 (8)如图,AB//CD ,直线EF 分别交AB,CD 于E,F ,∠BEF, ∠BDF 的平分线交于点P ,求证:△EPF 为直角三角形。

9.三角形内角与外角平分线的综合运用(9)如图,∠ABC 的平分线与△ABC 的外角平分线交于点O ,探究∠BOC 与∠A 的关系。

A B C D EF…… 第1个 第2个 第3个A B C DE FP A B OABO如果一个人的注意力经常不能集中,那就让他学习数学好了。

因为在证明数学定理时,即使是一刹那的思想不集中,就必须重新开始。

10.多边形的边数与对角线的条数(10)若从多边形的一个顶点出发,最多可以引8条对角线,则该多边形是 边形,其对角线共有条。

11.多边形的内角和与外角和的应用(11)如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G=基础过关:1. 如图,∠1=750,∠A=∠BCA,∠CBD=∠CDB, ∠DCE=∠DEC, ∠EDF=∠EFD.则∠A 的度数为2. 图中可数出的三角形个数为 个.3. 如图,把一个三角形纸片ABC 顶角向内折叠3次之后,3个顶点不重合,∠1+∠2+∠3+∠4+∠5+∠6的度数为4.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 的外部时,则与和之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是5. 如图,正方形网格中,小方格都是边长为1的正方形,A 、B 两点在小方格的顶点上,位置如图形所示,C 也在小方格的顶点上,且以A 、B 、C 为顶点的三角形面积为1个平方单位,则点C 的个数为 个。

6.点P 是△ABC 内一点,连结BP 并延长交AC 于D ,连结PC ,则图中∠1、∠2、∠A 的大小关系是7.若三角形的三个内角比为∠A :∠B :∠C =1:3:5,这个三角形为 三角形. 8. 一个多边形的每个内角都等于150°,则这个多边形是_____边形。

9. P 为△ABC 中BC 边的延长线上一点,∠A =50°,∠B =70°,则∠ACP =_____。

10. 七边形共有 条对角线。

A B C D E F G H T1 T2T3 T4 AB A B DP 12T5 T6专题训练一:三角形的内角和与外角性质中的重要问题类型一:与角平分线有关的问题例1.如图△ABC中,∠A=96°,延长BC到D,∠ABC与∠ACD的平分线相交于点A1∠A1BC与∠A1CD的平分线相交于点A2,依次类推,∠A4BC与∠A4CD的平分线相交于点A5,则∠A5的度数为()A.19.2°B.8°C.6°D.3°类型二.面积问题例2.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,则S阴影等于()A.2cm2 B.1cm2 C.12cm2 D.14cm2类型3.折叠问题例3.如图,在三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠(折痕为DE),使点C落在△ABC内的C′处,若∠AEC′=20°,则∠BDC′的度数是()A.30°B.40°C.50°D.60°类型4.实际应用例1.一个大型模板如图,设计要求BA和CD相交成30°角,DA和CB相交成20°角,怎样通过测量∠A、∠B、∠C、∠D的度数来检查模板是否合格.专题针对训练:1.如图,在△ABC中,∠A=52°,∠ABC与∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,依次类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C的度数是()A.56°B.60°C.68°D.94°2. 如图,已知∠1=∠2,∠3=∠4,∠C=32°,∠D=28°,求∠P的度数.3.如图1,线段AB、CD相交于点O,连接AD、CB、如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:_________;(2)在图2中,若∠D=40°,∠B=30°,试求∠P的度数;(写出解答过程)(3)如果图2中∠D和∠B为任意角,其他条件不变,试写出∠P与∠D、∠B之间数量关系.(直接写出结论即可)4.如图,在△ABC中,∠ABC的角平分线和∠ACD的角平分线相交于点E,(1)如果已知∠A=60°,∠ABC=50°,求∠E的大小.(2)如果已知∠A=70°,∠ABC=60°,求∠E的大小.(3)根据(1)和(2)的结论,试猜测一般情况下,∠E和∠A的大小关系,并说明理由.5.(1)如图①,在△ABC中,∠ABC、∠ACB的平分线相交于点O,∠A=40°,求∠BOC的度数;(2)如图②,△A′B′C′的外角平分线相交于点O′,∠A′=40°,求∠B′O′C′的度数;(3)上面(1)、(2)两题中的∠BOC与∠B′O′C′有怎样的数量关系若∠A=∠A′=n°,∠BOC与∠B′O′C′是否还具有这样的关系?这个结论你是怎样得到的?6.如图,已知直线m∥n,A,B为直线m上的两点,C,P为直线n上两点.(1)请写出图中面积相等的各对三角形:_______________________________________.(2)如果A,B,C为三个定点,点P在n上移动,那么,无论P点移动到任何位置,总有________与△ABC的面积相等.理由是:_______________7.如图,AD为△ABC的中线,BE为△ABD的中线,(1)若∠ABE=25°,∠BAD=50°,则∠BED的度数是___(2)在△ADC中过点C作AD边上的高CH.(3)若△ABC的面积为60,BD=5,求点E到BC边的距离.8.如图,把△ABC纸片沿DE折叠,点A落在四边形BCDE的内部,则()A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)9.(1)如图1,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点B、C.△ABC中,∠A=30°,则∠ABC+∠ACB= _____,∠XBC+∠XCB= ______.(2)如图2,改变直角三角板XYZ的位置,使三角板XYZ的两条直角边XY、XZ仍然分别经过B、C,那么∠ABX+∠ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.10.如下几个图形是五角星和它的变形.(1)图(1)中是一个五角星,求∠A+∠B+∠C+∠D+∠E.(2)图(2)中的点A向下移到BE上时,五个角的和(即∠CAD+∠B+∠C+∠D+∠E)有无变化说明你的结论的正确性.(3)把图(2)中的点C向上移到BD上时(1)如图(3)所示,五个角的和(即∠CAD+∠B+∠ACE+∠D+∠E)有无变化说明你的结论的正确性.11.已知,如图在△ABC中,∠B>∠C,AD是BC边上的高,AE平分∠BAC.(1)若∠B=40°,∠C=30°,则∠DAE= _______;(2)若∠B=80°,∠C=40°,则∠DAE=_________;(3)由(1)、(2)我能猜想出∠DAE与∠B、∠C之间的关系为__________.理由?12.如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.(1)若∠B=35°,∠ACB=85°,求∠E的度数;(2)当P点在线段AD上运动时,猜想∠E与∠B、∠ACB的数量关系,写出结论无需证明.能力提升:1.若a,b,c 分别是三角形的三边,化简a b c b a c ca b --+--+-+= 2. 用7跟火柴首位顺次连结摆成一个三角形,能摆成不同的三角形的个数是 3.如图,,BG ,AF 为ABC ∆的高,AD 为中线,若AF=6,BC=10,BG=5,则AC=4.如图,已知0180BAD D ∠+∠=,AC 平分BAD ∠,且025,95CAD ∠=∠=,则DCA ∠=ECA ∠=5.如图,040,60,B C ∠=∠=AD,AF 分别是ABC ∆的角平分线和高,则DAF ∠=6.如图,A B C D E ∠+∠+∠+∠+∠=7.如图,图中三角形的个数为8.如图所示,第1个图中有1个三角形,第2个图中共有5个三角形,第3个图中共有9个三角形,依此类推,则第6个图中共有三角形 个.9.如图,∠ABD ,∠ACD 的角平分线交于点P ,若∠A=50°,∠D=10°,则∠P 的度数为10.如图,已知点A (﹣1,0)和点B (1,2),在坐标轴上确定点P ,使得△ABP 为直角三角形,则满足这样条件的点P 共有 个。

相关文档
最新文档