青岛版七年级下册数学配套练习答案
七年级数学下册《角》练习题及答案(青岛版)

七年级数学下册《角》练习题及答案(青岛版)一、选择题1.如图,下列表示∠1正确的是( )A.∠OB.∠AOBC.∠AOCD.∠OAC2.下列各角中,是钝角的是( ).A.14周角 B.23周角 C.23平角 D.14平角3.画一个钝角∠AOB,然后以点O为顶点,以OA为一边,在角的内部画一条射线OC,使∠AOC=90°,正确的图形是( )4.在时刻8:30时,时钟上的时针与分针之间的所成的夹角是( )A.60°B.70°C.75°D.85°5.在同一个平面内,两条直线的位置关系是()A.平行或垂直B.相交或垂直C.平行或相交D.不能确定6.下列图形中,∠1与∠2是对顶角的是( )7.如图,有三条公路,其中AC与AB垂直,小明和小亮分别沿AC,BC同时出发骑车到C城,若他们同时到达,则下列判断中正确的是()A.小亮骑车的速度快B.小明骑车的速度快C.两人一样快D.因为不知道公路的长度,所以无法判断他们速度的快慢8.下列选项中,过点P画AB的垂线CD,三角尺放法正确的是( )9.如图,点C到直线AB的距离是指哪条线段长()A.CBB.CDC.CAD.DE10.一个角的余角比它的补角的27多5°,则这个角是( )A.35°B.47°C.74°D.76.5°11.把一副三角尺ABC与BDE按如图所示那样拼在一起,其中A,D,B三点在同一直线上,BM 为∠ABC的平分线,BN为∠CBE的平分线,则∠MBN的度数是( )A.30°B.45°C.55°D.60°12.如图,C、D在线段BE上,下列说法:①直线CD上以B、C、D、E为端点的线段共有6条;②图中有2对互补的角;③若∠BAE=100°,∠DAC=40°,则以A为顶点的所有小于平角的角的度数和为360°;④若BC=2,CD=DE=3,点F是线段BE上任意一点,则点F到点B,C,D,E的距离之和的最大值为15,最小值为11.其中说法正确的个数有( )A.1个B.2个C.3个D.4个二、填空题13.如图,把小河里的水引到田地A处就作AB⊥l,垂足为B,沿AB挖水沟,水沟最短.理由是 .14.如图,直线CD、EF相交于点O,则∠1+∠2+∠3的度数是度.15.计算:45°39′+65°41′= .16.比较大小:52°52′________ 52.52°.(填“>”、“<”或“=”)17.如图,将两块三角板的直角顶点重叠在一起,∠DOB与∠DOA的比是2:11,则∠BOC=________.18.用一副三角板可以直接得到30°,45°,60°,90°四种角,利用一副三角板可以拼出另外一些特殊角,如75°,120°等,请拼一拼,使用一副三角板还能拼出哪些小于平角的角,这些角的度数是: .三、作图题19.如图,一辆汽车在直线形公路AB上由A向B行驶,M、N是分别位于公路AB两侧的村庄.设汽车行驶到点P时,离村庄M最近,汽车行驶到点Q时,离村庄N最近,请在图中公路AB上分别画出点P、Q 的位置.四、解答题20.如图,O为直线AB上一点,∠AOC=13∠BOC,OC是∠AOD的平分线.(1)求∠COD的度数;(2)判断OD与AB的位置关系,并说明理由.21.已知∠α=76°,∠β=41°31′,求:(1)∠β的余角;(2)∠α的2倍与∠β的12的差.22.如图所示,OE平分∠AOC,OF平分∠BOC,若∠AOB+∠EOF=156°,求∠EOF的度数.23.如图,直线AB、CD相交于O,射线OM平分∠AOC,ON⊥OM,若∠AOM=350,求∠CON的度数。
青岛版七年级下册数学第9章 平行线含答案(有答案)

青岛版七年级下册数学第9章平行线含答案一、单选题(共15题,共计45分)1、下列命题中真命题的是()A.同旁内角互补B.三角形的一个外角等于两个内角的和C.若,则 D.同角的余角相等2、如图,∠2+∠3=180°,∠4=80°,则∠1=()A.70°B.110°C.100°D.以上都不对3、如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠1=27°,则∠2的度数是()A.53°B.63°C.73°D.83°4、如图,若∠A=75°,则要使EB∥AC可添加的条件是()A. ∠C=75° C .∠ABE=75°D.∠EBC=105° B.∠DBE=75° C.∠ABE=75° D.∠EBC=105° 5、下列命题是假命题的是()A.两直线平行,同旁内角互补;B.等边三角形的三个内角都相等; C.等腰三角形的底角可以是直角; D.直角三角形的两锐角互余.6、如图所示,下列说法错误的是()A.∠A和∠B是同旁内角B.∠A和∠3是内错角C.∠1和∠3是内错角D.∠C和∠3是同位角7、如图,在△ACB中AB=AC=6,BC=4.5,分别以点A、B为圆心,4为半径画圆弧,交于两点,过这两点的直线交AC于点D,连接BD,则△BCD的周长为()A.10B.6C.10.5D.88、如图,属于内错角的是()A.∠1和∠2B.∠2和∠3C.∠1和∠4D.∠3和∠49、如图,直线a,b都与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能使a∥b成立的条件有()A.1个B.2个C.3个D.4个10、已知:如图,直线a,b被直线c所截,且a∥b,若∠1=70°,则∠2的度数是()A.130°B.110°C.80°D.70°11、如图,七年级(下)教材第6页给出了利用三角尺和直尺画平行线的一种方法,能说明AB∥DE的条件是()A.∠CAB=∠FDEB.∠ACB=∠DFEC.∠ABC=∠DEFD.∠BCD=∠EF G12、如图,AB∥CD,∠D=42°,∠CBA=64°,则∠CBD的度数是()A.42°B.64°C.74°D.106°13、如图,∠BCD=90°,AB∥DE,则∠α与∠β满足()A. B. C.D.14、直线AB∥CD,∠B=23°,∠D=42°,则∠E=()A.23°B.42°C.65°D.19°15、如图,把矩形ABCD沿EF对折,若,则等于()A.115°B.130°C.120°D.65°二、填空题(共10题,共计30分)16、已知两个完全相同的直角三角形纸片△ABC、△DEF,如图1放置,点B、D 重合,点F在BC上,AB与EF交于点G.∠C=∠EFB=90°,∠E=∠ABC=30°,现将图1中的△ABC绕点F按每秒10°的速度沿逆时针方向旋转180°,在旋转的过程中,△ABC恰有一边与DE平行的时间为________s17、如图,DE∥AB,若∠A=50°,则∠ACD=________.18、已知∠A=50°,∠A的两边分别和∠B的两边平行,则∠B的度数为________19、如图,直线 c 与直线 a、b 相交,且a∥b,则下列结论:①∠1=∠2;②∠1=∠3;③∠3=∠2 中,正确的结论有________个.20、如图,,则________度.21、如图,已知直线AB、CD被直线AE所截,AB∥CD,∠2=130°,则∠1=________.22、如图,▱ABCD中,CE⊥AB,垂足为E,如果∠A=115°,则∠BCE=________度.23、如图,折叠宽度相等的长方形纸条,若∠1=600,则∠2=________度.24、如图,将一个宽度相等的纸条按如图所示沿AB折叠,已知,则=________.25、在四边形ABCD中,AD∥BC,DE平分∠ADB,∠BDC=∠C.若∠ABD的平分线与CD的延长线交于F,且∠F=x°(其中0<x<90),则∠ABC=________°,(用含有x的式子表示)三、解答题(共5题,共计25分)26、如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,AB=6,FC=4,求线段DB的长.27、如图,⊙O中,AB是直径,半径CO⊥AB,D是CO的中点,DE∥AB,求证:=2.28、如图所示,已知AC∥BD,EA,EB分别平分∠CAB和∠DBA,CD过E点.求证:AB=AC+BD.29、如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D.试说明:AC∥DF.30、木工师傅要检验一块木板的一组对边是否平行,先用直角尺的一边紧靠木板边缘,读出与这边相对的另一边缘在直角尺上的刻度,换一个位置再读一次.如图.这两次的读数如果相等,这一组对边就是平行的.请说明这样做的理由.参考答案一、单选题(共15题,共计45分)1、D2、C3、B4、C5、C6、B7、C8、D9、D10、B11、A12、C13、B14、C15、A二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
七年级下册数学配套练习册答案青岛版201X

七年级下册数学配套练习册答案青岛版20198.11.(1)∠A,∠C;(2)∠ABC,∠ABD,∠DBC,∠ADB,∠BDC;(3)3个,∠ABD,∠ABC,∠DBC.2.B.3.(1)∠AEB,∠DAE,∠BEC,∠ADB;(2)∠C,∠D.4.3个角;6个角;10个角.5.9时12分或21时12分.8.21.(1)42°;(2)不变.2.C.3.D.5.46°.提示:设∠COE=x°,则x-8=130-2x,x=46.6.(1)45°;(2)不变;提示:90+2x2-x=45;(3)不变.提示:90-2y2+y=45.8.3第1课时1.(1)42°20′24″;(2)56.35.2.(1)61°38′10″;(2)32.6.3.C.4.C.5.(1)93°12′;(2)47°31′48″;(3)12°9′36″;(4)33°7′12″.6.(1)112°27′;(2)51°55′;(3)125°37′30″. 7.0.5°,6°.8.(1)15°;(2)172.5°.9.40分钟.第2课时1.153°.2.53°17′45″.3.C.4.C.5.63°.6.(1)相等;(2)180°.7.60°.8.41.∠3,∠AOD.2.121°.3.C.4.B.5.∠3=25°30′,∠2=45°.6.∠2=63°30′,∠3=53°.7.(1)2对;(2)6对;(3)12对.8.51.70°.2.45°.3.D.4.C.5.132°.6.135°.7.60°,30°.第八章综合练习1.130°.2.36°16′30″.3.50°.4.(1)54°34′,125°26′;(2)α-90°.5.47.6.D.7.A.8.C.9.D.10.138°.11.125°.12.∠AOC+∠BOC=2(∠DOC+∠COE)=2×90°=180°,A,O,B共线.13.设∠BOE=x°,∠EOC=2x°,∠AOB=180-3x,∠DOB=72-x.得方程(72-x)×2=180-3x,解得x=36.即∠EOC=72°.14.∠BOC+∠COD+∠AOD=270°,∠EOF=170°,∠AOE+∠BOF=190°-90°=100°.∠COF+∠DOE=100°.又∠EOF=170°,∠COD=170°-100°=70°.检测站1.45°.2.98.505°.3.∠AOB,∠BOC.∠AOB,∠BOD.4.C.5.D.6.∠BOD,∠FOE,∠BOC;∠BOF.7.45°.8.97.5°.9.11.∠END.2.DE,AB,BC;AB,BC,DE.3.B.4.C.5.∠CAD,∠BAC,∠B.6.同位角:∠EAD与∠B;∠EAC与∠B;内错角:∠DAC与∠C;∠EAC与∠C.同旁内角:∠DAB与∠B;∠BAC与∠B.7.略.9.21.相交,平行.2.不相交.3.一.4.C.5.略.6.略.7.正方形.8.略.9.31.65°,两直线平行,同位角相等,65°,对顶角相等.2.65°.3.B.4.C.5.130°.6.∠B,∠EFC,∠ADE.7.40°.9.4第1课时1.AC,BD,内错角相等,两直线平行.2.(1)EN,BD;(2)AB,CD.3.B.4.∠5=∠2=105°,∠5+∠1=180°.5.DE∥MN.由AB∥MN,DE∥AB.6.提示:由AD∥BC,得∠A+∠B=180°,∠C+∠B=180°,AB∥CD.7.(1)由∠3=∠B,知FD∥AB,知∠4=∠A;(2)由ED∥AC,知∠1=∠C,∠BED=∠A.第2课时1.4厘米.2.BD,BE.3.D.4.由∠B=∠C,知AB∥CD,故∠A=∠D.5.∠1=∠GMC=90°-∠2.6.(1)∠MDF=∠MBE,BE∥DF;(2)不是;它是AB和CD之间的距离.7.在∠B内画射线BF∥AE,则BF∥CD.∠ABF=120°,∠FBC=30°,∠C=180°-30°=150°.第九章综合练习1.110°.2.AD∥BE,BD∥CE,AD∥BE.3.35°.提示:过点M画MN⊥AB,MN∥EG,∠HMN=∠E,∠HMN=90°-∠AMH.4.C.5.C.6.D.7.126°.8.∠1=115°.9.25°.10.∠3=80°,∠4=100°.11.因为AB∥CD,所以∠AEF=∠2,∠AEG=∠3,因为∠AEG=∠1+∠2,所以∠3=∠1+∠2.12.22°.提示:过点A画直线c∥a.检测站1.内错,同旁内,同位.2.180°.3.A.4.B.5.AB∥CD,AD∥BC.6.AD∥BC.DB平分∠ADC代替第二个条件.10.12.5.3.C4.D.6.a=7,b=-9.7.设需要汽车x辆,共有y人外出参观,35x+15=y,45(x-1)=y.解得x=6,y=225..8.不是.10.2第1课时1.-35x+85,-53y+83.2.x-1=0.3.B.4.(1)x=-12,y=52;(2)s=-3,t=-3;(3)m=2,n=1.5.x=1,y=-1.6.提示:按丙的方法,35x=3,25y=4,得x=5,y=10.第2课时1.2.2.-11.3.C.4.B.5.(1)x=-1,y=-8;(2)x=5,y=272.6.x+y=a,x-y=b,解得a=2,b=-1,又解得x=12,y=32.7.k=4.10.3第1课时1.4x+y=6,-5x+4y=-7.2.C.3.(1)x=1,y=1,z=1;(2)x=1,y=2,z=3.4.解三元一次方程组,用a表示解,得x=a,y=a+1,z=a-1,代入方程-x+2y+3z=6,得a=74.5.将z看做已知数,将x,y解出来.得x=1911-z,y=211-z.x+y+2z=1911-z+211-z+2z=2111.第2课时令1.加减,①,②.2.B.3.(1)x=2,y=1,z=-1;(2)x=1,y=2,z=2.4.a=1,b=-1,c=1.10.4第1课时1.7x+3=y,8x-5=y.2.320,180.3.C.4.216,1095.90元,100元.6.5元,3元.7.提示:设小长方形宽x,长y,则5x=3y,y+2x=2y+2,得x=6,y=10. 第2课时1.112x=0.5+112y,0.5x=(0.5+1)y.2.30,18.3.D.4.C.5.21张铁皮做盒身,28张铁皮做盒盖.6.长木6.5尺,绳长11尺.7.(1)x+y=90,46%x+70%y=90×64%,x=22.5,y=67.5.(2)46%x+70%y=64%(x+y),x∶y=1∶3.*第3课时1.x+y+z=21,x+y-z=5,x-(z-y)=5.2.4,8,10.3.C.4.2,3,5.5.12,8,7.第十章综合练习1.43.2.-1.3.-112,5,(113,0).4.-14.5.x=1,y=2.6.y=23x-53.7.B.8.A.*9.D.10.(1)x=1,z=2;(2)x=6,y=24;(3)x=3,y=2;*(4)x=2,y=-3,z=-1.11.300棵,200棵. 12.50人,220件.13.23.14.中型15辆,小型35辆.15.m=-275.16.30千米,70千米,42千米.17.平均每天1只大牛需用饲料20千克,小牛需用5千克.所以王大伯对大牛食量的估计是准确的,对小牛食量的估计偏高.18.火车速度22米/秒,列车长276米.19.(1)x=2,y=2,也是剩下一个方程的解.(2)不.如x-y=0. 检测站1.-10.2.a=2,b=1.3.5千克,2千克.4.C.5.C.6.a=5.*7.x=1,y=2,z=3.8.牛值金2两,羊值金1两.9.男生270名,女生260名.11.11.108.2.x12.3.x4.4.D.5.A.6.1.5×108.7.(1)m9;(2)3×1011.8.(1)(a-b)5;(2)-(2x-3y)3n+1.9.0.10.0. 11.2第1课时1.-8t3.2.116a4b4.3.-6x2.4.A.5.C.6.(1)28x3y3;(2)anbn;(3)-9a3x3.7.a2b.8.1.9.1102n.10.14位数.第2课时1.(1)x10;(2)-8x12.2.C.3.D.5.(1)19x2y4;(2)215;(3)x12;(4)64m12n6.6.(1)x6n+2;(2)-(a+b)7;(3)35n-2.7.提示:24<33,(24)25<(33)25.11.3第1课时1.12xy3.2.-6x2y3.3.B.4.D.5.(1)m5n2;(2)1.2×1020.6.(1)-14x5y4z2;(2)64x6.7.-730(a-b)8n-4.8.C.第2课时1.3x2-5x3.2.x2-y2.3.D.4.C.5.(1)-3x2y+2xy2-52xy;(2)x4+4x2+2x-4;(3)12b3-b2+6b.6.2m3n3-8m2n3.7.x=-12.8.10.11.4第1课时1.x2-7x+10.2.-6x2-xy+2y2.3.B.4.B.5.(1)-6m2+19m-15;(2)-12x3+14x2-4x;(3)-3y2-23y+108.6.4x2-100x+600.7.-x2-29x+32,1854.8.提示:该代数式的值恒为22.9.x=-110.b=12.第2课时1.x3+2x2-5x-6.2.2a3+5a2+a-3.3.B.4.C.5.(1)m3+2m2-1;(2)2a3-5a2b+8ab2-3b3;(3)-2x3-x2-7x+10.6.x3+x-5,值为-7.7.x=-12.8.0.11.51.4.2.m8.3.xn.4.D.5.B.6.16.7.(1)-a;(2)a3.8.(1)y-x;(2)(x+2y)6.9.2xy.11.6第1课时1.1.2.1.3.0.4.C.5.D.6.(1)64;(2)a.7.(1)3 129;(2)200.8.7.9.a≠0,m=n.第2课时1.181.2.-164.3.100.4.B.5.C.6.(1)200;(2)10099;(3)100.7.10-1,10-2,10-3,10-4.8.a<b<d<c.9.x≠-13.10.1. 第3课时1.1.2.1a4.3.a8.4.C.5.125.6.(1)10;(2)x5;(3)11 000 000;(4)1a7.7.13a.8.2-101.第4课时1.1.2×10-4.2.0.000 002 76.3.2.5×10-9.4.D.5.D.6.(1)1.5×10-2;(2)2.1×103;(3)1.5×10-3.7.x=-7.8.1.572×104.9.花粉直径较大,是兔毛直径的7.2倍.第十一章综合练习1.106.2.x9.3.a.4.tn.5.(a+b)2.6.x5.7.a7.8.15x3y3z.9.2a3+2a2b+2ab.10.-2x2+3x-1.11.B.12.B.13.B.14.A.15.(1)x9;(2)-(a+b)4;(3)-a2b2+6ab+23a;(4)-6n+2;(5)2a3+8ab2-14a2b;(6)-3x2-23x+108;(7)6x2-13xy;(8)-x13y12.16.(1)-x,1;(2)5x-1,101.17.x=-1.18.(1)x=4;(2)n=2,m=4;(3)M=x2-6x+9.19.2ab+2b2.20.n(n+5)-(n-3)(n+2)=6(n+1).检测站1.(x+y)5.2.-6a3b3c.3.-2x3-4x2+2x.4.a6b6.5.C.6.B.7.B.8.1.24×10-6.9.299.10.(1)36x2-114x+90;(2)91x2-277x+210.11.长8、宽5.12.11.b2-9a2.2.x4-4.3.1681m2n2-49.4.5x+3y.5.C.6.B.7.(1)c2-9a2b2;(2)9y2-4x4;(3)a4-b4;(4)-5x2-9.8.(1)(300+3)(300-3)=90 000-9=89 991;(2)1.9.(2n-1)(2n+1)=(2n)2-1.10.原式×3-23-2=332-232.12.2第1课时1.-2ab.2.a2+4ab+4b2.3.k=8.4.B.5.C.6.A.7.(1)9m2-32n+116;(2)x4-2x2+1;(3)a2+2ab+b2;(4)916s2+st+49t2.8.(a+b)2=4ab+(a-b)2.9.a2+2ab+b2=9,a2-2ab+b2=49.ab=14(9-49)=-10.a2+b2=9-2ab=29.第2课时1.4ab.2.a2+b2+c2+2ab-2ac-2bc.3.x2-y2+z2+2xz.4.B.5.B.6.A.7.(1)2a2b2-b4;(2)2y2+2x+5;(3)(100-3)(100-1)(100+1)(100+3)=(104-9)(104-1)=108-105+9=99 900 009.8.12.9.48π(a+1).10.8.12.31.2x2y.2.2a4-ab+6.3.a-b-2.4.D.5.C.6.(1)xy(x-y);(2)4ab(bc+4);(3)-2xy(1+2x-4x2);(4)-(3a+b)(a+3b);(5)2x(x-y)2(1-2x).7.1 999.8.14ax(2a-x)2.9.能.256-510=512-510=510(25-1)=24×510.。
青岛版七年级下册数学配套练习答案范文

数学练习册七年级下册参考答案8.11.(1)∠A,∠C;(2)∠ABC,∠ABD,∠DBC,∠ADB,∠BDC;(3)3个,∠ABD,∠ABC,∠DBC.2.B.3.(1)∠AEB,∠DAE,∠BEC,∠ADB;(2)∠C,∠D.4.3个角;6个角;10个角.5.9时12分或21时12分.8.21.(1)42°;(2)不变.2.C.3.D.5.46°.提示:设∠COE=x°,则x-8=130-2x,x=46.6.(1)45°;(2)不变;提示:90+2x2-x=45;(3)不变.提示:90-2y2+y=45.8.3第1课时1.(1)42°20′24″;(2)56.35.2.(1)61°38′10″;(2)32.6.3.C.4.C.5.(1)93°12′;(2)47°31′48″;(3)12°9′36″;(4)33°7′12″.6.(1)112°27′;(2)51°55′;(3)125°37′30″.7.0.5°,6°.8.(1)15°;(2)172.5°.9.40分钟.第2课时1.153°.2.53°17′45″.3.C.4.C.5.63°.6.(1)相等;(2)180°.7.60°.8.41.∠3,∠AOD.2.121°.3.C.4.B.5.∠3=25°30′,∠2=45°.6.∠2=63°30′,∠3=53°.7.(1)2对;(2)6对;(3)12对.8.51.70°.2.45°.3.D.4.C.5.132°.6.135°.7.60°,30°.第八章综合练习1.130°.2.36°16′30″.3.50°.4.(1)54°34′,125°26′;(2)α-90°.5.47.6.D.7.A.8.C.9.D.10.138°.11.125°.12.∠AOC+∠BOC=2(∠DOC+∠COE)=2×90°=180°,A,O,B共线.13.设∠BOE=x°,∠EOC=2x°,∠AOB=180-3x,∠DOB=72-x.得方程(72-x)×2=180-3x,解得x=36.即∠EOC=72°.14.∠BOC+∠COD+∠AOD=270°,∠EOF=170°,∠AOE+∠BOF=190°-90°=100°.∠COF+∠DOE=100°.又∠EOF=170°,∠COD=170°-100°=70°.检测站1.45°.2.98.505°.3.∠AOB,∠BOC.∠AOB,∠BOD.4.C.5.D.6.∠BOD,∠FOE,∠BOC;∠BOF.7.45°.8.97.5°.9.11.∠END.2.DE,AB,BC;AB,BC,DE.3.B.4.C.5.∠CAD,∠BAC,∠B.6.同位角:∠EAD与∠B;∠EAC与∠B;内错角:∠DAC与∠C;∠EAC与∠C.同旁内角:∠DAB与∠B;∠BAC与∠B.7.略.9.21.相交,平行.2.不相交.3.一.4.C.5.略.6.略.7.正方形.8.略.9.31.65°,两直线平行,同位角相等,65°,对顶角相等.2.65°.3.B.4.C.5.130°.6.∠B,∠EFC,∠ADE.7.40°.9.4第1课时1.AC,BD,内错角相等,两直线平行.2.(1)EN,BD;(2)AB,CD.3.B.4.∠5=∠2=105°,∠5+∠1=180°.5.DE∥MN.由AB∥MN,DE∥AB.6.提示:由AD∥BC,得∠A+∠B=180°,∠C+∠B=180°,AB∥CD.7.(1)由∠3=∠B,知FD∥AB,知∠4=∠A;(2)由ED∥AC,知∠1=∠C,∠BED=∠A.第2课时1.4厘米.2.BD,BE.3.D.4.由∠B=∠C,知AB∥CD,故∠A=∠D.5.∠1=∠GMC=90°-∠2.6.(1)∠MDF=∠MBE,BE∥DF;(2)不是;它是AB和CD之间的距离.7.在∠B内画射线BF∥AE,则BF∥CD.∠ABF=120°,∠FBC=30°,∠C=180°-30°=150°.第九章综合练习1.110°.2.AD∥BE,BD∥CE,AD∥BE.3.35°.提示:过点M画MN⊥AB,MN∥EG,∠HMN=∠E,∠HMN=90°-∠AMH.4.C.5.C.6.D.7.126°.8.∠1=115°.9.25°.10.∠3=80°,∠4=100°.11.因为AB∥CD,所以∠AEF=∠2,∠AEG=∠3,因为∠AEG=∠1+∠2,所以∠3=∠1+∠2.12.22°.提示:过点A画直线c∥a.检测站1.内错,同旁内,同位.2.180°.3.A.4.B.5.AB∥CD,AD∥BC.6.AD∥BC.DB平分∠ADC代替第二个条件.10.12.5.3.C4.D.6.a=7,b=-9.7.设需要汽车x辆,共有y人外出参观,35x+15=y,45(x-1)=y.解得x=6,y=225..8.不是.10.2第1课时1.-35x+85,-53y+83.2.x-1=0.3.B.4.(1)x=-12,y=52;(2)s=-3,t=-3;(3)m=2,n=1.5.x=1,y=-1.6.提示:按丙的方法,35x=3,25y=4,得x=5,y=10.第2课时1.2.2.-11.3.C.4.B.5.(1)x=-1,y=-8;(2)x=5,y=272.6.令x+y=a,x-y=b,解得a=2,b=-1,又解得x=12,y=32.7.k=4.10.3第1课时1.4x+y=6,-5x+4y=-7.2.C.3.(1)x=1,y=1,z=1;(2)x=1,y=2,z=3.4.解三元一次方程组,用a表示解,得x=a,y=a+1,z=a-1,代入方程-x+2y+3z=6,得a=74.5.将z看做已知数,将x,y解出来.得x=1911-z,y=211-z.x+y+2z=1911-z+211-z+2z=2111.第2课时1.加减,①,②.2.B.3.(1)x=2,y=1,z=-1;(2)x=1,y=2,z=2.4.a=1,b=-1,c=1.10.4第1课时1.7x+3=y,8x-5=y.2.320,180.3.C.4.216,1095.90元,100元.6.5元,3元.7.提示:设小长方形宽x,长y,则5x=3y,y+2x=2y+2,得x=6,y=10.第2课时1.112x=0.5+112y,0.5x=(0.5+1)y.2.30,18.3.D.4.C.5.21张铁皮做盒身,28张铁皮做盒盖.6.长木6.5尺,绳长11尺.7.(1)x+y=90,46%x+70%y=90×64%,x=22.5,y=67.5.(2)46%x+70%y=64%(x+y),x∶y=1∶3.*第3课时1.x+y+z=21,x+y-z=5,x-(z-y)=5.2.4,8,10.3.C.4.2,3,5.5.12,8,7.第十章综合练习1.43.2.-1.3.-112,5,(113,0).4.-14.5.x=1,y=2.6.y=23x-53.7.B.8.A.*9.D.10.(1)x=1,z=2;(2)x=6,y=24;(3)x=3,y=2;*(4)x=2,y=-3,z=-1.11.300棵,200棵.12.50人,220件.13.23.14.中型15辆,小型35辆.15.m=-275.16.30千米,70千米,42千米.17.平均每天1只大牛需用饲料20千克,小牛需用5千克.所以王大伯对大牛食量的估计是正确的,对小牛食量的估计偏高.18.火车速度22米/秒,列车长276米.19.(1)x=2,y=2,也是剩下一个方程的解.(2)不唯一.如x-y=0. 检测站1.-10.2.a=2,b=1.3.5千克,2千克.4.C.5.C.6.a=5.*7.x=1,y=2,z=3.8.牛值金2两,羊值金1两.9.男生270名,女生260名. 11.11.108.2.x12.3.x4.4.D.5.A.6.1.5×108.7.(1)m9;(2)3×1011.8.(1)(a-b)5;(2)-(2x-3y)3n+1.9.0.10.0.11.2第1课时1.-8t3.2.116a4b4.3.-6x2.4.A.5.C.6.(1)28x3y3;(2)anbn;(3)-9a3x3.7.a2b.8.1.9.1102n.10.14位数.第2课时1.(1)x10;(2)-8x12.2.C.3.D.5.(1)19x2y4;(2)215;(3)x12;(4)64m12n6.6.(1)x6n+2;(2)-(a+b)7;(3)35n-2.7.提示:24<33,(24)25<(33)25.11.3第1课时1.12xy3.2.-6x2y3.3.B.4.D.5.(1)m5n2;(2)1.2×1020.6.(1)-14x5y4z2;(2)64x6.7.-730(a-b)8n-4.8.C.第2课时1.3x2-5x3.2.x2-y2.3.D.4.C.5.(1)-3x2y+2xy2-52xy;(2)x4+4x2+2x-4;(3)12b3-b2+6b.6.2m3n3-8m2n3.7.x=-12.8.10.11.4第1课时1.x2-7x+10.2.-6x2-xy+2y2.3.B.4.B.5.(1)-6m2+19m-15;(2)-12x3+14x2-4x;(3)-3y2-23y+108.6.4x2-100x+600.7.-x2-29x+32,1854.8.提示:该代数式的值恒为22. 9.x=-110.b=12.第2课时1.x3+2x2-5x-6.2.2a3+5a2+a-3.3.B.4.C.5.(1)m3+2m2-1;(2)2a3-5a2b+8ab2-3b3;(3)-2x3-x2-7x+10.6.x3+x-5,值为-7.7.x=-12.8.0.11.51.4.2.m8.3.xn.4.D.5.B.6.16.7.(1)-a;(2)a3.8.(1)y-x;(2)(x+2y)6.9.2xy.11.6第1课时1.1.2.1.3.0.4.C.5.D.6.(1)64;(2)a.7.(1)3 129;(2)200.8.7.9.a≠0,m=n.第2课时1.181.2.-164.3.100.4.B.5.C.6.(1)200;(2)10 099;(3)100.7.10-1,10-2,10-3,10-4.8.a<b<d<c.9.x≠-13.10.1.第3课时1.1.2.1a4.3.a8.4.C.5.125.6.(1)10;(2)x5;(3)11 000 000;(4)1a7.7.13a.8.2-101.第4课时1.1.2×10-4.2.0.000 002 76.3.2.5×10-9.4.D.5.D.6.(1)1.5×10-2;(2)2.1×103;(3)1.5×10-3.7.x=-7.8.1.572×104.9.花粉直径较大,是兔毛直径的7.2倍.第十一章综合练习1.106.2.x9.3.a.4.tn.5.(a+b)2.6.x5.7.a7.8.15x3y3z.9.2a3+2a2b+2ab.10.-2x2+3x-1.11.B.12.B.13.B.14.A.15.(1)x9;(2)-(a+b)4;(3)-a2b2+6ab+23a;(4)-6n+2;(5)2a3+8ab2-14a2b;(6)-3x2-23x+108;(7)6x2-13xy;(8)-x13y12.16.(1)-x,1;(2)5x-1,101.17.x=-1.18.(1)x=4;(2)n=2,m=4;(3)M=x2-6x+9.19.2ab+2b2.20.n(n+5)-(n-3)(n+2)=6(n+1).检测站1.(x+y)5.2.-6a3b3c.3.-2x3-4x2+2x.4.a6b6.5.C.6.B.7.B.8.1.24×10-6.9.299.10.(1)36x2-114x+90;(2)91x2-277x+210.11.长8、宽5.12.11.b2-9a2.2.x4-4.3.1681m2n2-49.4.5x+3y.5.C.6.B.7.(1)c2-9a2b2;(2)9y2-4x4;(3)a4-b4;(4)-5x2-9.8.(1)(300+3)(300-3)=90000-9=89 991;(2)1.9.(2n-1)(2n+1)=(2n)2-1.10.原式×3-23-2=332-232.12.2第1课时1.-2ab.2.a2+4ab+4b2.3.k=8.4.B.5.C.6.A.7.(1)9m2-32n+116;(2)x4-2x2+1;(3)a2+2ab+b2;(4)916s2+st+49t2.8.(a+b)2=4ab+(a-b)2.9.a2+2ab+b2=9,a2-2ab+b2=49.ab=14(9-49)=-10.a2+b2=9-2ab=29.第2课时1.4ab.2.a2+b2+c2+2ab-2ac-2bc.3.x2-y2+z2+2xz.4.B.5.B.6.A.7.(1)2a2b2-b4;(2)2y2+2x+ 5;(3)(100-3)(100-1)(100+1)(100+3)=(104-9)(104-1)=108-105+9=99 900 009.8.12.9.48π(a+1).10.8.12.31.2x2y.2.2a4-ab+6.3.a-b-2.4.D.5.C.6.(1)xy(x-y);(2)4ab(bc+4);(3)-2xy(1+2x-4x2);(4 )-(3a+b)(a+3b);(5)2x(x-y)2(1-2x).7.1999.8.14ax(2a-x)2.9.能.256-510=512-510=510(25-1)=24×510.12.4第1课时1.(x+2y)(x-2y).2.k=-140.3.D.4.C.5.(1)(6+x)(6-x);(2)(12y+1)2;(3)-(m-n)2;(4)(3+14a)(3-14a).6.(1)8 056;(2)90 000.7.(1)(1+a+b)(1-a-b);(2)(a-b+2)2.8.左端=[(a-b)2+(a+b)2+(a-b)2-(a+b)2]·[(a-b)2+(a+b)2-(a-b)2+(a+b)2]=4(a-b)2(a+b)2.第2课时1.提出公因式,用公式法进行因式分解.2.x(x+1)(x-1).3.(a-1)(x+y)(x-y).4.D.5.C.6.(1)m(m2+1)(m+1)(m-1).(2)2x3(3y+1)(3y-1).(3)(x+2)2(x-2)2.(4)(x+1)4.7.原式=12·32·23·43·34·54…910·1110=1120.8.2 0122(2 0112-1)+(2 0132-1)=2 0122(2 011+1)(2 011-1)+(2 013+1)(2 013-1)=2 01224 024=1 006.第十二章综合练习1.9x2-y2.2.25-4b2.3.25a2-20ab+4b2.4.14m4+2m2n+4n2.5.-2m.6.x-y+2.7.(xy+2z)(xy-2z).8.23m-0.1n.9.C.10.C.11.C.12.(1)4x2+4xy+y2-25z2;(2)-280y2+1295;(3)116x4-181y4.13.(1)2a3x2(2+a)(2-a);(2)(x-y)(a+2y)(a-2y);(3)-(a-b)2(a+b)2;( 4)(x2+2x+7)(x-1)2.14.(1)31×(573+427)×(573-427)=4 526 000;(2)76 900;(3)10099.15.πR2-4πr2=π(R+2r)(R-2r)=3.14×10× 5.6=175.8厘米.16.(n+7)2-(n-5)2=(n+7+n-5)(n+7-n+5)=24(n+1).17.x=141.18.x=2,y=-3,16.19.(2n+1) 2-(2n-1)2=(2n+1+2n-1)(2n+1-2n+1)=8n.检测站1.2b-3a.2.20或-20.3.5-a2.4.B.5.B.6.(1)x8-y8;(2)-16x2.7.(1)x2y4(xy2+z)(xy2-z);(2)(m-n+4mn)(m-n-4mn);(3)12x(2a-1)2.8.原式=(x+1)(2x-3)x.当x=12时,原式=-32.9.324-1=(312+1)(36+1)(33+1)(33-1)=28×(312+1)(36+1)(33-1).10.原式=12(a-b)2=2.13.1第1课时1.(1)√;(2);(3)√;(4)√;(5).2.△ABC,△BDC,△BEC;△ABE,△DBE.3.14或16. 5.(1)∠A,∠ACD,∠ADC;∠A,∠ACB,∠B;(2)△DAE,△DAC,△BAC;△ADC,△BDC;(3)△BDC;△ACD,△EDC.不是.6.当四点中任意三点不共线时,组成4个三角形;当四点中有三点共线时,组成3个三角形;若该四点共线时,不能组成三角形.第2课时1.3.2.105厘米或200厘米.3.B.4.B.5.9种:4,5,6,7,8,9,10,11,12(单位:厘米).6.4厘米,6厘米.7.8或10.8.8种:1,4,4;2,3,4;2,4,4;2,4,5;3,4,3;3,4,4;3,4,5;3,4,6.第3课时1.ACE,BCD.2.(1)AE,4厘米;(2)DAC,12;(3)AF.3.C.4.C.5.△ABC,△ABD,△ADC,△ABE,△AEC,△ADE.6.相等.∠1=∠DAC=∠DAE=∠2.∠EAF=∠EDF.7.(1)△BCD,△OCD;(2)△ABC,△ABO和△BOC有一条高重合;△BCD,△OCD 和△BOC有一条高重合.第4课时1.70°.2.45°.提示:∠APD=∠A2+∠C2.3.C.4.C.5.(1)125°;(2)35°.6.70°.7.50°.8.(1)105°;(2)115°;(3)90°+12n°.提示:延长BO交AC于D,∠BOC=∠BDC+12∠C=∠A+12∠B+12∠C=90°+12∠A.13.2第1课时1.n-3,n-2.2.5.3.B.4.D.5.五角星.6.8个;△ABC,△ABD,△BCD,△ACD,△OAB,△OAC,△OBD,△OCD.7.6.8.60厘米.第2课时1.1 440°,360°,144°.2.8.3.12,150°.4.C.5.D.7.36°.8.18,130°.13.3第1课时1..2.O,2厘米.3.圆外,圆内,6.4.弦:AB,BC,CD,AD,BD,AC;半圆:ABC,ADC;优弧:BAD,CAD,BAC,ABD,ACB;劣弧:AB,BC,CD,AD,BCD.6.列方程:2π(80+10)8=2π(80+10+x)10,x=22.5(厘米).第2课时1..2.a2(1-π4).3.3.4.一样远.5.6π.第十三章综合练习1.30°,60°.2.95°.3.钝角.4.∠A=40°,∠C=140°.5.20°.6.M在圆内部.7.B.8.D.9.B.10.D.11.36°,72°,72°.12.(1)y=90-x2;(2)y=45;(3)60.13.8,8,11或10,10,7.14.(1)将平面分为5部分:小圆内、小圆上、圆环内、大圆上、大圆外.(2)条件分别是:OP<5,OP=5,5<OP<8,OP=8,OP>8.15.延长AP到BC上点D,利用三角形外角性质,可推出∠APB>∠C.16.3圈.检测站1.5,4.2.10个.3.2,1.4.六.5.B.6.C.7.3个.8.∠ADB=80°,∠DAE=10°.9.(1)∠AEF>∠D>∠A(由外角定理);(2)∠AFD=∠ACD+∠D=∠A+∠B+∠D.综合与实践第1课时1.条件是:多边形每条边都是该多边形与相邻多边形的公共边,每个顶点处各内角之和是360°.2.正六边形.3.B.4.D.6.6,3,3.第2课时1.正三角形2.正方形.3.C.4.D.5.(1)3,2.6.3n,2n+1.14.11.2,5.2.C.3.储蓄所,诊所(6,9),商店(7,3),学校(1,1).4.5排3列.5.23.6.(1)(C,4),(A,4),(0,3),(0,1),(A,0),(C,0),(D,1),(D,3);(2)(E,3)→(G,4)→(H,2)→(F,3)→(G,1)(答案不唯一).14.21.四,5,2.2.x轴或y轴上.3.C.4.D.5.在第二、四象限的角平分线上,如(1,-1).6.(2,0),(7,0);(0,2),(0,4).7.第二象限,(2,0),(-2,1);第一象限,(2,2),(0,3).14.3第1课时1.B(3,3),D(-2,-2).2.C.3.小房子.4.42.5.(32,3),(64,0).第2课时1.(-2,-3),(3,-4),x′=x-2,y′=y-3.2.A.3.A(0,0),B(5,1),C(0,-3),D(-2,-2).4.(1)(0,0),(0,1.5),(3.8,0),(3.8,1.5),( 1.7,0.5);(2)(-3.8,-1.5),(-3.8,0),(0,-1.5),(0,0),(-2.1,-1).5.以(1,1)为原点O′,x′轴∥x轴,y′轴∥y轴,分别以向右、向上为正向,单位长度不变,建立直角坐标系.A,B,C坐标分别是A(-2,1),B(2,-2),C(-1,2).14.41.北偏西45°,1.5.2.A.3.略.4.略.第十四章综合练习1.(9,8).2.一.3.2.4.6.5.D.6.B.7.略.8.二,四,三,一,x轴,y轴.9.(2,6)或(2,-6).10.x轴上,(0,5),(5,0).检测站1.(-2,-2).2.(1)3;(2)-2;(3)四.3.B.5.“国”字.6.P,Q,R分别在长方形内部、边界上、外部.总复习题1.45°.2.∠DCE=∠A.3.12.4.-2 012.5.125°.6.D.7.D.8.A.9.C.10.75°.11.第二象限.12.24.5吨.13.(1)22x-23,21;(2)-2y2+19y,9.14.12.15.y=-12x.16.购一等门票3张、三等门票33张,或购二等门票7张、三等门票29张.提示:分三种情况分别列二元一次方程组,其中购一等门票、二等门票不可行.17.玩具走的是正12边形,共走了12米.总检测站1.44°.2.(1)AB∥DF;(2)ED∥AC;(3)ED∥AC.3.x=2,y=-5.4.a=-73,b=53.5.-y2-7x.6.-7.7.18°.8.C.9.C.10.A.11.B.12.(1)∠DOC=∠B=∠E;(2)不一定;还可能互补.13.4.14.3516x3-418x2-32x-12.15.(a+1)2(a-1)2.*16.7,5,6.17.12边形.18.分两种情况讨论:D点在B,C之间和D点在B,C之外.分别由面积求出高,建立直角坐标系,以垂足为原点,以直线BC为x轴,以高所在直线为y轴.。
青岛版数学练习册答案七下

青岛版数学练习册答案七下【练习一:有理数的运算】1. 计算下列各题:- (-3) + 5 = 2- 7 - (-2) = 9- (-4) × (-3) = 12- 8 ÷ (-2) = -42. 化简下列各数:- -(-3) = 3- -(-(-5)) = -53. 解决实际问题:- 如果一个数是-8,另一个数比它大3,那么另一个数是多少?另一个数是 -8 + 3 = -5【练习二:一元一次方程】1. 解下列方程:- 3x - 7 = 8,解得 x = 5- 2x + 5 = 3x - 1,解得 x = 62. 应用题:- 一个班级有40名学生,其中男生比女生多10人,求男生和女生各有多少人?设女生人数为x,则男生人数为x + 10。
根据题意,x + (x + 10) = 40,解得 x = 15,即女生15人,男生25人。
【练习三:几何图形初步】1. 根据题目给出的线段长度,求三角形的周长:- 如果三角形的三边长分别为3cm、4cm、5cm,那么周长为 3 + 4 + 5 = 12cm。
2. 根据题目给出的角度,判断三角形的类型:- 如果一个三角形的三个内角分别为30°、60°、90°,则这是一个直角三角形。
【练习四:数据的收集与处理】1. 根据给出的数据,计算平均数:- 如果有5个数:2, 3, 5, 7, 9,平均数为 (2 + 3 + 5 + 7 + 9) ÷ 5 = 5。
2. 根据数据绘制条形统计图,并分析数据:- 假设有一组数据:10, 15, 20, 25, 30,绘制条形统计图后,可以直观看出数值的分布情况。
结束语:通过以上练习,我们复习了有理数的运算、一元一次方程的解法、几何图形的初步认识以及数据的收集与处理。
希望同学们能够通过这些练习,加深对数学知识的理解,提高解题能力。
如果有任何疑问,欢迎随时提问,我们一起探讨学习。
青岛版七年级数学下册全套单元试卷含答案

【本文档由书林工作坊整理发布,谢谢你的下载和关注!】单元测试卷一、选择题1下列时刻中,时针与分针之间的夹角为300的是()A早晨6点 B.下午13点 C.中午12点 D.上午9点2.如图所示,把一个长方形纸片沿EF折叠后,点D、C分别落 E在D'、C'的位置.若∠AE D'=50°,则∠DEF等于()A.50°B.65°C.75°D.60°3将31.62°化成度分秒表示,结果是()A.3106'2''B.31037'12"C.31037'2" D.31°37'4. 如图∠AOC和∠BOD都是直角,如果∠AOB=140°,则∠DOC的度数A.300B.400C.500D.6005. 如果∠α=260,那么∠α余角的补角等于()A.20° B .700 C.110° D.11606. 下列说法中正确的有()(1) 钝角的补角一定是锐角(2) 过己知直线外一点作这条直线的垂线有且只有一条(3) —个角的两个邻补角是对顶角(4) 等角的补角相等(5) 直线l外一点A与直线l上各点连接而成的所有线段中,最短线段的长是3cm,则点A到直线l的距离是3cm .A 2个 B. 3个 C. 4 个 D. 5 个7. 如图,直线a、b、c两两相交,若∠1+∠7=180。
,则图中与∠1互补的角有()A. 1个B. 2个C. 3个D. 4个8. 如图,P0丄OR, 0Q丄PR,能表示点到直线(或线段)的距离的线段有()A. 1条B.2条C.3条D.5条9. 如图,已知ON丄a,OM丄a,所以OM与ON重合的理由是().A. 两点确定一条直线B. 经过一点有且只有一条线段垂直于己知直线C. 过一点只能作一条垂线D. 垂线段最短10. 如果∠1与∠2互为补角,且∠1>∠2,那么∠2的余角是()A.12∠1 B12∠2 C.12∠1-∠2) D.12(∠l+∠2)11. 如果∠A和∠B互为余角,∠B和∠C互为补角,∠A与∠C的和等于1200,那么这三个角分别是()A. 15°, 75°, 105°B. 20°, 70°, 90°C. 300,600,900D. 700,200,100012. 如图, ∠AOB=∠COD,则()A.∠1>∠2B.∠1=∠2C.∠1<∠2D.∠1与∠2的大小无法比较二、填空题13. 如果∠α+∠β=900,而∠β与∠γ互余,那么∠α与∠γ的关系为。
青岛版七年级下册数学配套练习答案
青岛版七年级下册数学配套练习答案青岛版七年级下册数学配套练习答案8.11.(1)∠A,∠C;(2)∠ABC,∠ABD,∠DBC,∠ADB,∠BDC;(3)3个,∠ABD,∠ABC,∠DBC.2.B.3.(1)∠AEB,∠DAE,∠BEC,∠ADB;(2)∠C,∠D.4.3个角;6个角;10个角.5.9时12分或21时12分.8.21.(1)42°;(2)不变.2.C.3.D.5.46°.提示:设∠COE=x°,则x-8=130-2x,x=46.6.(1)45°;(2)不变;提示:90+2x2-x=45;(3)不变.提示:90-2y2+y=45.8.3第1课时1.(1)42°20′24″;(2)56.35.2.(1)61°38′10″;(2)32.6.七年级上册数学配套练习册答案3.C.4.C.5.(1)93°12′;(2)47°31′48″;(3)12°9′36″;(4)33°7′12″.6.(1)112°27′;(2)51°55′;(3)125°37′30″.7.0.5°,6°.8.(1)15°;(2)172.5°.9.40分钟.第2课时1.153°.2.53°17′45″.3.C.4.C.5.63°.6.(1)相等;(2)180°.7.60°.8.41.∠3,∠AOD.2.121°.3.C.4.B.5.∠3=25°30′,∠2=45°.6.∠2=63°30′,∠3=53°.7.(1)2对;(2)6对;(3)12对.8.51.70°.2.45°.3.D.4.C.5.132°.6.135°.7.60°,30°.第八章综合练习1.130°.2.36°16′30″.3.50°.4.(1)54°34′,125°26′;(2)α-90°.5.47.6.D.7.A.8.C.9.D.10.138°.11.125°.12.∠AOC+∠BOC=2(∠DOC+∠COE)=2×90°=180°,A,O,B共线.13.设∠BOE=x°,∠EOC=2x°,∠AOB=180-3x,∠DOB=72-x.得方程(72-x)×2=180-3x,解得x=36.即∠EOC=72°.14.∠BOC+∠COD+∠AOD=270°,∠EOF=170°,∠AOE+∠BOF=19 0°-90°=100°.∠COF+∠DOE=100°.又∠EOF=170°,∠COD=170°-100°=70°.检测站1.45°.2.98.505°.3.∠AOB,∠BOC.∠AOB,∠BOD.4.C.5.D.6.∠BOD,∠FOE,∠BOC;∠BOF.7.45°.8.97.5°.9.11.∠END.2.DE,AB,BC;AB,BC,DE.3.B.4.C.5.∠CAD,∠BAC,∠B.6.同位角:∠EAD与∠B;∠EAC与∠B;内错角:∠DAC 与∠C;∠EAC与∠C.同旁内角:∠DAB与∠B;∠BAC与∠B.7.略.9.21.相交,平行.2.不相交.3.一.4.C.5.略.6.略.7.正方形.8.略.9.31.65°,两直线平行,同位角相等,65°,对顶角相等.2.65°.3.B.4.C.5.130°.6.∠B,∠EFC,∠ADE.7.40°.9.4第1课时1.AC,BD,内错角相等,两直线平行.2.(1)EN,BD;(2)AB,CD.3.B.4.∠5=∠2=105°,∠5+∠1=180°.5.DE∥MN.由AB∥MN,DE∥AB.6.提示:由AD∥BC,得∠A+∠B=180°,∠C+∠B=180°,AB∥CD.7.(1)由∠3=∠B,知FD∥AB,知∠4=∠A;(2)由ED∥AC,知∠1=∠C,∠BED=∠A.第2课时1.4厘米.2.BD,BE.3.D.4.由∠B=∠C,知AB∥CD,故∠A=∠D.5.∠1=∠GMC=90°-∠2.6.(1)∠MDF=∠MBE,BE∥DF;(2)不是;它是AB和CD之间的距离.7.在∠B内画射线BF∥AE,则BF∥CD.∠ABF=120°,∠FBC=30°,∠C=180°-30°=150°. 第九章综合练习1.110°.2.AD∥BE,BD∥CE,AD∥BE.3.35°.提示:过点M画MN⊥AB,MN∥EG,∠HMN=∠E,∠HMN=90°-∠AMH.4.C.5.C.6.D.7.126°.8.∠1=115°.9.25°.10.∠3=80°,∠4=100°.11.因为AB∥CD,所以∠AEF=∠2,∠AEG=∠3,因为∠AEG=∠1+∠2,所以∠3=∠1+∠2.12.22°.提示:过点A画直线c∥a.检测站1.内错,同旁内,同位.2.180°.3.A.4.B.5.AB∥CD,AD∥BC.6.AD∥BC.DB平分∠ADC 代替第二个条件.10.12.5.3.C4.D.6.a=7,b=-9.7.设需要汽车x辆,共有y人外出参观,35x+15=y,45(x-1)=y.解得x=6,y=225..8.不是.10.2第1课时1.-35x+85,-53y+83.2.x-1=0.3.B.4.(1)x=-12,y=52;(2)s=-3,t=-3;(3)m=2,n=1.5.x=1,y=-1.6.提示:按丙的方法,35x=3,25y=4,得x=5,y=10.第2课时1.2.2.-11.3.C.4.B.5.(1)x=-1,y=-8;(2)x=5,y=272.6.令x+y=a,x-y=b,解得a=2,b=-1,又解得x=12,y=32.7.k=4.10.3第1课时1.4x+y=6,-5x+4y=-7.2.C.3.(1)x=1,y=1,z=1;(2)x=1,y=2,z=3.4.解三元一次方程组,用a表示解,得x=a,y=a+1,z=a-1,代入方程-x+2y+3z=6,得a=74.5.将z看做已知数,将x,y解出来.得x=1911-z,y=211-z.x+y+2z=1911-z+211-z+2z=2111.第2课时1.加减,①,②.2.B.3.(1)x=2,y=1,z=-1;(2)x=1,y=2,z=2.4.a=1,b=-1,c=1.10.4第1课时1.7x+3=y,8x-5=y.2.320,180.3.C.4.216,1095.90元,100元.6.5元,3元.7.提示:设小长方形宽x,长y,则5x=3y,y+2x=2y+2,得x=6,y=10.第2课时1.112x=0.5+112y,0.5x=(0.5+1)y.2.30,18.3.D.4.C.5.21张铁皮做盒身,28张铁皮做盒盖.6.长木 6.5尺,绳长11尺.7.(1)x+y=90,46%x+70%y=90×64%,x=22.5,y=67.5.(2)46%x+70%y=64%(x+y),x∶y=1∶3.*第3课时1.x+y+z=21,x+y-z=5,x-(z-y)=5.2.4,8,10.3.C.4.2,3,5.5.12,8,7.第十章综合练习1.43.2.-1.3.-112,5,(113,0).4.-14.5.x=1,y=2.6.y=23x-53.7.B.8.A.*9.D.10.(1)x=1,z=2;(2)x=6,y=24;(3)x=3,y=2;*(4)x=2,y=-3,z=-1.11.300棵,200棵.12.50人,220件.13.23.14.中型15辆,小型35辆.15.m=-275.16.30千米,70千米,42千米.17.平均每天1只大牛需用饲料20千克,小牛需用5千克.所以王大伯对大牛食量的估计是正确的,对小牛食量的估计偏高.18.火车速度22米/秒,列车长276米.19.(1)x=2,y=2,也是剩下一个方程的解.(2)不唯一.如x-y=0. 检测站1.-10.2.a=2,b=1.3.5千克,2千克.4.C.5.C.6.a=5.*7.x=1,y=2,z=3.8.牛值金2两,羊值金1两.9.男生270名,女生260名.11.11.108.2.x12.3.x4.4.D.5.A.6.1.5×108.7.(1)m9;(2)3×1011.8.(1)(a-b)5;(2)-(2x-3y)3n+1.9.0.10.0.11.2第1课时1.-8t3.2.116a4b4.3.-6x2.4.A.5.C.6.(1)28x3y3;(2)anbn;(3)-9a3x3.7.a2b.8.1.9.1102n.10.14位数.第2课时1.(1)x10;(2)-8x12.2.C.3.D.5.(1)19x2y4;(2)215;(3)x12;(4)64m12n6.6.(1)x6n+2;(2)-(a+b)7;(3)35n-2.7.提示:24<33,(24)25<(33)25.11.3第1课时1.12xy3.2.-6x2y3.3.B.4.D.5.(1)m5n2;(2)1.2×1020.6.(1)-14x5y4z2;(2)64x6.7.-730(a-b)8n-4.8.C.第2课时1.3x2-5x3.2.x2-y2.3.D.4.C.5.(1)-3x2y+2xy2-52xy;(2)x4+4x2+2x-4;(3)12b3-b2+6b.6.2m3n3-8m2n3.7.x=-12.8.10.11.4第1课时1.x2-7x+10.2.-6x2-xy+2y2.3.B.4.B.5.(1)-6m2+19m-15;(2)-12x3+14x2-4x;(3)-3y2-23y+108.6.4x2-100x+600.7.-x2-29x+32,1854.8.提示:该代数式的值恒为22.9.x=-110.b=12.第2课时1.x3+2x2-5x-6.2.2a3+5a2+a-3.3.B.4.C.5.(1)m3+2m2-1;(2)2a3-5a2b+8ab2-3b3;(3)-2x3-x2-7x+10.6.x3+x-5,值为-7.7.x=-12.8.0.11.51.4.2.m8.3.xn.4.D.5.B.6.16.7.(1)-a;(2)a3.8.(1)y-x;(2)(x+2y)6.9.2xy.11.6第1课时1.1.2.1.3.0.4.C.5.D.6.(1)64;(2)a.7.(1)3 129;(2)200.8.7.9.a≠0,m=n.第2课时1.181.2.-164.3.100.4.B.5.C.6.(1)200;(2)10 099;(3)100.7.10-1,10-2,10-3,10-4.8.a<b<d<c.9.x≠-13.10.1.第3课时1.1.2.1a4.3.a8.4.C.5.125.6.(1)10;(2)x5;(3)11 000 000;(4)1a7.7.13a.8.2-101. 第4课时1.1.2×10-4.2.0.000 002 76.3.2.5×10-9.4.D.5.D.6.(1)1.5×10-2;(2)2.1×103;(3)1.5×10-3.7.x=-7.8.1.572×104.9.花粉直径较大,是兔毛直径的7.2倍.第十一章综合练习1.106.2.x9.3.a.4.tn.5.(a+b)2.6.x5.7.a7.8.15x3y3z.9.2a3+2a2b+2ab.10.-2x2+3x-1.11.B.12.B.13.B.14.A.15.(1)x9;(2)-(a+b)4;(3)-a2b2+6ab+23a;(4)-6n+2;(5)2a3+8ab2-14a2b;(6)-3x2-23x+108;(7)6x2-13xy;(8)-x13y12.16.(1)-x,1;(2)5x-1,101.17.x=-1.18.(1)x=4;(2)n=2,m=4;(3)M=x2-6x+9.19.2ab+2b2.20.n(n+5)-(n-3)(n+2)=6(n+1).检测站1.(x+y)5.2.-6a3b3c.3.-2x3-4x2+2x.4.a6b6.5.C.6.B.7.B.8.1.24×10-6.9.299.10.(1)36x2-114x+90;(2)91x2-277x+210.11.长8、宽5.12.11.b2-9a2.2.x4-4.3.1681m2n2-49.4.5x+3y.5.C.6.B.7.(1)c2-9a2b2;(2)9y2-4x4;(3)a4-b4;(4)-5x2-9.8.(1)(300+3)(300-3)=90000-9=89 991;(2)1.9.(2n-1)(2n+1)=(2n)2-1.10.原式×3-23-2=332-232.12.2第1课时1.-2ab.2.a2+4ab+4b2.3.k=8.4.B.5.C.6.A.7.(1)9m2-32n+116;(2)x4-2x2+1;(3)a2+2ab+b2;(4)916s2+st+49t2.8.(a+b)2=4ab+(a-b)2.9.a2+2ab+b2=9,a2-2ab+b2=49.ab=14(9-49)=-10.a2+b2=9-2ab=29.第2课时1.4ab.2.a2+b2+c2+2ab-2ac-2bc.3.x2-y2+z2+2xz.4.B.5.B.6.A.7.(1)2a2b2-b4;(2)2y2+2x +5;(3)(100-3)(100-1)(100+1)(100+3)=(104-9)(104-1)=108-105+9=99 900 009.8.12.9.48π(a+1).10.8.12.31.2x2y.2.2a4-ab+6.3.a-b-2.4.D.5.C.6.(1)xy(x-y);(2)4ab(bc+4);(3)-2xy(1+2x-4x2);(4)-(3a+b)(a+3b);(5)2x(x-y)2(1-2x).7.1 999.8.14ax(2a-x)2.9.能.256-510=512-510=510(25-1)=24×510.12.4第1课时1.(x+2y)(x-2y).2.k=-140.3.D.4.C.5.(1)(6+x)(6-x);(2)(12y+1)2;(3)-(m-n)2;(4)(3+14a)(3-14a).6.(1)8 056;(2)90 000.7.(1)(1+a+b)(1-a-b);(2)(a-b+2)2.8.左端=[(a-b)2+(a+b)2+(a-b)2-(a+b)2]·[(a-b)2+(a+b)2-(a-b)2+(a+b)2]=4(a-b)2(a+b)2. 第2课时1.提出公因式,用公式法进行因式分解.2.x(x+1)(x-1).3.(a-1)(x+y)(x-y).4.D.5.C.6.(1)m(m2+1)(m+1)(m-1).(2)2x3(3y+1)(3y-1).(3)(x+2)2(x-2)2.(4)(x+1)4.7.原式=12·32·23·43·34·54…910·1110=1120.8.2 0122(2 0112-1)+(2 0132-1)=2 0122(2 011+1)(2 011-1)+(2 013+1)(2 013-1)=2 01224 024=1 006.第十二章综合练习1.9x2-y2.2.25-4b2.3.25a2-20ab+4b2.4.14m4+2m2n+4n2.5.-2m.6.x-y+2.7.(xy+2z)(xy-2z).8.23m-0.1n.9.C.10.C.11.C.12.(1)4x2+4xy+y2-25z2;(2)-280y2+1295;(3)116x4-181y4.13.(1)2a3x2(2+a)(2-a);(2)(x-y)(a+2y)(a-2y);(3)-(a-b)2(a+b)2;(4)(x2+2x+7)(x-1)2.14.(1)31×(573+427)×(573-427)=4 526 000;(2)76900;(3)10099.15.πR2-4πr2=π(R+2r)(R-2r)=3.14×10×5.6=175.8厘米.16.(n+7)2-(n-5)2=(n+7+n-5)(n+7-n+5)=24(n+1).17.x=141.18.x=2,y=-3,16.19.(2n+1) 2-(2n-1)2=(2n+1+2n-1)(2n+1-2n+1)=8n.检测站1.2b-3a.2.20或-20.3.5-a2.4.B.5.B.6.(1)x8-y8;(2)-16x2.7.(1)x2y4(xy2+z)(xy2-z);(2)(m-n+4mn)(m-n-4m n);(3)12x(2a-1)2.8.原式=(x+1)(2x-3)x.当x=12时,原式=-32.9.324-1=(312+1)(36+1)(33+1)(33-1)=28×(312+1)(36+1)(33-1).10.原式=12(a-b)2=2.13.1第1课时1.(1)√;(2);(3)√;(4)√;(5).2.△ABC,△BDC,△BEC;△ABE,△DBE.3.14或16.5.(1)∠A,∠ACD,∠ADC;∠A,∠ACB,∠B;(2)△DAE,△DAC,△BAC;△ADC,△B DC;(3)△BDC;△ACD,△EDC.不是.6.当四点中任意三点不共线时,组成4个三角形;当四点中有三点共线时,组成3个三角形;若该四点共线时,不能组成三角形.第2课时1.3.2.105厘米或200厘米.3.B.4.B.5.9种:4,5,6,7,8,9,10,11,12(单位:厘米).6.4厘米,6厘米.7.8或10.8.8种:1,4,4;2,3,4;2,4,4;2,4,5;3,4,3;3,4,4;3,4,5;3,4,6.第3课时1.ACE,BCD.2.(1)AE,4厘米;(2)DAC,12;(3)AF.3.C.4.C.5.△ABC,△ABD,△ADC,△ABE,△AEC,△ADE.6.相等.∠1=∠DAC=∠DAE=∠2.∠EAF=∠EDF.7.(1)△BCD,△OCD;(2)△ABC,△ABO和△BOC有一条高重合;△BCD,△OCD和△BOC有一条高重合.第4课时1.70°.2.45°.提示:∠APD=∠A2+∠C2.3.C.4.C.5.(1)125°;(2)35°.6.70°.7.50°.8.(1)105°;(2)115°;(3)90°+12n°.提示:延长BO交AC于D,∠BOC=∠BDC+12∠C=∠A+12∠B+12∠C=90°+12∠A.13.2第1课时1.n-3,n-2.2.5.3.B.4.D.5.五角星.6.8个;△ABC,△ABD,△BCD,△ACD,△OAB,△OAC,△OBD,△OCD.7.6.8.60厘米. 第2课时1.1 440°,360°,144°.2.8.3.12,150°.4.C.5.D.7.36°.8.18,130°.13.3第1课时1..2.O,2厘米.3.圆外,圆内,6.4.弦:AB,BC,CD,AD,BD,AC;半圆:ABC,ADC;优弧:BAD,CAD,BAC,ABD,ACB;劣弧:AB,BC,CD,AD,BCD.6.列方程:2π(80+10)8=2π(80+10+x)10,x=22.5(厘米).第2课时1..2.a2(1-π4).3.3.4.一样远.5.6π.第十三章综合练习1.30°,60°.2.95°.3.钝角.4.∠A=40°,∠C=140°.5.20°.6.M在圆内部.7.B.8.D.9.B.10.D.11.36°,72°,72°.12.(1)y=90-x2;(2)y=45;(3)60.13.8,8,11或10,10,7.14.(1)将平面分为5部分:小圆内、小圆上、圆环内、大圆上、大圆外.(2)条件分别是:OP<5,OP=5,5<OP<8,OP=8,OP>8.15.延长AP到BC上点D,利用三角形外角性质,可推出∠APB>∠C.16.3圈.检测站1.5,4.2.10个.3.2,1.4.六.5.B.6.C.7.3个.8.∠ADB=80°,∠DAE=10°.9.(1)∠AEF>∠D>∠A(由外角定理);(2)∠AFD=∠ACD+∠D=∠A+∠B+∠D.综合与实践第1课时1.条件是:多边形每条边都是该多边形与相邻多边形的公共边,每个顶点处各内角之和是360°.2.正六边形.3.B.4.D.6.6,3,3.第2课时1.正三角形2.正方形.3.C.4.D.5.(1)3,2.6.3n,2n+1.14.11.2,5.2.C.3.储蓄所,诊所(6,9),商店(7,3),学校(1,1).4.5排3列.5.23.6.(1)(C,4),(A,4),(0,3),(0,1),(A,0),(C,0),(D,1),(D,3);(2)(E,3)→(G,4)→(H,2)→(F,3)→(G,1)(答案不唯一).14.21.四,5,2.2.x轴或y轴上.3.C.4.D.5.在第二、四象限的角平分线上,如(1,-1).6.(2,0),(7,0);(0,2),(0,4).7.第二象限,(2,0),(-2,1);第一象限,(2,2),(0,3).14.3第1课时1.B(3,3),D(-2,-2).2.C.3.小房子.4.42.5.(32,3),(64,0).第2课时1.(-2,-3),(3,-4),x′=x-2,y′=y-3.2.A.3.A(0,0),B(5,1),C(0,-3),D(-2,-2).4.(1)(0,0),(0,1.5),(3.8,0),(3.8,1.5),(1.7,0.5);(2)(-3.8,-1.5),(-3.8,0),(0,-1.5),(0,0),(-2.1,-1).5.以(1,1)为原点O′,x′轴∥x 轴,y′轴∥y轴,分别以向右、向上为正向,单位长度不变,建立直角坐标系.A,B,C坐标分别是A(-2,1),B(2,-2),C(-1,2).14.41.北偏西45°,1.5.2.A.3.略.4.略.第十四章综合练习1.(9,8).2.一.3.2.4.6.5.D.6.B.7.略.8.二,四,三,一,x轴,y轴.9.(2,6)或(2,-6).10.x轴上,(0,5),(5,0).检测站1.(-2,-2).2.(1)3;(2)-2;(3)四.3.B.5.“国”字.6.P,Q,R分别在长方形内部、边界上、外部.总复习题1.45°.2.∠DCE=∠A.3.12.4.-2 012.5.125°.6.D.7.D.8.A.9.C.10.75°.11.第二象限.12.24.5吨.13.(1)22x-23,21;(2)-2y2+19y,9.14.12.15.y=-12x. 16.购一等门票3张、三等门票33张,或购二等门票7张、三等门票29张.提示:分三种情况分别列二元一次方程组,其中购一等门票、二等门票不可行.17.玩具走的是正12边形,共走了12米.总检测站1.44°.2.(1)AB∥DF;(2)ED∥AC;(3)ED∥AC.3.x=2,y=-5.4.a=-73,b=53.5.-y2-7x.6.-7.7.18°.8.C.9.C.10.A.11.B.12.(1)∠DOC=∠B=∠E;(2)不一定;还可能互补.13.4.14.3516x3-418x2-32x-12.15.(a+1)2(a-1)2.*16.7,5,6.17.12边形.18.分两种情况讨论:D点在B,C之间和D点在B,C 之外.分别由面积求出高,建立直角坐标系,以垂足为原点,以直线BC 为x轴,以高所在直线为y轴.。
青岛版七年级下册数学配套66页答案
青岛版七年级下册数学配套66页答案1、在0°~360°范围中,与868°终边相同的角是()[单选题] *148°(正确答案)508°-220°320°2、43.已知a+b=﹣3,a﹣b=1,则a2﹣b2的值是()[单选题] *A.8B.3C.﹣3(正确答案)D.103、14.在防治新型冠状病毒的例行体温检查中,检查人员将高出37℃的部分记作正数,将低于37℃的部分记作负数,体温正好是37℃时记作“0”。
记录一被测人员在一周内的体温测量结果分别为+1,-3,-5,+1,-6,+2,-4,那么,该被测者这一周中测量体温的平均值是(??)[单选题] *A.1℃B.31℃C.8℃(正确答案)D.69℃4、13.不等式x+3>5的解集为()[单选题] *A. x>1B. x>2(正确答案)C. x>3D. x>45、2.在+3,﹣4,﹣8,﹣,0,90中,分数共有()[单选题] *A.1个B.2个C.3个(正确答案)D.4个6、14.不等式|3-x|<2 的解集为()[单选题] *A. x>5或x<1B.1<x<5(正确答案)C. -5<x<-1D.x>17、4.已知第二象限的点P(-4,1),那么点P到x轴的距离为( ) [单选题] *A.1(正确答案)B.4C.-3D.38、15.如图所示,下列数轴的画法正确的是()[单选题] *A.B.C.(正确答案)D.9、8.一个面积为120的矩形苗圃,它的长比宽多2米,苗圃长是()[单选题] *A 10B 12(正确答案)C 13D 1410、10. 已知方程组的解为,则、对应的值分别为()[单选题] *A、1,2B、1,5C、5,1(正确答案)D、2,411、9.(2020·课标Ⅱ)已知集合A={x||x|<3,x∈Z},B={x||x|>1,x∈Z},则A∩B=( ) [单选题] *A.?B.{-3,-2,2,3}C.{-2,0,2}D.{-2,2}(正确答案)12、17. 的计算结果为()[单选题] *A.-7B.7(正确答案)C.49D.1413、27.下列计算正确的是()[单选题] *A.(﹣a3)2=a6(正确答案)B.3a+2b=5abC.a6÷a3=a2D.(a+b)2=a2+b214、44、如图,AC、BD相交于点E,AB=DC,AC=DB,则图中有全等三角形()[单选题] *A.1对B.2对C.3对(正确答案)D.4对15、下列计算正确的是( ) [单选题] *A. 9a3·2a2=18a?(正确答案)B. 2x?·3x?=5x?C. 3 x3·4x3=12x3D. 3y3·5y3=15y?16、设函数在闭区间[0,1]上连续,在开区间(0,1)上可导,且(x)>0 则()[单选题] *A、f(0)<0B、f(0)<1C、f(1)>f(0)D、f(1)<f(0)(正确答案)17、若a=-3 ?2,b=-3?2,c=(-)?2,d=(-)?,则( ) [单选题] *A. a<d<c<bB. b<a<d<cC. a<d<c<bD. a<b<d<c(正确答案)18、15.下列数中,是无理数的为()[单选题] *A.-3.14B.6/11C.√3(正确答案)D.019、x3可以表示为()[单选题] *A. 3xB. x+x+xC. x·x·x(正确答案)D. x+320、两个有理数相加,如果和小于每一个加数,那么[单选题] *A.这两个加数同为负数(正确答案)B.这两个加数同为正数C.这两个加数中有一个负数,一个正数D.这两个加数中有一个为零21、f(x)=-2x+5在x=1处的函数值为()[单选题] *A、-3B、-4C、5D、3(正确答案)22、17.已知的x∈R那么x2(x平方)>1是x>1的()[单选题] * A.充分不必要条件B.必要不充分条件(正确答案)C.充分必要条件D.既不充分也不必要条件23、13.下列说法中,正确的为().[单选题] *A.一个数不是正数就是负数B. 0是最小的数C正数都比0大(正确答案)D. -a是负数24、20.水文观测中,常遇到水位上升或下降的问题.我们规定:水位上升为正,水位下降为负;几天后为正,几天前为负.如果水位每天上升3cm,今天的水位为0cm,那么2天前的水位用算式表示正确的是()[单选题] *A.(+3)×(+2)B.(+3)×(﹣2)(正确答案)C.(﹣3)×(+2)D.(﹣3)×(﹣2)25、为筹备班级联欢会,班长对全班同学爱吃哪几种水果做了民意调查,然后决定买什么水果,最值得关注的应该是统计调查数据的( ) [单选题] *A.中位数B.平均数C.众数(正确答案)D.方差26、下列说法正确的是[单选题] *A.带“+”号和带“-”号的数互为相反数B.数轴上原点两侧的两个点表示的数是相反数C.和一个点距离相等的两个点所表示的数一定互为相反数D.一个数前面添上“-”号即为原数的相反数(正确答案)27、45、下列说法错误的是()[单选题] *A.三角形的高、中线、角平分线都是线段B.三角形的三条中线都在三角形内部C.锐角三角形的三条高一定交于同一点D.三角形的三条高、三条中线、三条角平分线都交于同一点(正确答案)28、8.修建高速公路时,经常把弯曲的公路改成直道,从而缩短路程,其道理用数学知识解释正确的是()[单选题] *A.线段可以比较大小B.线段有两个端点C.两点之间,线段最短(正确答案)D.过两点有且只有一条直线29、22、在平面直角坐标系中,已知点P,在轴上有点Q,它到点P的距离等于3,那么点Q的坐标是()[单选题] *(0,3)(0,5)(0,-1)(0,5)或(0,-1) (正确答案)30、2.如图,BC=AB,D为AC的中点,DC=3cm,则AB的长是()[单选题] *A.4cm(正确答案) B.CmC.5cmD.cm。
青岛版七年级下册数学第9章 平行线含答案
青岛版七年级下册数学第9章平行线含答案一、单选题(共15题,共计45分)1、如图,已知,,,则的度数为()A. B. C. D.2、如图,有以下四个条件:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5。
其中不能判定AB∥CD的是( )A.①B.②C.③D.④3、如图在中,,分别是、上的点,作,,垂足分别是,,,,下面三个结论:①;②;③≌.其中正确的是().A.①②B.②③C.①③D.①②③4、如图,下列推理及括号中所注明的推理依据错误的是()A. (内错角相等,两直线平行)B. (两直线平行,内错角相等)C. (同旁内角互补,两直线平行)D. (两直线平行,同位角相等)5、如图,AB∥CD,∠D=42°,∠CBA=64°,则∠CBD的度数是()A.42°B.64°C.74°D.106°6、已知锐角∠AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作弧PQ,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于弧PQ点M,N;(3)连接OM,MN. 根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠CODB.若OM=MN,则∠AOB=20°C.MN∥CDD.MN=3CD7、已知直线m∥n,将一块含30°角的直角三角板ABC,按如图所示方式放置,其中A,B两点分别落在直线m、n上,若∠1=25°,则∠2的度数是( )A.25°B.30°C.35°D.55°8、如图,直线,直线,若,则()A. B. C. D.9、如图,一块三角板的两个顶点放在直尺的对边上,如果∠1=28°,那么∠2的度数是()A.28°B.56°C.62°D.52°10、如图,三角板的直角顶点落在矩形纸片的一边上,若∠1=350,则∠2的度数是()A.35 0B.45 0C.55 0D.65 011、在同一平面内,如果两条直线被第三条直线所截,那么()A.同位角相等B.内错角相等C.不能确定三种角的关系D.同旁内角互补12、如图,直线∥∥,若AB=3,AC=4,则的值是( )A. B. C. D.13、如图,直线∥,,,则()A. B. C. D.14、如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于()A.35°B.45°C.55°D.65°15、如图,已知AB∥CD,∠1=56°,则∠2的度数是()A.34°B.56°C.65°D.124°二、填空题(共10题,共计30分)16、如图,在△ABC中,∠ABC和∠ACB的平分线交于点D,过点D作EF∥BC交AB于E,交AC于F。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学练习册七年级下册参考答案8.11.(1)∠A,∠C;(2)∠ABC,∠ABD,∠DBC,∠ADB,∠BDC;(3)3个,∠ABD,∠ABC,∠DBC.2.B.3.(1)∠AEB,∠DAE,∠BEC,∠ADB;(2)∠C,∠D.4.3个角;6个角;10个角.5.9时12分或21时12分.8.21.(1)42°;(2)不变.2.C.3.D.5.46°.提示:设∠COE=x°,则x-8=130-2x,x=46.6.(1)45°;(2)不变;提示:90+2x2-x=45;(3)不变.提示:90-2y2+y=45.8.3第1课时1.(1)42°20′24″;(2)56.35.2.(1)61°38′10″;(2)32.6.3.C.4.C.5.(1)93°12′;(2)47°31′48″;(3)12°9′36″;(4)33°7′12″.6.(1)112°27′;(2)51°55′;(3)125°37′30″.7.0.5°,6°.8.(1)15°;(2)172.5°.9.40分钟.第2课时1.153°.2.53°17′45″.3.C.4.C.5.63°.6.(1)相等;(2)180°.7.60°.8.41.∠3,∠AOD.2.121°.3.C.4.B.5.∠3=25°30′,∠2=45°.6.∠2=63°30′,∠3=53°.7.(1)2对;(2)6对;(3)12对.8.51.70°.2.45°.3.D.4.C.5.132°.6.135°.7.60°,30°.第八章综合练习1.130°.2.36°16′30″.3.50°.4.(1)54°34′,125°26′;(2)α-90°.5.47.6.D.7.A.8.C.9.D.10.138°.11.125°.12.∠AOC+∠BOC=2(∠DOC+∠COE)=2×90°=180°,A,O,B共线.13.设∠BOE=x°,∠EOC=2x°,∠AOB=180-3x,∠DOB=72-x.得方程(72-x)×2=180-3x,解得x=36.即∠EOC=72°.14.∠BOC+∠COD+∠AOD=270°,∠EOF=170°,∠AOE+∠BOF=190°-90°=100°.∠COF+∠DOE=100°.又∠EOF=170°,∠COD=170°-100°=70°.检测站1.45°.2.98.505°.3.∠AOB,∠BOC.∠AOB,∠BOD.4.C.5.D.6.∠BOD,∠FOE,∠BOC;∠BOF.7.45°.8.97.5°.9.11.∠END.2.DE,AB,BC;AB,BC,DE.3.B.4.C.5.∠CAD,∠BAC,∠B.6.同位角:∠EAD与∠B;∠EAC与∠B;内错角:∠DAC与∠C;∠EAC与∠C.同旁内角:∠DAB与∠B;∠BAC与∠B.7.略.9.21.相交,平行.2.不相交.3.一.4.C.5.略.6.略.7.正方形.8.略.9.31.65°,两直线平行,同位角相等,65°,对顶角相等.2.65°.3.B.4.C.5.130°.6.∠B,∠EFC,∠ADE.7.40°.9.4第1课时1.AC,BD,内错角相等,两直线平行.2.(1)EN,BD;(2)AB,CD.3.B.4.∠5=∠2=105°,∠5+∠1=180°.5.DE∥MN.由AB∥MN,DE∥AB.6.提示:由AD∥BC,得∠A+∠B=180°,∠C+∠B=180°,AB∥CD.7.(1)由∠3=∠B,知FD∥AB,知∠4=∠A;(2)由ED∥AC,知∠1=∠C,∠BED=∠A.第2课时1.4厘米.2.BD,BE.3.D.4.由∠B=∠C,知AB∥CD,故∠A=∠D.5.∠1=∠GMC=90°-∠2.6.(1)∠MDF=∠MBE,BE∥DF;(2)不是;它是AB和CD之间的距离.7.在∠B内画射线BF∥AE,则BF∥CD.∠ABF=120°,∠FBC=30°,∠C=180°-30°=150°.第九章综合练习1.110°.2.AD∥BE,BD∥CE,AD∥BE.3.35°.提示:过点M画MN⊥AB,MN∥EG,∠HMN=∠E,∠HMN=90°-∠AMH.4.C.5.C.6.D.7.126°.8.∠1=115°.9.25°.10.∠3=80°,∠4=100°.11.因为AB∥CD,所以∠AEF=∠2,∠AEG=∠3,因为∠AEG=∠1+∠2,所以∠3=∠1+∠2.12.22°.提示:过点A画直线c∥a.检测站1.内错,同旁内,同位.2.180°.3.A.4.B.5.AB∥CD,AD∥BC.6.AD∥BC.DB平分∠ADC代替第二个条件.10.12.5.3.C4.D.6.a=7,b=-9.7.设需要汽车x辆,共有y人外出参观,35x+15=y,45(x-1)=y.解得x=6,y=225..8.不是.10.2第1课时1.-35x+85,-53y+83.2.x-1=0.3.B.4.(1)x=-12,y=52;(2)s=-3,t=-3;(3)m=2,n=1.5.x=1,y=-1.6.提示:按丙的方法,35x=3,25y=4,得x=5,y=10.第2课时1.2.2.-11.3.C.4.B.5.(1)x=-1,y=-8;(2)x=5,y=272.6.令x+y=a,x-y=b,解得a=2,b=-1,又解得x=12,y=32.7.k=4.10.3第1课时1.4x+y=6,-5x+4y=-7.2.C.3.(1)x=1,y=1,z=1;(2)x=1,y=2,z=3.4.解三元一次方程组,用a表示解,得x=a,y=a+1,z=a-1,代入方程-x+2y+3z=6,得a=74.5.将z看做已知数,将x,y解出来.得x=1911-z,y=211-z.x+y+2z=1911-z+211-z+2z=2111.第2课时1.加减,①,②.2.B.3.(1)x=2,y=1,z=-1;(2)x=1,y=2,z=2.4.a=1,b=-1,c=1.10.4第1课时1.7x+3=y,8x-5=y.2.320,180.3.C.4.216,1095.90元,100元.6.5元,3元.7.提示:设小长方形宽x,长y,则5x=3y,y+2x=2y+2,得x=6,y=10.第2课时1.112x=0.5+112y,0.5x=(0.5+1)y.2.30,18.3.D.4.C.5.21张铁皮做盒身,28张铁皮做盒盖.6.长木6.5尺,绳长11尺.7.(1)x+y=90,46%x+70%y=90×64%,x=22.5,y=67.5.(2)46%x+70%y=64%(x+y),x∶y=1∶3.*第3课时1.x+y+z=21,x+y-z=5,x-(z-y)=5.2.4,8,10.3.C.4.2,3,5.5.12,8,7.第十章综合练习1.43.2.-1.3.-112,5,(113,0).4.-14.5.x=1,y=2.6.y=23x-53.7.B.8.A.*9.D.10.(1)x=1,z=2;(2)x=6,y=24;(3)x=3,y=2;*(4)x=2,y=-3,z=-1.11.300棵,200棵.12.50人,220件.13.23.14.中型15辆,小型35辆.15.m=-275.16.30千米,70千米,42千米.17.平均每天1只大牛需用饲料20千克,小牛需用5千克.所以王大伯对大牛食量的估计是正确的,对小牛食量的估计偏高.18.火车速度22米/秒,列车长276米.19.(1)x=2,y=2,也是剩下一个方程的解.(2)不唯一.如x-y=0. 检测站1.-10.2.a=2,b=1.3.5千克,2千克.4.C.5.C.6.a=5.*7.x=1,y=2,z=3.8.牛值金2两,羊值金1两.9.男生270名,女生260名. 11.11.108.2.x12.3.x4.4.D.5.A.6.1.5×108.7.(1)m9;(2)3×1011.8.(1)(a-b)5;(2)-(2x-3y)3n+1.9.0.10.0.11.2第1课时1.-8t3.2.116a4b4.3.-6x2.4.A.5.C.6.(1)28x3y3;(2)anbn;(3)-9a3x3.7.a2b.8.1.9.1102n.10.14位数.第2课时1.(1)x10;(2)-8x12.2.C.3.D.5.(1)19x2y4;(2)215;(3)x12;(4)64m12n6.6.(1)x6n+2;(2)-(a+b)7;(3)35n-2.7.提示:24<33,(24)25<(33)25.11.3第1课时1.12xy3.2.-6x2y3.3.B.4.D.5.(1)m5n2;(2)1.2×1020.6.(1)-14x5y4z2;(2)64x6.7.-730(a-b)8n-4.8.C.第2课时1.3x2-5x3.2.x2-y2.3.D.4.C.5.(1)-3x2y+2xy2-52xy;(2)x4+4x2+2x-4;(3)12b3-b2+6b.6.2m3n3-8m2n3.7.x=-12.8.10.11.4第1课时1.x2-7x+10.2.-6x2-xy+2y2.3.B.4.B.5.(1)-6m2+19m-15;(2)-12x3+14x2-4x;(3)-3y2-23y+108.6.4x2-100x+600.7.-x2-29x+32,1854.8.提示:该代数式的值恒为22. 9.x=-110.b=12.第2课时1.x3+2x2-5x-6.2.2a3+5a2+a-3.3.B.4.C.5.(1)m3+2m2-1;(2)2a3-5a2b+8ab2-3b3;(3)-2x3-x2-7x+10.6.x3+x-5,值为-7.7.x=-12.8.0.11.51.4.2.m8.3.xn.4.D.5.B.6.16.7.(1)-a;(2)a3.8.(1)y-x;(2)(x+2y)6.9.2xy.11.6第1课时1.1.2.1.3.0.4.C.5.D.6.(1)64;(2)a.7.(1)3 129;(2)200.8.7.9.a≠0,m=n.第2课时1.181.2.-164.3.100.4.B.5.C.6.(1)200;(2)10 099;(3)100.7.10-1,10-2,10-3,10-4.8.a<b<d<c.9.x≠-13.10.1.第3课时1.1.2.1a4.3.a8.4.C.5.125.6.(1)10;(2)x5;(3)11 000 000;(4)1a7.7.13a.8.2-101.第4课时1.1.2×10-4.2.0.000 002 76.3.2.5×10-9.4.D.5.D.6.(1)1.5×10-2;(2)2.1×103;(3)1.5×10-3.7.x=-7.8.1.572×104.9.花粉直径较大,是兔毛直径的7.2倍.第十一章综合练习1.106.2.x9.3.a.4.tn.5.(a+b)2.6.x5.7.a7.8.15x3y3z.9.2a3+2a2b+2ab.10.-2x2+3x-1.11.B.12.B.13.B.14.A.15.(1)x9;(2)-(a+b)4;(3)-a2b2+6ab+23a;(4)-6n+2;(5)2a3+8ab2-14a2b;(6)-3x2-23x+108;(7)6x2-13xy;(8)-x13y12.16.(1)-x,1;(2)5x-1,101.17.x=-1.18.(1)x=4;(2)n=2,m=4;(3)M=x2-6x+9.19.2ab+2b2.20.n(n+5)-(n-3)(n+2)=6(n+1).检测站1.(x+y)5.2.-6a3b3c.3.-2x3-4x2+2x.4.a6b6.5.C.6.B.7.B.8.1.24×10-6.9.299.10.(1)36x2-114x+90;(2)91x2-277x+210.11.长8、宽5.12.11.b2-9a2.2.x4-4.3.1681m2n2-49.4.5x+3y.5.C.6.B.7.(1)c2-9a2b2;(2)9y2-4x4;(3)a4-b4;(4)-5x2-9.8.(1)(300+3)(300-3)=90000-9=89 991;(2)1.9.(2n-1)(2n+1)=(2n)2-1.10.原式×3-23-2=332-232.12.2第1课时1.-2ab.2.a2+4ab+4b2.3.k=8.4.B.5.C.6.A.7.(1)9m2-32n+116;(2)x4-2x2+1;(3)a2+2ab+b2;(4)916s2+st+49t2.8.(a+b)2=4ab+(a-b)2.9.a2+2ab+b2=9,a2-2ab+b2=49.ab=14(9-49)=-10.a2+b2=9-2ab=29.第2课时1.4ab.2.a2+b2+c2+2ab-2ac-2bc.3.x2-y2+z2+2xz.4.B.5.B.6.A.7.(1)2a2b2-b4;(2)2y2+2x+ 5;(3)(100-3)(100-1)(100+1)(100+3)=(104-9)(104-1)=108-105+9=99 900 009.8.12.9.48π(a+1).10.8.12.31.2x2y.2.2a4-ab+6.3.a-b-2.4.D.5.C.6.(1)xy(x-y);(2)4ab(bc+4);(3)-2xy(1+2x-4x2);(4 )-(3a+b)(a+3b);(5)2x(x-y)2(1-2x).7.1999.8.14ax(2a-x)2.9.能.256-510=512-510=510(25-1)=24×510.12.4第1课时1.(x+2y)(x-2y).2.k=-140.3.D.4.C.5.(1)(6+x)(6-x);(2)(12y+1)2;(3)-(m-n)2;(4)(3+14a)(3-14a).6.(1)8 056;(2)90 000.7.(1)(1+a+b)(1-a-b);(2)(a-b+2)2.8.左端=[(a-b)2+(a+b)2+(a-b)2-(a+b)2]·[(a-b)2+(a+b)2-(a-b)2+(a+b)2]=4(a-b)2(a+b)2.第2课时1.提出公因式,用公式法进行因式分解.2.x(x+1)(x-1).3.(a-1)(x+y)(x-y).4.D.5.C.6.(1)m(m2+1)(m+1)(m-1).(2)2x3(3y+1)(3y-1).(3)(x+2)2(x-2)2.(4)(x+1)4.7.原式=12·32·23·43·34·54…910·1110=1120.8.2 0122(2 0112-1)+(2 0132-1)=2 0122(2 011+1)(2 011-1)+(2 013+1)(2 013-1)=2 01224 024=1 006.第十二章综合练习1.9x2-y2.2.25-4b2.3.25a2-20ab+4b2.4.14m4+2m2n+4n2.5.-2m.6.x-y+2.7.(xy+2z)(xy-2z).8.23m-0.1n.9.C.10.C.11.C.12.(1)4x2+4xy+y2-25z2;(2)-280y2+1295;(3)116x4-181y4.13.(1)2a3x2(2+a)(2-a);(2)(x-y)(a+2y)(a-2y);(3)-(a-b)2(a+b)2;( 4)(x2+2x+7)(x-1)2.14.(1)31×(573+427)×(573-427)=4 526 000;(2)76 900;(3)10099.15.πR2-4πr2=π(R+2r)(R-2r)=3.14×10× 5.6=175.8厘米.16.(n+7)2-(n-5)2=(n+7+n-5)(n+7-n+5)=24(n+1).17.x=141.18.x=2,y=-3,16.19.(2n+1) 2-(2n-1)2=(2n+1+2n-1)(2n+1-2n+1)=8n.检测站1.2b-3a.2.20或-20.3.5-a2.4.B.5.B.6.(1)x8-y8;(2)-16x2.7.(1)x2y4(xy2+z)(xy2-z);(2)(m-n+4mn)(m-n-4mn);(3)12x(2a-1)2.8.原式=(x+1)(2x-3)x.当x=12时,原式=-32.9.324-1=(312+1)(36+1)(33+1)(33-1)=28×(312+1)(36+1)(33-1).10.原式=12(a-b)2=2.13.1第1课时1.(1)√;(2);(3)√;(4)√;(5).2.△ABC,△BDC,△BEC;△ABE,△DBE.3.14或16. 5.(1)∠A,∠ACD,∠ADC;∠A,∠ACB,∠B;(2)△DAE,△DAC,△BAC;△ADC,△BDC;(3)△BDC;△ACD,△EDC.不是.6.当四点中任意三点不共线时,组成4个三角形;当四点中有三点共线时,组成3个三角形;若该四点共线时,不能组成三角形.第2课时1.3.2.105厘米或200厘米.3.B.4.B.5.9种:4,5,6,7,8,9,10,11,12(单位:厘米).6.4厘米,6厘米.7.8或10.8.8种:1,4,4;2,3,4;2,4,4;2,4,5;3,4,3;3,4,4;3,4,5;3,4,6.第3课时1.ACE,BCD.2.(1)AE,4厘米;(2)DAC,12;(3)AF.3.C.4.C.5.△ABC,△ABD,△ADC,△ABE,△AEC,△ADE.6.相等.∠1=∠DAC=∠DAE=∠2.∠EAF=∠EDF.7.(1)△BCD,△OCD;(2)△ABC,△ABO和△BOC有一条高重合;△BCD,△OCD 和△BOC有一条高重合.第4课时1.70°.2.45°.提示:∠APD=∠A2+∠C2.3.C.4.C.5.(1)125°;(2)35°.6.70°.7.50°.8.(1)105°;(2)115°;(3)90°+12n°.提示:延长BO交AC于D,∠BOC=∠BDC+12∠C=∠A+12∠B+12∠C=90°+12∠A.13.2第1课时1.n-3,n-2.2.5.3.B.4.D.5.五角星.6.8个;△ABC,△ABD,△BCD,△ACD,△OAB,△OAC,△OBD,△OCD.7.6.8.60厘米.第2课时1.1 440°,360°,144°.2.8.3.12,150°.4.C.5.D.7.36°.8.18,130°.13.3第1课时1.√;;√;√;√;.2.O,2厘米.3.圆外,圆内,6.4.弦:AB,BC,CD,AD,BD,AC;半圆:ABC,ADC;优弧:BAD,CAD,BAC,ABD,ACB;劣弧:AB,BC,CD,AD,BCD.6.列方程:2π(80+10)8=2π(80+10+x)10,x=22.5(厘米).第2课时1.;.2.a2(1-π4).3.3.4.一样远.5.6π.第十三章综合练习1.30°,60°.2.95°.3.钝角.4.∠A=40°,∠C=140°.5.20°.6.M在圆内部.7.B.8.D.9.B.10.D.11.36°,72°,72°.12.(1)y=90-x2;(2)y=45;(3)60.13.8,8,11或10,10,7.14.(1)将平面分为5部分:小圆内、小圆上、圆环内、大圆上、大圆外.(2)条件分别是:OP<5,OP=5,5<OP<8,OP=8,OP>8.15.延长AP到BC上点D,利用三角形外角性质,可推出∠APB>∠C.16.3圈.检测站1.5,4.2.10个.3.2,1.4.六.5.B.6.C.7.3个.8.∠ADB=80°,∠DAE=10°.9.(1)∠AEF>∠D>∠A(由外角定理);(2)∠AFD=∠ACD+∠D=∠A+∠B+∠D.综合与实践第1课时1.条件是:多边形每条边都是该多边形与相邻多边形的公共边,每个顶点处各内角之和是360°.2.正六边形.3.B.4.D.6.6,3,3.第2课时1.正三角形2.正方形.3.C.4.D.5.(1)3,2.6.3n,2n+1.14.11.2,5.2.C.3.储蓄所,诊所(6,9),商店(7,3),学校(1,1).4.5排3列.5.23.6.(1)(C,4),(A,4),(0,3),(0,1),(A,0),(C,0),(D,1),(D,3);(2)(E,3)→(G,4)→(H,2)→(F,3)→(G,1)(答案不唯一).14.21.四,5,2.2.x轴或y轴上.3.C.4.D.5.在第二、四象限的角平分线上,如(1,-1).6.(2,0),(7,0);(0,2),(0,4).7.第二象限,(2,0),(-2,1);第一象限,(2,2),(0,3).14.3第1课时1.B(3,3),D(-2,-2).2.C.3.小房子.4.42.5.(32,3),(64,0).第2课时1.(-2,-3),(3,-4),x′=x-2,y′=y-3.2.A.3.A(0,0),B(5,1),C(0,-3),D(-2,-2).4.(1)(0,0),(0,1.5),(3.8,0),(3.8,1.5),( 1.7,0.5);(2)(-3.8,-1.5),(-3.8,0),(0,-1.5),(0,0),(-2.1,-1).5.以(1,1)为原点O′,x′轴∥x轴,y′轴∥y轴,分别以向右、向上为正向,单位长度不变,建立直角坐标系.A,B,C坐标分别是A(-2,1),B(2,-2),C(-1,2).14.41.北偏西45°,1.5.2.A.3.略.4.略.第十四章综合练习1.(9,8).2.一.3.2.4.6.5.D.6.B.7.略.8.二,四,三,一,x轴,y轴.9.(2,6)或(2,-6).10.x轴上,(0,5),(5,0).检测站1.(-2,-2).2.(1)3;(2)-2;(3)四.3.B.5.“国”字.6.P,Q,R分别在长方形内部、边界上、外部.总复习题1.45°.2.∠DCE=∠A.3.12.4.-2 012.5.125°.6.D.7.D.8.A.9.C.10.75°.11.第二象限.12.24.5吨.13.(1)22x-23,21;(2)-2y2+19y,9.14.12.15.y=-12x.16.购一等门票3张、三等门票33张,或购二等门票7张、三等门票29张.提示:分三种情况分别列二元一次方程组,其中购一等门票、二等门票不可行.17.玩具走的是正12边形,共走了12米.总检测站1.44°.2.(1)AB∥DF;(2)ED∥AC;(3)ED∥AC.3.x=2,y=-5.4.a=-73,b=53.5.-y2-7x.6.-7.7.18°.8.C.9.C.10.A.11.B.12.(1)∠DOC=∠B=∠E;(2)不一定;还可能互补.13.4.14.3516x3-418x2-32x-12.15.(a+1)2(a-1)2.*16.7,5,6.17.12边形.18.分两种情况讨论:D点在B,C之间和D点在B,C之外.分别由面积求出高,建立直角坐标系,以垂足为原点,以直线BC为x轴,以高所在直线为y轴.。