[整理]RFID读写器设计.

合集下载

第5章 RFID读写器

第5章 RFID读写器
2.发卡机
发卡机也叫做读卡器、发卡器等,主要用来对电子标签进行具 体内容的操作,包括建立档案、消费纠正、挂失、补卡以及信息纠 正等,经常与计算机放在一起。从本质上说,发卡机实际上就是小 型的射频读写器。
3.OEM模块 (Original Equipment Manufacturer)
有些应用需要读写器的封装外壳, 同时RFID读写器也只是作为集成设备中 的一个单元,这样只需要标准读写器的 射频前端模块,而后端的控制处理模块 和I/O接口可以大为简化。经过简化的 OEM读写器模块(如图所示)可以作为应 用系统设备中的一个嵌入式单元。
第5章 RFID读写器
本章学习目标
读写器的组成与设计要求 低频读写器 高频读写器 微波读写器 读写器的发展趋势
2
读写器
3
读写器的基本功能
读写器将待发送的信号经过编码后加载在特定频率的载波信号上, 再经天线向外发送,进入读写器工作区域的电子标签将接收到 此脉冲信号,并返回响应信号;读写器对接收到的返回信号进 行解调、解码和解密处理后,再送至计算机处理。 读写器的基本任务是和电子标签建立通信关系,完成对电子标签 信息的读写。在这个过程中涉及的一系列任务,如通信的建立、 防止碰撞和身份验证等都是由读写器处理完成的。 具体来说,读写器具有以下功能: (1)给标签提供能量。标签在被动式或者半被动式的情况下,需 要读写器提供能量来激活电子标签。 (2)实现与电子标签的通信。读写器对标签进行数据访问,其中 包括对电子标签的读数据和写数据。
读写器天线
读写器天线的作用是发射电磁能量以激活电子标签,并向 电子标签发出指令,同时也要接收来自电子标签的信息。 读写器天线所形成的电磁场范围就是RFID系统的可读区 域。任意RFID系统至少应该包含一根天线,用来发射或 接收射频信号,所采用的天线的形式及数量应视具体应 用而定。

915MHz_RFID读写器的设计与实现

915MHz_RFID读写器的设计与实现

915MHz_RFID读写器的设计与实现
近年来,射频识别(RFID)技术在物联网、供应链管理、仓储物流等领域得到了广泛的应用。

为了满足不同应用场景的需求,本文设计并实现了一种915MHz_RFID读写器。

首先,我们对915MHz_RFID读写器的硬件进行了设计。

该读写器采用了915MHz的射频模块,以实现对RFID标签的读写功能。

采用高频段的射频模块可以实现较远距离的读取和写入操作。

此外,读写器还配备了一块LCD显示屏,用于显示读取到的标签信息和操作状态。

为了保证读写器的稳定性和可靠性,我们还设计了稳压电源和保护电路。

其次,我们对读写器的软件进行了开发。

读写器的软件主要包括两个部分:上位机软件和嵌入式软件。

上位机软件负责与读写器进行通信,发送读写指令并接收读取到的标签信息。

嵌入式软件负责控制射频模块的工作,实现对标签的读写操作。

为了提高读写器的性能和稳定性,我们采用了多线程技术,使得上位机软件和嵌入式软件可以并行运行。

最后,我们对设计的读写器进行了实验验证。

实验结果表明,该读写器具有较好的性能和稳定性。

它可以在较远距离范围内读取和写入标签信息,并且能够准确地显示读取到的标签信息和操
作状态。

此外,读写器的读写速度较快,能够满足实际应用的需求。

综上所述,本文设计并实现了一种915MHz_RFID读写器。

该读写器具有较好的性能和稳定性,能够满足不同应用场景的需求。

未来,我们将进一步优化读写器的设计,提高其性能和功能,为RFID技术的应用提供更好的支持。

125kHzRFID读写器的硬件设计_

125kHzRFID读写器的硬件设计_
科技论坛
中国高新技术企业
125kHz RFID 读ห้องสมุดไป่ตู้器的硬件设计
文 / 王萍 曾宝国
【摘 要 】 射 频 识 别 (R FID ) 是 利 用 无 线 方 式 对 电 子 数 据 载 体 ( 电 子 标 签 ) 进 行 识 别 的 一 种 新 兴 技 术 。本 文 针 对 工 作 频 率 为 125kHz 的 电 子 标 签 AT88FR 256- 12 , 介 绍 了 其 识 读 系 统 的 组 成 及 读 写 终 端 的 硬 件 设 计 。 【关 键 词 】 R FID 读 写 器 硬 件 设 计
4 结束语 以上是本人在计算机机房工作多年中, 所总结的计算机故障及 维护的一些处理方法。前面我们已提到过计算机是高精密设备, 它 的 维 护 与 保 养 是 繁 重 的 、复 杂 的 , 希 望 这 些 方 法 能 给 每 位 计 算 机 用 户提供方便, 减少不必要的经济损失。
(作者单位系陕西理工学院计算机科学与技术系)
射 频 识 别 技 术 (RFID)是 近 年 迅 速 发 展 起 来 的 一 项 新 技 术 , 它 利 用 射 频 信 号 通 过 空 间 耦 合 (交 变 磁 场 或 电 磁 场 )实 现 非 接 触 式 信 息 传 递 , 达 到 自 动 识 别 目 的 。 与 接 触 式 IC 卡 和 条 形 码 识 别 技 术 相 比 , 射 频 识 别 技 术 最 大 的 优 势 在 于 特 别 适 合 对 数 量 大 、分 布 区 域 广 的 信 息 进 行 智 能 化 管 理 和 高 效 快 捷 地 运 作 , 因 此 在 物 流 、交 通 航 运 、自 动 收 费、服务领域等方面有着广泛的应用前景。 针对工作频率为 125kHz 的 电 子 标 签 AT88FR256 - 12 , 本 文 介 绍 了 其 识 读 系 统 的 组 成 及读写终端的硬件设计。

125KHz RFID读写器的FSK解调器设计

125KHz RFID读写器的FSK解调器设计

125KHz RFID读写器的FSK解调器设计很多工作在125KHz载波频率的RFID芯片,如Microchip公司的MCRF200、MCRF250以及Atmel公司的e5551、T5557等都可以将其调制方式设置为FSK方式。

若芯片设置为FSK调制方式,那么读写器(PCD)必须具有FSK解调电路。

FSK解调电路将FSK调制信号解调为NRZ码。

本文给出一种FSK解调电路,该电路的特点是电路简单可靠,很适宜PCD中应用。

FSK调制工作在125KHz的RFID的FSK调制方式都很相似,图1给出了一种FSK调制方式的波形图。

从图中可见,此时数据速率为:载波频率fc/40=125K/40=3125bps,在进行FSK调制后,数据0是频率为fc/8的方波,即f0 = fc/8;而数据1是频率为fc/5的方波,即f1= fc/5。

经FSK调制后的传送数据,通过负载调制方式传送到PCD,图1中也给出了射频波形,载波的调制是采用调幅。

F SK解调PCD经载波解调(通常采用包络检波)、放大滤波和脉冲成形电路后,得到FSK 调制信号。

FSK解调电路完成将FSK调制信号恢复为NRZ码。

FSK解调实现方法较多,本文介绍的一种FSK解调电路示于图2,该电路简单方便,可以很好地完成FSK解调。

图2所示电路工作原理如下:触发器D1将输入FSK信号变成窄脉冲,即Q为高时,FSK上跳沿将Q端置高,但由于此时Q为低,故CL端为低,又使Q端回到低电平。

Q端的该脉冲使十进计数器4017复零并重新计数。

4017计数器对125KHz时钟计数, 由于数据宽为40/fc=40Tc(Tc为载波周期),若为数据0,FSK方波周期T0=8Tc。

当计至第7个时钟数时,Q7输出为高,使CLKen(CLK使能端)为高,计数器不再计第8个时钟,此时Q7为高,当触发器D1的Q输出端在下一个FSK波形上跳时,触发器D2的Q端输出为低。

FSK波形上跳同时也将计数器复零并重新计数。

RFID超高频读写器的设计

RFID超高频读写器的设计
很 强的兼容性 ,并且与更多 的产业相融合 。
三 、主 要 的标 准体 系
R I 主 要有三种 标准体系 :美 国的E C l b l FD P G o a 标 准体系和 日本 的U D I 标准体 系 ,以及 国际化 标准组 织 I0 S 标准体系 。其 中,I0 S 标准 体I0 8 0 系 列标准 , S100 涵盖 了从低频 13  ̄微 波2 4 的所有标准 ,在超 高频 3K t l .G
二 、 FD超高 频读 写器 的构成 及原 理 R I
R I超 高频读写器主要 由主机 、天线 、读写器 、 FD
8 0 9 0 H 方面 ,I0 IC 已经 建 立 10 0 6 、 I O 6—6MZ S /E 80—A S/
I C 10 0 6 、I 0 I C 1 o 0 6 三种标准 。从 目前 E 8 0 —B S / E 8 0 — C

一 三一
f 0 ≥… 一 … 0 ■ ≤ t
一 .
■0一 …
图 1
图 3
设置好PE I 定时器的值 ( ≥T x ,为1 < ,为O ;X T ), 从F F 中读取 编码信 号数据 ,当为0 IO 时,其值为2 做 T 自减运算 ; 当为 1 ,其值 为4 做 自减运算 。在进 行 时 T 解码设计时 ,采用双相间隔解码 ,读写器采取信号样
中图分 类号 : TU9 4 8

文献 标识码 : A
文章 编号 :10 - 3 4( 0 2) 9 0 0 0 0 9 2 7 2 1 0 —0 4 — 3

工 程 概 况
汇 海 路 大桥 位 于连 云港 连 云 新城 汇海 路 ,连 接
二 、 主 要 技 术 标 准

RFID读写器的设计

RFID读写器的设计

RFID读写器的设计作者:田径储海兵来源:《现代电子技术》2009年第01期摘要:为了掌握RFID技术并应用,介绍一个基于U2270B的125 kHz的射频卡读写器。

它主要用软件实现射频信号的调制和解调,进而实现了对Temic卡读和写操作,且利用CH375芯片实现系统的USB通信及数据传输,及利用SD卡实现数据及原始数据库存储,利用SD卡桥接芯片W86L388D实现简单的SD卡SD模式通信操作。

该读卡器在解决实际问题时取得了很好的效果,相对于传统条形码识别有巨大优势,且引入USB和SD技术。

关键词:RFID;USB;SD;U2270B;CH375;W86L388D;Temic;EM4100中图分类号:TN919 文献标识码:B文章编号:1004-373X(2009)01-054-04Design of RFID Reader-WriterTIAN Jing,CHU Haibing(College of Automation,Southeast University,Nanjing,210096,China)Abstract:To master and apply the RFID technique,this paper designs a RFID reader-writer based on U2270B radio frequency card.It implements demodulation and modulation of radio signal mainly by software to realize the readout and writing process of Temic card,USB communication and data transmission by chip CH375 and the storage of data and database by SD Card.This method successfully solved identification problems.The key techniques and innovations of this paper include that RFID reader has more advantages than bar code reader.And it introduce USB technique and SD technique.Keywords:RFID;USB;SD;U2270B;CH375;W86L388D;Temic;EM41000 引言射频识别(Radio Frequency Identification,RFID)是利用感应、电磁场或电磁波为传输手段,完成非接触式双向通信,获取相关数据的一种自动识别技术。

RFID读写器设计

RFID读写器设计

接收电路。其电路分别如下图所示:
天线网络的设计
RFID读写器采用PCB环形天线,其电感量由如上公式进行估算:式中长 度单位为cm,电感值单位为nH。l1为一圈导线的长度,取值20 cm;D1为导线 的直径,取值0.1 cm;K为天线形状常数,本读写器是矩形天线,取值 K=1.47;N为导线的圈数,取值2。代入公式,计算得L1=1857 nH。对照芯 片厂家提供的表格进行计算,得到与天线并联的电容容值为132.3 pF,与天 线串联的电容容值为17.5pF。在实际电路设计中,与天线并联的电容采 100 pF与22 pF电容并联得到,与天线串联的电容采用18 pF。接收电路使用了 MFRC500内部产牛的VMID引脚作为输入电压。在VMID和地线之间连接了一 个0.1μF电容,起到了减少干扰的作用。天线及其匹配电路原理图如图。
SetupDiGetClassDevs SetupDiEnumDeviceInterfaces SetupDiGetDeviceInterfaceDetail CreateFile HidD_GetAttributes
结果:是小李,寻人成功;不是小李,找 下一个人;所有人都找遍了,寻人失败
(3)指定HID设备查找
(3)指定HID设备查找
关键代码分析 //枚举所有HID类设备,逐一查找指定设备 SP_INTERFACE_DEVICE_DATA ifData;
ifData.cbSize=sizeof(ifData);
for (int i=0;SetupDiEnumDeviceInterfaces(info,
关键代码分析 //获取HID类的GUID GUID Guid; HidD_GetHidGuid(&Guid); //获取指向所有HID类设备信息的指针 HDEVINFO info=SetupDiGetClassDevs(&Guid, NULL,

UHF RFID读写器的设计与实现

UHF RFID读写器的设计与实现

UHF RFID读写器的设计与实现摘要:UHF RFID(超高频射频识别)技术在物流、库存管理、智能交通等领域得到了广泛的应用。

为了满足不同场景下对RFID读写器的需求,本文对UHF RFID读写器的设计与实现进行了探讨。

首先介绍了UHF RFID的工作原理和应用场景,然后详细阐述了UHF RFID读写器的硬件设计和软件开发过程。

最后,通过实验验证了UHF RFID读写器的性能和可靠性。

1. 引言UHF RFID技术是一种无线通信技术,可实现对电子标签的读取和写入操作。

随着物联网和智能物流的发展,UHF RFID技术已经被广泛应用于各个领域。

UHF RFID读写器是其中的关键设备,其设计与实现对于提高整个系统的性能和可靠性至关重要。

2. UHF RFID的工作原理和应用场景UHF RFID系统由读写器、天线和电子标签组成。

读写器通过射频信号与电子标签进行通信,实现对标签的读取和写入操作。

UHF RFID技术具有距离远、数据传输快等特点,适用于物流、库存管理、智能交通等领域。

3. UHF RFID读写器的硬件设计3.1 天线设计UHF RFID系统的天线是实现读写器与电子标签之间通信的重要组成部分。

在设计天线时,需要考虑天线的尺寸、形状、阻抗匹配等参数。

合理设计天线可以提高读取范围和读取效率。

3.2 射频模块的选择射频模块是UHF RFID读写器的核心部件,它负责与电子标签进行通信。

在选择射频模块时,需要考虑通信距离、数据传输速率、工作频段等因素,以满足不同场景下的需求。

3.3 软件和硬件接口设计UHF RFID读写器需要与上位机进行通信,传输读取到的数据和接收上位机的指令。

因此,在设计读写器的硬件接口时,需要考虑通信协议和数据格式。

同时,还需要设计相应的软件来实现读写器的控制和数据处理功能。

4. UHF RFID读写器的软件开发4.1 控制程序设计控制程序是UHF RFID读写器的核心部分,它负责控制射频模块的工作、读取电子标签的数据以及向上位机发送数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于Intel R1000的超高频RFID读写器设计时间:2009-05-22 09:37:12 来源:现代电子技术作者:黄志敏,李鹏,高远,沈少武,徐斌富武汉大学摘要:设计并提出一种超高频射频识别系统读写器设计的新方案。

该读写器采用Intel R1000收发器芯片、w78E365微控器,符合Is0 18000—6c和EPC global Gen 2标准,工作频率为860~960 MHz,读写距离在2~10 m之间。

同时给出读写器硬件系统的组成和软件工作流程,并针对同时读取多张卡的情况进行分析,实现了防冲突算法。

该读写器支持SSB一ASK和DSB-ASK双重调制方式,可根据需要改变使用天线的单、双模式。

关键词:IS0 18000-6C;EPC global Gen 2;射频识别;R10000 引言RFID技术是一种非接触的自动识别技术,通过无线射频的方式进行非接触双向数据通信,对目标加以识别并获取相关数据。

RFID系统通常主要由电子标签、读写器、天线3部分组成。

读写器对电子标签进行操作,并将所获得的电子标签信息反馈给PC机。

射频识别技术以其独特的优势,逐渐被广泛应用于生产、物流、交通运输、防伪、跟踪及军事等方面。

按工作频段不同,RFID系统可以分为低频、高频、超高频和微波等几类。

目前,大多数RFID系统为低频和高频系统,但超高频频段的RFID系统具有操作距离远,通信速度快,成本低,尺寸小等优点,更适合未来物流、供应链领域的应用。

尽管目前,RFID超高频技术的发展已比较成熟,也已经有了一些标准,标签的价格也有所下降;但RFID超高频读写器却有变得更大,更复杂和更昂贵的趋势,其消耗能量将更多,制造元件达数百个之多。

然而,这里的设计采用高度集成的R1000,可以解决上述问题,既可降低芯片设计中的复杂性和生产成本,又能使制造商制造出体积更小,更有创新性的读写器,从而开拓新的RFID 应用领域。

l 读写器硬件结构设计该设计选用W78E465作为主控模块,IntelR1000收发器作为射频模块。

该设计可以作为手持终端,并用RS 232串行通信模块和电平转换接口MAX232与上位机相连。

系统硬件原理见图1。

1.1 主控模块W78E365是具有带ISP功能的FLASH EPROM的低功耗8位微控制器,可用于固件升级。

它的指令集与标准8052指令集完全兼容。

W78E365包含64 KB的主ROM,4 KB的辅助FLASH EPROM,256 B片内RAM;4个8位双向、可位寻址的I/0口;一个附加的4位I/O口P4;3个16位定时/计数器及1个串行口。

这些外围设备都由有9个中断源和4级中断能力的中断系统支持。

为了方便用户进行编程和验证,W78E365内含的ROM 允许电编程和电读写。

一旦代码确定后,用户就可以对代码进行保护。

W78E365内部ROM仅64 KB,内存太小,故采用AT29C256作为外扩ROM。

线路连接见图2。

1.2 收发模块射频模块采用Intel R1000收发器。

R1000内包含了一个能源扩大器,使得它可以在近距离或者2 m内对标签进行编码和阅读,而具体距离由读写器所使用的天线决定。

有了额外的外部能源扩大器,使用R1000读写器的读写范围可以达到10 m。

R1000必须与单独的微处理器连接,这个微处理器可以把由R1000数字信息处理器产生的原始数据转换成EPc或者18000-6c格式的代码,其工作频率为860~960 MHz,共有56个引脚,采用0.18μmSiGe BiCMOs先进工艺,体积仅为8 mm×8 mm,功耗只有1.5 w左右,具有很高的集成度。

R1000与W78E365的连接见图3。

射频信号经天线进入电桥,输出信号被分为两路,一路信号经过带通滤波器和不平衡到平衡的转换进入R1000的射频输入口。

另一路信号经不平衡到平衡的转换进人R1000的本振输入口。

这两路信号在R1000内部经过解调和模/数转换等一系列操作后,将所得的数字信息送给W78E365。

W78E365对收到的信号经解码和校验,将所得信息送往上位机,并将其对R1000的命令编码和加密后发送给R1000。

这些命令在R1000内部经过调制和PA,再经过平衡到不平衡的转换和滤波,由天线发射出去。

数字模块中的时钟驱动来自于外部TCXO产生的24 MHz参考频率。

系统中通过∑-△DACS的信号频率为24 MHz;通过∑-△ADCS的信号频率为48 MHz。

R1000内部集成了接收器和发射器。

实质上,接收器是一个零中频接收机。

下变频后,直流的大部分被复位,由交流耦合电容器滤除。

模拟中频滤波器提供粗略的频道选择。

它具有可编程带宽满足大范围的数字通过率。

该滤波器可以配置成两个实际的低通滤波器,也可以配置成复杂的单相带通滤波器。

经滤波后,I,Q信号被数/模转换器转换成数字信号。

滤波器中自动中频增益的升高会降低模/数转换器的动态范围。

R1000中,发射器支持同相正交矢量调制和极化调制。

前者,用于SSB-ASK调制和反相幅移键控调制;后者,用于DSB-ASK。

在这两种调制方式下,数字模块产生的信号,经过∑一△数/模转换器和重建滤波器转换成模拟信号。

在SSB-ASK调制方式下,基带编码信号经希尔伯特滤波器产生复合的同相信号I和正交信号Q,经∑-△数/模转换器将I,Q数字信号转换成模拟信号,进入模拟模块,该模拟信号经天线发射出去。

在PR-ASK调制方式下,用混频器将信号反相弥补AM部分的时延,反相时延控制有一个可编程时延,使极化调制的相位与幅度之问的时间错误趋于最小值。

在DSB-ASK调制方式下,基带编码和脉冲信号同样也经过希尔伯特滤波器产生一个复合的I,Q信号。

所不同的是脉冲成型信号预先进行了扭曲,这样可以补偿调幅传递函数中的非线性。

这个经过预先扭曲的调幅控制信号经过∑-△数/模转换器转换成模拟信号,最后通过天线发射出去。

基于功率要求和调制方式的不同,R1000有全功率非线性,低功率非线性和线性3种发射模式。

在DSB-ASK调制模式下。

R1000采用全功率非线性发射模式。

为了发射R1000允许的天线上最大发射功率值为+30 dBm,需在R1000外部接1个PA。

采用class—C极化调制能够提高系统的功率效率。

在这种发射方式下,只有在DSB—ASK调制方式才有效。

低功率非线性发射模式与全功率非线性发射模式相似,只是外部不再需要PA。

相反,只使用内部较低的输出功率,在这种发射方式下只有DSB—ASK调制方式有效。

在线性发射模式下,R1000的PA—out信号与外部线性PA相连,这是因为SSB—ASK调制方式要求1个线性的PA。

需要指出的是在R1000外部接1个PA时,会增加系统的复杂度,但同时放大了传输信号的功率,使信号传输距离更远,提高了读写器的读写距离。

1.3 天线对Intel R1000超高频收发器,基于不同的天线子系统,天线有两种配置情况。

第一种情况是单天线模式。

在这种情况下,用一个回路来隔离发射路径和接收路径,每根天线都具备接收器和发射器的功能。

第二种情况是双天线模式。

同样用分离的天线将接收器和发射器连接起来,通常情况下,两根独立的天线由一个开关控制,每根天线仅具备接收器功能或发射器功能。

对单天线模式,因天线的反射系数并不理想,所以接收增益不能太大,会有饱和的问题。

以R1000的高接收灵敏度,可以搭配-10 dB左右的Coupler,视整体线路的隔离而定;对于双天线模式,天线的收发隔离比较理想,接收路径可以使用高增益。

该设计采用双天线模式,用矩形微带天线和同轴电缆构成读写器的天线。

该微带天线的基板材料采用介电常数比较高的陶瓷基片,厚0.635 mm。

天线宽为70.5 mm,长为52.689 mm,微带线宽度为0.598 mm,馈电点选取在天线宽边中心。

经过ADS仿真,该天线中心频率为915 MHz。

为减小天线反射系数,达到较理想的匹配,对天线串联一根长度为18.471 mm,阻值为50Ω的传输线,然后再并联一根长度为24.678 mm,阻值为50Ω的传输线。

经ADS仿真优化得知,在中心频率915 MHz处,天线最大辐射方向上的方向性系数为3.535;效率为40.087%;增益为1.417。

2 系统软件设计2.1 主程序若系统在PC机的监控下工作,则系统与PC机之间是主从通信模式。

系统收到Pc机的命令便进入初始化状态,按照主控程序进行相应的工作。

处理完毕后,将所得信息送往PC 机。

主程序流程见图4。

2.2 软件设计该设计采用曼彻斯特编码方式,用2位二进制数来表示一位二进制数据信息。

编码波形的上升沿用01来表示,对应数据信息0;下降沿用10来表示,对应数据信息1。

首先,对w78E365进行初始化,使计数器TO工作在16位定时器工作模式下;T1工作在计时器工作模式下,对T0,T1赋初值,使:TLO/1=(最大计时次数一要计数次数)%256THO/1=(最大计时次数一要计数次数)/256然后,设同步脉冲定时值为一位半码宽,将有效数据编码采用半位码宽定时。

接着启动定时器T0,检测同步沿的到来。

若检测不到同步沿的到来,则继续检测;若检测到同步沿的到来,则开始读端口状态,并启动计时器T1。

当检测到下一跳变沿到来时,使计数器数目加1,且将对应端口数字1编码为10,对应端口数字0编码为01。

之后进入下一轮循环,直至计数器数目达到码长为止。

按照上面操作就可以实现对数据的编码。

同理,在进行解码时只要按照相反的逆操作进行即可。

多字节CRC校验的方法一般是移位法。

这种方法执行起来速度较慢,但是其需要的空间小;另一种方法是查表法,即预先把多字节可能产生的余式计算出来组成一个余式表,直接查表而不进行二进制的除法。

这是一种快速的方法,但是需要很大的空间。

用标准CRC一16进行校验,则需要至少1~2 KB,对于MCU来说是很不利的,故选择前者。

该设计采用流密码加密算法,将明文M分割成字符串和比特串M=m0,m1,…,mj,…,并逐位加密:EK(m)=Ek0(m0),Ekl(m1),…,Ekj(mj),…,其中密钥流是K=k0,k1,…,kj…。

对明文加密就是将K和M对应的分量分别进行模2相加,得到密文序列C。

在接收端,合法的接收者将密文序列C与上述密钥序列进行简单的模2相加,将原来的明文恢复出来。

序列密码使用一个比特流发生器,以产生随机二进制数字流,称为密码比特流。

密码比特流直接作为密钥使用,而且其长度与明文报文的长度相等。

考虑到比特流发生器不是真正随机的实际情况,流密钥生成器用线性反馈移位寄存器构造。

2.3 防碰撞程序该设计采用非基于位碰撞的二进制算法来实现防碰撞。

防碰撞流程如图5所示。

具体流程如下:(1)发送Request命令给应答器;(2)发送Group-select命令和Ungroup-select命令给所有应答器,使所有或部分应答器参与冲突判断过程:①若有冲突,读写器发送.Fail命令给选定应答器,直到没有冲突;②若没有冲突,读写器发送Select命令给应答器,选定该应答器。

相关文档
最新文档