2018年北京市昌平区中考二模数学试题含答案
〖中考零距离-新课标〗2018年北京市昌平区中考数学第二次模拟试题及答案解析

昌平区2018年初三年级第二次统一模拟练习数 学 试 卷学校 姓名 考试编号试编号考生须知 1.本试卷共8页,共五道大题,29道小题,满分120分.考试时间120分钟. 2.在试卷和答题卡上认真填写学校名称、姓名和考试编号. 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.考试结束,请将本试卷和答题卡一并交回. 一、选择题(共10道小题,每小题3分,共30分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.天安门广场位于北京市中心,南北长880米,东西宽500米,面积达440 000平方米,是当今世界上最大的城市广场. 将440 000用科学记数法表示应为应为A. 54.410´ B. 44.410´ C. 44410´D. 60.4410´ 2.在函数y =2x -中,自变量x 的取值范围是A. x >2B. x ≠2C. x <2D. x ≤2 3.在下列简笔画图案中,是轴对称图形的为A B CD 4. 在一个不透明的袋子里装有3个白球和m 个黄球,这些球除颜色外其余都相同.色外其余都相同.若若从这个袋子里任意摸出1个球,该球是黄球的概率为14,则m 等于A .1B . 2C . 3D . 4 5.如右图,AB ∥CD ,BC 平分∠ABD ,若∠C=40°,则∠D 的度数为数为A. 90°B. 100°C. 110°D. 120°A BCD6.为了研究特殊四边形,李老师制作了这样一个教具(如下左图):用钉子将四根木条钉成一个平行四边形框架ABCD ,并在A 与C 、B 与D 两点之间分别用一根橡皮筋拉直固定. 课上,李老师右手拿住木条BC ,用左手向右推动框架至AB ⊥BC (如下右图). 观察所得到的四边形,下列判断正确的是A .∠BCA =45°B .BD 的长度变小C .AC =BDD .AC ⊥BDA BCDDCBA→7.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示: 成绩(m ) 1.50 1.60 1.651.70 1.75 1.80 人 数124332这些运动员跳高成绩的中位数和众数分别是A .1.65,1.70B .1.70,1.70C .1.70,1.65D .3,4 8. 如右图,是雷达探测器测得的结果,图中显示在点A ,B ,C ,D ,E ,F 处有目标出现,目标的表示方法为(r ,α),其中,r 表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度. 例如,点A ,D 的位置表示为A (5,30°),D (4,240°). 用这种方法表示点B ,C ,E ,F 的位置,其中正确的是 A .B (2,90°) B .C (2,120°) C .E (3,120°) D .F (4,210°) 9.商场为了促销,推出两种促销方式: 方式①:所有商品打8折销售.方式②:购物每满100元送30元现金.杨奶奶同时选购了标价为120元和280元的商品各一件,现有四种购买方案: 方案一:120元和280元的商品均按促销方式①购买;方案二:120元的商品按促销方式①购买,280元的商品按促销方式②购买; 方案三:120元的商品按促销方式②购买,280元的商品按促销方式①购买;东543330°2300°1240°120°60°30°0°90°180°270°A BC FD E210°150°方案四:120元和280元的商品均按促销方式②购买. 你给杨奶奶提出的最省钱的购买方案是A. 方案一B.方案二C.方案三D.方案四 10. 如图1,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,AB =2厘米,∠BAD =60°.P ,Q 两点同时从点O 出发,以1厘米/秒的速度在菱形的对角线及边上运动. 设运动的时间为x 秒,P ,Q 间的距离为y 厘米,y 与x 的函数关系的图象大致如图2所示,则P ,Q 的运动路线可能为1123234厘米秒图1图2Oy /x /DOCB AA. 点P : O —A —D —C ,点Q : O —C —D —OB. 点P : O —A —D —O ,点Q : O —C —B —OC. 点P : O —A —B —C ,点Q : O —C —D —OD. 点P : O —A —D —O ,点Q : O —C —D —O二、填空题(共6道小题,每小题3分,共18分) 11.分解因式:2363m m -+=. 12.如下图,小慧与小聪玩跷跷板,跷跷板支架EF 的高为0.4米,E 是AB 的中点,那么小慧能将小聪翘起的最大高度BC 等于 米.13.如右图,⊙O 的直径AB ⊥弦CD ,垂足为点E ,连接AC ,若CD =23,∠A =30º,则⊙O 的半径为径为. 14.如右图,已知四个扇形的半径均为1,那么图中阴影部分面积的和是. CFB E ADABCE O15.市运会举行射击比赛,射击队从甲、乙、丙、丁四人中选拔一人参赛. 在选拔赛中,每人射击10次,计算他们10次成绩(单位:环)的平均数及方差如下表. 根据表中提供的信息,你认为最合适的人选是 ,理由是. 甲 乙 丙 丁 平均数8.38.18.08.2方差 2.1 1.8 1.6 1.416. 已知:如图,在平面直角坐标系xOy 中,点B 1,C 1的坐标分别为(1 ,0),(1,1).将△OB 1C 1绕原点O 逆时针旋转90°,再将其各边都扩大为原来的m 倍,使OB 2=OC 1,得到△OB 2C 2;将△OB 2C2绕原点O 逆时针旋转90°,再将其各边都扩大为原来的m倍,使OB 3=OC 2,得到△OB 3C 3.如此下去,得到△OB n C n . (1)m 的值为__________;(2)在△OB 2016C 2016中,点C 2016的纵坐标为_____________.三、解答题(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:()10118π20166sin 452-æö+-+-°ç÷èø. B 2C 223-4234-2-34-1-1-4-3-2C 1B 1yxO18.解不等式组()()202130x x x -ìïí---ïî≤,>, 并写出它的整数解.19.先化简,再求值:269(3)26x x x x -+×+-,其中30x -=.20. 已知:如图,∠B =∠C ,AB =DC .求证:∠EAD =∠EDA .21. 已知关于x 的一元二次方程2220x x k ++-=有两个不相等的实数根.(1)求k 的取值范围; (2)若k 为大于1的整数,求方程的根.22. 为保障北京2022 年冬季奥运会赛场间的交通服务,北京将建设连接北京城区-延庆区-崇礼县三地的高速铁路和高速公路. 在高速公路方面,目前主要的交通方式是通过京藏高速公路(G6),其路程为220公里为将崇礼县纳入北京一小时交通圈,有望新建一条高速公路,将北京城区到崇礼的道路长度缩短到100公里. 如果行驶的平均速度每小时比原来快22公里,那么从新建高速行驶全程所需时间与从原高速行驶全程所需时间比为4:11.求从新建高速公路行驶全程需要多少小时?23.在△OAB 中,∠OAB =90°,∠AOB =30°,OB =4.以OB 为边,在△OAB 外作等边△OBC ,E 是OC 上的一点.(1)如图1,当点E 是OC 的中点时,求证:四边形ABCE 是平行四边形; (2)如图2,点F 是BC 上的一点,将四边形ABCO 折叠,使点C 与点A 重合,折痕为EF ,求OE 的长.A BEDC图2FE 图1AOBCEC BOA24.阅读下列材料:根据北京市统计局、国家统计局北京调查总队及《北京市统计年鉴》数据,2004年本市常住人口总量约为1493万人,2013年增至2115万人,10年间本市常住人口增加了622万人. 如果按照数据平均计算,本市常住人口每天增加1704人. 我们还能在网上获取以下数据:2010年北京常住人口约1962万人,2011年北京常住人口约2019万人,2014年北京常住人口为2152万人, 2015年北京常住人口约2171万人.北京市近几年常住人口平稳增长,而增长的速度有所放缓. 其中,2011年比上一年增加2.91%,2012年比上一年增加2.53%,2013年比上一年增加2.19%,2014年比上一年增加1.75%. 相关人士认为,常住人口出现增速连续放缓的原因,主要与经济增速放缓相关. 2011年开始,随着GDP 增速放缓,人口增速也随之放缓. 还有一个原因是就业结构发生变化,劳动密集型行业就业人员在2013年出现下降,住宿、餐饮业、居民服务业、制造业的就业人数下降.根据以上材料解答下列问题:(部分数据列出算式即可) (1)2011年北京市常住人口约为约为 万人; (2)2012年北京市常住人口约为约为万人; (3)利用统计表或.统计图将2013 — 2015年北京市常住人口总量及比上一年增速百分比表示出来.25. 如图,以△ABC 的边AB 为直径作⊙O ,与BC 交于点D ,点E 是弧BD 的中点,连接AE 交BC 于点F ,2ACB BAE Ð=Ð. (1)求证:AC 是⊙O 的切线; (2)若2sin 3B =,BD=5,求BF 的长.26. 我们学习了锐角三角函数的相关知识,知道锐角三角函数定量地描述了在直角三角形中边角之间的联系. 在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长的比与角的大小之间可以相互转化. 如图1,在Rt △ABC 中,∠C =90°. 若∠A =30°,则cos A 32A ACAB 的邻边斜边=Ð==.类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对. 如图2,在△ABC 中,AB =AC ,顶角A 的正对记作sad A ,这时,sad A =BC AB 底边腰=. 容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对的定义,解答下列问题: (1)直接写出sad60°的值为值为; (2)若0°<∠A <180°,则∠A 的正对值sad A 的取值范围是 ;(3)如图2,已知tan A =34,其中∠A 为锐角,求sad A 的值;(4)直接写出sad36°的值为值为. O E DFCBA图2C BA 图1备用图CBAA BC27. 在平面直角坐标系xOy 中,直线y=kx +b 的图象经过(1,0),(-2,3)两点,且与y 轴交于点A .(1)求直线y=kx +b 的表达式;(2) 将直线y=kx +b 绕点A 沿逆时针方向旋转45º后与抛物线21:1(0)G y ax a =->交于B ,C 两点. 若BC ≥4,求a 的取值范围;(3)设直线y=kx +b 与抛物线22:1G y x m =-+交于D ,E 两点,当3252DE ≤≤时,结合函数的图象,直接写出m 的取值范围.12Ox-2-3-4-1-14-3-2431-432y28. 在等边△ABC 中,AB =2,点E 是BC 边上一点,∠DEF =60°,且∠DEF 的两边分别与△ABC 的边AB ,AC 交于点P ,Q (点P 不与点A ,B 重合). (1)若点E 为BC 中点.①当点Q 与点A 重合,请在图1中补全图形;②在图2中,将∠DEF 绕着点E 旋转,设BP 的长为x ,CQ 的长为y ,求y 与x 的函数关系式,并写出自变量x 的取值范围;(2)如图3,当点P 为AB 的中点时,点M ,N 分别为BC ,AC 的中点,在EF 上截取EP ¢=EP ,连接NP ¢. 请你判断线段NP ¢与ME 的数量关系,并说明理由.N M P'DFQ EABC图3图1PE CBAABE C图2D PQF29. 已知四边形ABCD ,顶点A ,B 的坐标分别为(m ,0),(n ,0),当顶点C 落在反比例函数的图象上,我们称这样的四边形为“轴曲四边形ABCD ”,顶点C 称为“轴曲顶点”. 小明对此问题非常感兴趣,对反比例函数为y =2x时进行了相关探究.(1)若轴曲四边形ABCD 为正方形时,小明发现不论m 取何值,符合上述条件的轴曲正方形只有..两个,且一个正方形的顶点C 在第一象限,另一个正方形的顶点C 1在第三象限.①如图1所示,点A 的坐标为(1,0),图中已画出符合条件的一个轴曲正方形ABCD ,易知轴曲顶点C 的坐标为(2,1),请你画出另一个轴曲正方形AB 1C 1D 1,并写出轴曲顶点C 1的坐标为标为; ②小明通过改变点A 的坐标,对直线CC 1的解析式y ﹦kx +b 进行了探究,可得 k ﹦ ,b (用含m 的式子表示)﹦; (2)若轴曲四边形ABCD 为矩形,且两邻边的比为1∶2,点A 的坐标为(2,0),求出轴曲顶点C 的坐标.1214-34-1-4-3-2O -55-55备用图x-1-23-432yy3-34-1-4-3-2AxO BD 图15-55-5C -1-2431-42数学参考答案及评分标准一、选择题(共10道小题,每小题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案ADBABCCADB二、填空题(共6道小题,每小题3分,共18分) 题号1112 13 14 15 16答案 ()231m -0.82π丁,最稳定; 甲,平均环数高.2;()20152-三、解答题(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解: ()10118π20166sin 452-æö+-+-°ç÷èø3622122++-´=………………………………………………………… 4分 =3 .………………………………………………………………… 5分 18.解:()()202130x x x ----ìíî≤,①>,②由①得:x ≤2. ……………………………………………………………………… 1分 由②得:2x – 2–x + 3>0................................................................... 2分 x >- 1. (3)分 ∴原不等式组的解集为:-1<x ≤2. ………………………………………………………… 4分∴原不等式组的整数解为0,1,2.……………………………………………… 5分19.解:原式=2(3)(3)2(3)x x x -×+-……………………………………………………………2分=292x -.……………………………………………………………………3分∵ 30x -=,∴3x =.……………………………………………………………………………4分∴原式=2(3)93.2-=-…………………………………………………………5分20.证明:在△AEB 和△DEC 中,∵AEB DEC B C AB DC Ð=ÐÐ=Ð=ìïíïî,,,∴△AEB ≌△DEC .……………………………………3分 ∴AE =DE .…………………………………………………………………………4分 ∴∠EAD =∠EDA .…………………………………………………………………5分 21.解:(1)由题意得:△=224(2)0k -->………………………………………………………………………2分解得:3.k <…………………………………………………………………………3分(2)∵k 为大于1的整数, ∴ 2.k =……………………………………………………………………………4分∴原方程为:220.x x +=解得:10x =,2 2.x =- (5)分22.解:设选择从新建高速公路行驶全程所需的时间为4x 小时.………………………………1分 由题意得:10022022.411x x -=………………………………………………………………2分解得:5.22x =……………………………………………………………………………3分 A BEDC经检验522x =是原方程的解,且符合题意. ………………………………………………4分∴104.11x =答:从新建高速公路行驶所需时间为1011小时.…………………………………………5分 23.(1)证明:如图1,∵△OBC 为等边三角形,∴OC =OB ,∠COB =60° . ∵点E 是OC 的中点,∴EC =21OC =21OB . ……………………1分在△OAB 中,∠OAB =90°, ∵∠AOB =30°, ∴AB =21OB , ∠COA =90°. ∴CE =AB ,∠COA +∠OAB =180°. ∴CE ∥AB .∴四边形ABCE 是平行四边形. (2)分(2)解:如图2,∵四边形ABCO 折叠,点C 与点A 重合,折痕为EF ,∴△CEF ≌△AEF , ∴EC =EA . ∵OB =4,∴OC =BC =4. ………………………………3分 在△OAB 中,∠OAB =90°, ∵∠AOB =30°,∴OA =23. ……………………………………………………4分 在Rt △OAE 中,由(1)知:∠EOA =90°, 设OE =x , ∵OE 2+OA 2=AE 2 ,∴x 2+()223 =(4-x ) 2,图2FE AOBCE图1OCEC BOA解得,x =21.∴OE =21.………………………………………………………………………………5分 24.解:(1)2019. ………………………………………………………………………… 1分(2)2019(1 + 2.53%)= 2070. ……………………………………………… 2分(3)2013 — 2015年北京市常住人口总量及比上一年增速百分比统计表2013年 2014年 2015年 常住人口总量(万人) 2115 2152 2171比上一年增速百分比(%)2.191.75217110021521æö-´ç÷èø…………………………………………………………………5分 25.(1)证明:连接AD .∵E 是弧BD 的中点, ∴弧BE = 弧ED , ∴∠1=∠2. ∴∠BAD= 2∠1.∵∠ACB= 2∠1,∴∠C=∠BAD .……………………………………………………………1分∵AB 为⊙O 直径,∴∠ADB =∠ADC =90°. ∴∠DAC +∠C =90°.∵∠C=∠BAD ,∴∠DAC +∠BAD =90°. ∴∠BAC =90°.21G O E DFCBA即AB ⊥AC .又∵AC 过半径外端, ∴AC 是⊙O 的切线.……………………………………………………………2分 (2)解:过点F 作FG ⊥AB 于点G .在Rt △ABD 中,∠ADB =90°,2sin 3AD B AB==, 设AD =2m ,则AB =3m ,利用勾股定理求得BD =5m .∵BD=5, ∴m =5. ∴AD =25 ,AB =35 . …………………………………………………………3分∵∠1=∠2,∠ADB =90°, ∴FG =FD . ……………………………………………………………4分 设BF = x , 则FG = FD =5- x. 在Rt △BGF 中,∠BGF =90°,2sin 3B =, ∴523x x-=.解得,x =3.∴BF =3. ……………………………………………5分26.解:(1)1. ……………………………………………………… 1分(2)0<sad A <2.…………………………………………… 2分(3)如图2,过点B 作BD ⊥AC 于点D .∴∠ADB =∠CDB =90°. 在Rt △ADB 中, tan A =34,∴设BD=3k ,则AD =4k . ∴ AB =225BD AD k +=.…………………………… 3分 ∵AB =AC ,∴CD =k . D CBA图2BA(Q)BCE 图1PFD∴在Rt △CDB 中, 利用勾股定理得,BC=10k .在等腰△ABC 中,sad A=551010BC kABk==.……………………………… 4分 (4)251-.…………………………………………………………………………… 5分 27.解:(1)∵直线y=kx +b 的图象经过(1,0),(-2,3)两点,∴0,2 3.k b k b +=ìí-+=î ………………………………………………………………1分解得:1,1.k b =-ìí=î∴直线y=kx +b 的表达式为:1.y x =-+…………………………………………2分(2)①将直线1y x =-+绕点A 沿逆时针方向旋转45º后可得直线1y =. …………3分∴直线1y =与抛物线21:1(0)G y ax a =->的交点B ,C 关于y 轴对称.∴当线段BC 的长等于4时,B ,C 两点的坐标分别为(2,1),(-2,1). ∴1.2a =…………………………………………………………………………………4分 由抛物线二次项系数的性质及已知a >0可知,当BC ≥4时,10.2a ≤< ……………5分②40.m -≤≤ ………………………………………………………………………………7分 28.解:(1)①如图1.……………………………1分 ②∵等边△ABC ,∴∠B=∠C=∠DEF =60°,AB =BC =AC =2. ∴∠1+∠2=∠1+∠3=120°. ∴∠2=∠3.∴△PBE ∽△ECQ .…………………………2分231F Q P D 图2CE BA∴BP BE EC CQ=. ∵点E 为BC 的中点, ∴BE=EC=1.∵BP 的长为x ,CQ 的长为y ,∴11xy=. 即1x y =.………………………………………………………………3分 自变量x 的取值范围是:122x ≤< . (4)分(2)如图3,答:N P ¢=ME ............................................... .......................... 5分 证明:连接PM ,PN ,PP ¢. ∵P ,M ,N 分别是AB ,BC ,AC 的中点,∴PN //BC ,PN =12BC ,PM //AC ,PM =12AC.∴四边形PMCN 为平行四边形. ...............................................6分∵△ABC 是等边三角形,∴BC =AC ,∠C =60°. ∴PM =PN ,∠NPM =∠C =60°. ∵EP=EP ¢,∠PEP ¢=60°, ∴△P EP ¢是等边三角形. ∴∠E PP ¢=60°,PE =PP ¢. ∴∠E PP ¢=∠NPM . ∴∠EPM =∠N PP ¢. ∴△EPM ≌△N PP ¢. ∴N P ¢=ME . ............................................................................. 7分29.解:(1)①如图1 . ……………………………1分1(1,2)C --.…………………………2分 B 1C 1D 1y3-34-1-4-3-2A xOBD 图15-55-5C -2431-42N M P'D FQEABC图3P②1k =. ……………………………3分 b m =-.……………………………4分(2)①当AB =2BC 时,∵点A 的坐标为(2,0),∴点C 的坐标为2(,)2n n -或2,2n n -æöç÷èø. ∴222n n -´=或222n n -´=.解得:15n =±或无实根.∴点C 的坐标为5115,2æö-+ç÷ç÷èø或5115,2æö---ç÷ç÷èø. ………………6分②当BC =2AB 时, 点C 的坐标为(,24)n n -或(,42)n n -. ∴(24)2n n -=或(42)2n n -=.解得:12n =±或 1.n =∴点C 的坐标为()12,222+-或()12,222---或()1,2……………8分。
2018年北京市昌平区初三二模数学试卷及答案

昌平区2018年初三年级第二次统一练习数学试卷(120分钟 满分120分)2018.5考生须知一、选择题(共10道小题,每小题3分,共30分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.2018年10月12日至15日,第二届中国“互联网+”大学生创新创业全国总决赛上,ofo 共享单车从全国约119000个创业项目中脱颖而出,最终获得金奖. 将119000用科学计数法表示应为A .41.1910⨯ B . 60.11910⨯ C .51.1910⨯ D . 错误!未找到引用源。
2.如图,点A 、B 在数轴上表示的数的绝对值相等,且AB =4,那么点A 表示的数是BA . 3-错误!未找到引用源。
B . 2-错误!未找到引用源。
C . 错误!未找到引用源。
D . 错误!未找到引用源。
3.在下面的四个几何体中,主视图是三角形的是ABCD4.钟鼎文是我国古代的一种文字,是铸刻在殷周青铜器上的铭文,下列钟鼎文中,不是轴对称图形的是1. 答题前,考生务必将自己的学校名称、姓名、考试编号在答题卡上填写清楚。
2. 请认真核准条形码上的姓名、考试编号,将其粘贴在答题卡的指定位置。
3. 请不要在试卷上作答。
答题卡中的选择题请用2B 铅笔作答,其他试题用黑色字迹的签字笔作答。
4. 修改答题卡选择题答案时,请用橡皮擦干净后重新填涂。
请保持答题卡清洁,不要折叠、弄破。
5. 请按照答题卡题号顺序在各题目的答题区域内作答,未在对应的答题区域作答或超出答题区域的作答均不给分。
6. 考试结束后,请交回答题卡和试卷。
A B C D5.如图,△ABC中,∠ACB=90°,∠B=55°,点D是斜边AB的中点,那么∠ACD的度数为A.15°B.25°C.35°D.45°6.若0322=--aa,代数式)2(1-aa的值是A.31-B.31C.-3 D.37.初三(1)班体育委员统计本班30名同学体育中考成绩数据如下表所示:A.29,30 B.29,28 C.28,30 D.28,288.如图,将北京市地铁部分线路图置于正方形网格中,若设定崇文门站的坐标为(0,-1),雍和宫站的坐标为(0,4),则西单站的坐标为A.(0,5)B.(5,0)C.(0,-5)D.(-5,0)8题9题9.如图,两个一次函数图象的交点坐标为(2,4),则关于x,y的方程组⎩⎨⎧+=+=2211bxkybxky的解为DC BAx2x+b2A .⎩⎨⎧==42y xB .⎩⎨⎧==24y x C .⎩⎨⎧=-=04y xD .⎩⎨⎧==03y x10.如图,点A 是反比例函数1y x=(0)x >上的一个动点,连接OA ,过点O 作OB ⊥OA ,并且使OB=2OA ,连接AB ,当点A 在反比函数图象上移动时,点B 也在某一反比例函数图象ky x=上移动,k 的值为A . 2B . -2C .4D . -4 二、填空题(共6道小题,每小题3分,共18分)11.如图,正方形ABCD ,根据图形写出一个正确的等式: _____ _ .11题 12题 14题 12.如图,四边形 ABCD 的顶点均在⊙O 上,∠A =70°,则∠C =___________°. 13.《孙子算经》是中国古代重要的数学著作,《孙子算经》共有三卷.第三卷里有一题:“今有兽,六首四足;禽,四首二足,上有七十六首,下有四十六足.问:禽、兽各几何?” 译文:“现在有一种野兽,长有六头四足;有一种鸟,长有四头两足,把它们放一起,共有76头,46足.问野兽、鸟各有多少只?”设野兽x 只,鸟y 只,可列方程组为__________________.14.如图,阳光通过窗口AB 照射到室内,在地面上留下4米宽的亮区DE ,已知亮区DE到窗口下的墙角距离CE =5米,窗口高AB =2米,那么窗口底边离地面的高BC =__________ 米.15.如图,已知钝角△ABC ,老师按照如下步骤尺规作图:步骤1:以C 为圆心,CA 为半径画弧①;步骤2:以B 为圆心,BA 为半径画弧②,交弧①于点D ;步骤3:连接AD ,交BC 延长线于点H . 小明说:图中的BH ⊥AD 且平分AD . 小丽说:图中AC 平分∠BAD .xDCaaab bb b a D CBA ABCDH小强说:图中点C 为BH 的中点.他们的说法中正确的是___________.他的依据是_____________________.16.已知二次函数x m x y )12(2-+=,当0<x 时,y 随x 的增大而减小,则m 的取值范围是__________.三、解答题(共6道小题,每小题5分,共30分) 17.计算:101tan 602()(2)3π-︒+-+18. 解不等式组:⎪⎩⎪⎨⎧>++≤-x x x x 23105)2(319. 如图,在等边△ABC 中,点D 为边BC 的中点,以AD 为边作等边△ADE ,连接BE .求证:BE=BD20. 关于x 的一元二次方程0)12(2=++-m x m x (1)求证:方程总有两个不相等的实数根; (2)写出一个m 的值,并求此时方程的根.21. 如图,在平行四边形ABCD 中,点E 为BC 的中点,AE 与对角线BD 交于点F . (1)求证:DF =2BF ; (2)当∠AFB =90°且tan ∠ABD =21时, 若CD =5,求AD 长. FEDCBABCAED22. 2018年共享单车横空出世,更好地解决了人们“最后一公里”出行难的问题,截止到2018年底, “ofo 共享单车”的投放数量是“摩拜单车”投放数量的1.6倍,覆盖城市也远超于“摩拜单车”, “ofo 共享单车”注册用户量约为960万人,“摩拜单车”的注册用户量约为750万人,据统计使用一辆“ofo 共享单车”的平均人数比使用一辆“摩拜单车”的平均人数少3人,假设注册这两种单车的用户都在使用共享单车,求2018年“摩拜单车”的投放数量约为多少万台?四、解答题(共4道小题,每小题5分,共20分) 23. 一次函数1+2y x b =-(b 为常数)的图象与x 轴交于点A (2,0),与y 轴交于点B ,与反比例函数xky =的图象交于点C (-2,m ). (1)求点C 的坐标及反比例函数的表达式;(2)过点C 的直线与y 轴交于点D ,且1:2:=BO C CBD S S △△,求点D 的坐标.24. 近几年,中国在线旅游产业发展迅猛,在线旅游产业是依托互联网,以满足旅游消费者信息查询、产品预订及服务评价为核心目的,囊括了包括航空公司、酒店、景区、租车公司、海内外旅游服务供应商及搜索引擎、OTA 、电信运营商、旅游资讯及社区网站等在线旅游平台的新产业.据数据统计:2018年中国在线旅游市场交易金额约为2219亿元,2018年中国在线旅游市场交易金额约为3015亿元,2018年中国在线旅游市场交易金额相比2018年增加了1117亿元,2018年中国在线旅游市场交易金额约为5424亿元,2018年中国在线旅游市场交易金额为6622亿元,在人们对休闲旅游观念的不断加强之下,未来两年中国在线旅游市场交易规模会持续上涨.(1)请用折线统计图或条形统计图将2018—2018年中国在线旅游市场交易金额的数据描述出来,并在图中标明相应数据;(2)根据绘制的统计图中提供的信息,预估2018年中国在线旅游市场交易金额约为___________亿元,你的预估理由是_______________________________________.25. 如图,AB 为⊙O 的直径,点D ,E 为⊙O 上的两个点,延长AD 至C ,使∠CBD=∠BED .(1)求证:BC 是⊙O 的切线;(2)当点E 为弧AD 的中点且∠BED=30°时,⊙O 半径为2,求DF 的长度.BCA26.有这样一个问题:探究函数2)2(1-=x y 的图象与性质,小静根据学习函数的经验,对函数2)2(1-=x y 的图象与性质进行了探究,下面是小静的探究过程,请补充完整:(1)函数2)2(1-=x y 的自变量x 的取值范围是__________;(2)下表是y 与x 的几组对应值.(3)如图,在平面直角坐标系xOy 中,描出以上表中各对对应值为坐标的点,根据描出的点画出该函数的图象;(4)结合函数图象,写出一条该函数图象的性质:______________________________.五、解答题(共3道小题,第27,28小题各7分,第29小题8分,共22分)27. 在平面直角坐标系xOy 中,抛物线)0(42≠-=m mx mx y 与x 轴交于A ,B 两点(点A在点B 的左侧).(1)求点A ,B 的坐标及抛物线的对称轴;(2)过点B 的直线l 与y 轴交于点C ,且2tan =∠ACB ,直接写出直线l 的表达式; (3)如果点)(1n x P ,和点)(2n x Q ,在函数)0(42≠-=m mx mx y 的图象上,PQ=2a且21x x >, 求26221+-+a ax x 的值.28. 如图,在正方形ABCD 中,E 为AB 边上一点,连接DE ,将△ADE 绕点D 逆时针旋转90°得到△CDF ,作点F 关于CD 的对称点,记为点G ,连接DG . (1)依题意在图1中补全图形;(2)连接BD ,EG ,判断BD 与EG 的位置关系并在图2中加以证明; (3)当点E 为线段AB 的中点时,直接写出∠EDG 的正切值.EDCBA图2图1ABCDE备用图ABCD29.在平面直角坐标系xOy中,给出如下定义:对于⊙C及⊙C外一点P,M,N是⊙C上两点,当∠MPN最大时,称∠MPN为点P 关于⊙C的“视角”.(1)如图,⊙O的半径为1,○1已知点A(0,2),画出点A关于⊙O的“视角”;若点P在直线x = 2上,则点P关于⊙O的最大“视角”的度数;○2在第一象限内有一点B(m,m),点B关于⊙O的“视角”为60°,求点B的坐标;○3若点P在直线2y x=+上,且点P关于⊙O的“视角”大于60°,求点P的横坐标Px的取值范围.(2)⊙C的圆心在x轴上,半径为1,点E的坐标为(0,1),点F的坐标为(0,-1),若线段EF上所有的点关于⊙C的“视角”都小于120°,直接写出点C的横坐标Cx的取值范围.xxx昌平区2018-2019学年度第二学期初三年级第二次模拟测试数学参考答案及评分标准 2018. 5一、选择题(共10道小题,每小题3分,共30分)二、填空题(共6道小题,每小题3分,共18分)三、解答题(共6道小题,每小题5分,共30分)17.解: 101tan 602()(2)3π-︒+-+21=- …………………………………………………………… 4分4= . (5)分18.解: 3(2)51023x x x x -≤+⎧⎪⎨+>⎪⎩①②解不等式①,得14x ≥.………………………………………………………………2分解不等式②,得2x < . ……………………………………………………………4分 ∴ 原不等式组的解集为124x ≤<.………………………… 5分错误!未找到引用源。
2018年北京市初三数学二模分类汇编-第6讲:圆及答案

第6讲 圆一、选填题【2018·昌平二模】1.如图,在圆O 的内接四边形ABCD 中,AB =3,AD =5,∠BAD =60°,点C 为弧BD 的中点,则AC 的长是 .【2018·朝阳二模】2.如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,点D 在圆O 上,弧BD =弧CD ,AB=10,AC =6,连接OD 交BC 于点E ,DE = .【答案】2【2018·房山二模】3. 如图,AB 为⊙O 的直径,弦CD AB ,垂足为点E ,连结OC ,若OC =5,CD =8,则AE = .【答案】2 ;【2018·海淀二模】4.如图,圆O 的弦GH ,EF ,CD ,AB 中最短的是 A . GH B. EF C.CD D. ABCB【答案】A【2018·石景山二模】5.如图,⊙O 的半径为2,切线AB的长为点P 是⊙O 上的动点,则AP 的长的取值范围是__________.【答案】26AP ≤≤.【2018·西城二模】6. 如图,AB 为⊙O 的直径,AC 与⊙O 相切于点A ,弦BD ∥OC .若36C ∠=︒,则∠DOC= ︒.【答案】54【2018·东城二模】7. 如图,在△ABC 中,AB =AC ,BC =8. O e 是△ABC 的外接圆,其半径为5. 若点A 在优弧BC 上,则tan ABC ∠的值为_____________.【答案】2E D【2018·海淀二模】8.如图,AB 是⊙O 的直径,C 是⊙O 上一点,6OA =,30B ∠=︒,则图中阴影部分的面积为 .【答案】6π【2018·西城二模】9. 如图,等边三角形ABC 内接于⊙O ,若⊙O 的半径为2,则图中阴影部分的面积等于 .【答案】π34【2018·朝阳二模】10.⊙O 是一个正n 边形的外接圆,若⊙O 的半径与这个正n 边形的边长相等,则n 的值为(A )3 (B )4 (C )5 (D )6 【答案】D【2018·东城二模】11. 在平面直角坐标系xOy 中,若点()3,4P 在O e 内,则O e 的半径r 的取值范围是A. 0r <<3B. r >4C. 0r <<5D. r >5 【答案】D 二、解答题【2018·昌平二模】1. 如图,AB 是⊙O 的直径,弦CD AB ⊥ 于点E ,过点C 的切线交AB 的延长线于点F ,连接DF .(1)求证:DF 是⊙O 的切线;(2)连接BC ,若BCF ∠=30°,2BF =,求CD 的长.BA【答案】(1)证明:连接OD ∵CF 是⊙O 的切线∴∠OCF=90°………………………………………1分 ∴∠OCD+∠DCF=90°∵直径AB ⊥弦CD 错误!未定义书签。
中考数学试题-2018年北京市昌平区二统数学试题和答案

昌平区2018—2018学年初三年级第二次统一练习数学试卷(120分钟)2018.5第Ⅰ卷(机读卷共32分)一、选择题(共8个小题,每小题4分,共32分.)在下列各题的四个备选答案中,只有一个是正确的.请将正确答案填入题后的答题表中. 1.4的算术平方根是A.16 B.2 C.-2 D.±22.某人到瓷砖商店去购买一种多边形形状的瓷砖,用来铺设无缝地板,他购买的瓷砖形状不.可以是A.正三角形B.矩形C.正六边形D.正八边形3.已知:如图,A、B、C是⊙O上的三个点,∠AOC=100°,则∠ABC的度数为A.30° B.45° C.50° D. 60°4.如果反比例函数kyx=的图象经过点(12)-,,那么k的值是A.2-B.2C.12-D.125.下列事件中,是必然事件的是A.我市夏季的平均气温比冬季的平均气温高.B.掷一枚均匀硬币,正面一定朝上.C.打开电视机,正在播放动画片.D.每周的星期日一定是晴天.6.已知3是关于x的方程x2-3a+1=0 的一个根,则1-3a的值是A. -10B. - 9C. -3D. -11CB AO7.已知在ABC ∆中,A ∠、B ∠都是锐角,21sin cos 02A B ⎛+-= ⎝⎭,则C ∠的度数是 A.30° B.45° C.60° D.90°8.如图,四边形ABCD 、A 1B 1BA 、…、A 5B 5B 4A 4都是边长为1的小正方形. 已知∠ACB=α, ∠A 1CB 1=1α,…,∠A 5CB 5=5α. 则54211tan tan tan tan tan tan αααααα⋅++⋅+⋅ 的值为A. 1B.5C.45D. 56第一大题答题表:二、填空题(共4个小题,每小题4分,共16分.)9.如图,ABC △中,DE BC ∥, 若13AD AB =, 则:ADE ABC S S ∆∆ = .10. 甲、乙两名同班同学的5次数学测验成绩(满分120分)如下: 甲:97,118,95,110,95 乙:90,110,95,115,90经计算,它们的平均分甲x =100,乙x =100;方差是2S 甲=33.6,2S 乙 =110,则这两名同学在这5次数学测验中成绩比较稳定的是 同学.11.在下面等式的 内填数,O 内填运算符号,使等式成立(两个算式中的运算符号不能相同): .;12.如图:六边形ABCDEF 中,AB 平行且等于ED 、AF 平行且等于 CD 、BC 平行且等于FE ,对角线FD ⊥BD. 已知FD=4cm ,BD=3cm.则六边形ABCDEF 的面积是 cm 2.FEDCBAA B CDEA 2B 2B 5A 5B 4B 3A 4A 3A 1B 1DC BA三、解答题(共4个小题,13、16题5分,14题4分,15题6分,共20分.) 13.计算:()012007+-+解:14.化简:()()234226123x x xx-+-÷解:15. 已知:如图,梯形ABCD 中,A D ∥BC ,BD 平分∠ABC ,∠A=120°,BD=BC= (1)求证:AB=AD ;(2)求△BCD 的面积.16.有这样一道题:“先化简,再求值:22241244x x x x x -⎛⎫+÷⎪+--⎝⎭,其中x =”小玲做题时把“x =x =,但她的计算结果也是正确的,请你解释这是怎么回事? 解:CA BD四、解答题(共3个小题,17题8分,18、19题各5分,共18分.)17. 小刚想给小东打电话,但忘了电话号码中的一位数字,只记得号码是185□9456(□表示忘记的数字).(1)若小刚从0至9的自然数中随机选取一个数放在□位置,求他拨对小东电话号码的概率;(2)若□位置的数字是不等式组2110142x x x ->⎧⎪⎨+⎪⎩,≤的整数解,求□可能表示的数字. (3) 在(2)的条件下,若规定小东八位电话号码的奇数位是奇数,偶数位是偶数,则小刚拨对小东电话号码的概率是多少? (注:小刚知道(2)中不等式组的整数解.) 解:18.某数学兴趣小组的同学在一次数学活动中,为了测量一棵银杏树AB 的高,他们来到与银杏树在同一平地且相距18米的建筑物CD 上的C 处观察,测得银杏树顶部A 的仰角为30°、底部B 的俯角为45°. 求银杏树AB 的高(精确到1米).(可供选用的数据:7.13,4.12≈≈).解:MD CBA19. 在正常情况下,一个人在运动时所能承受的每分钟心跳的最高次数S(次/分)是这个人年龄n(岁)的一次函数. 已知在正常情况下,年龄15岁和45岁的人在运动时所能承受的最高心跳次数分别为164次/分和144次/分.(1)根据以上信息,求在正常情况下,S关于n的函数关系式;(2)若一位63岁的人在跑步,医生在途中给他测得10秒心跳为26次,问:他是否有危险?为什么?解:五、解答题(共2个小题,20题4分,21题6分,共10分.)20.将网格中的图形以点O为位似中心放大为原来的2倍,画出一个放大后的图形即可.解:E ABPCD21.五一期间,某区一中、二中组织100名优秀教师去某景区旅游,(其中一中教师多于二中教师),景区门票价格规定如下表:若两校都以校为单位一次性购票,则两校一共需付4725元,求两校各有多少名优秀教师参加这次旅游?若两校联合起来,作为一个团体购票,能节约多少钱?六、解答题(本题满分8分.)22.如图,梯形ABCD 中,AD ∥BC ,∠ABC=90°,AD=9,BC=12,AB=a ,在线段BC 上取一点P ,连结DP ,作射线PE ⊥DP ,PE 与直线..AB 交于点E. (1)试确定CP=3时,点E 的位置;(2)若设CP=x ,BE=y ,试写出y 关于自变量x 的 函数关系式;(3)若在线段BC 上只找到唯一一点P ,使上述作法得到的点E 与点A 重合,试求出此时a 的值. 解:七、解答题(本题满分7分.)23. 抛物线()02≠++=a c bx ax y 交x 轴于A 、B 两点,交y 轴于点C ,已知抛物线的对称轴为直线x = -1,B(1,0),C(0,-3).(1)求抛物线的解析式;(2)在抛物线对称轴上是否存在一点P ,使点P 到A 、C 两点 距离之差最大?若存在,求出点P 坐标;若不存在,请说明理由. 解:(1) (2)八、解答题(本题满分9分.)24.△ABC 中,∠BAC=90°,AB=AC ,点D 是BC 的中点,把一个三角板的直角顶点放在点D 处,将三角板绕点D 旋转且使两条直角边分别交AB 、AC 于E 、F .(1)如图1,观察旋转过程,猜想线段AF 与BE 的数量关系并证明你的结论; (2)如图2,若连接EF ,请探索线段BE 、EF 、FC 之间的关系;(3)如图3,若将“AB=AC ,点D 是BC 的中点”改为:“∠B=30°,AD ⊥BC 于点D ”,其余条件不变,探索(1)中结论是否成立?若不成立,请探索关于AF 、BE 的比值. 解:E FDCBAE FDCBAEF CBAB 2018-2018学年第二次统练参考答案 18.5二、填空题(本题共16分,每小题4分.)三、解答题(共4个小题,13、16题5分,14题4分,15题6分,共20分.) 13.解:原式21-……………………4分 = 1 ……………………5分 14.解:原式=22424x x x +-……………………3分 =2x ……………………4分 15.(1)证明:∵ AD ∥BC ∴ ∠1 = ∠2 又∵BD 平分∠ABC∴ ∠2=∠3 ∴ ∠1=∠3∴ AB=AD ……………………3分(2)解:过点D 作DE ⊥BC 于E ………………………4分 ∵120A ∠=,AD ∥BC ∴∠ABC=60o∵BD 平分∠ABC ∴o ABC 30212=∠=∠在BDE Rt ∆中∴12DE BD ==5分∴1232342121=⨯⨯=⋅=∆DE BC S BCD ……………………6分16.解:解:22241244x x x x x -⎛⎫+÷⎪+--⎝⎭ 222444(4)4x x x x x -++=⨯--……………………………………………3分54321M ABCD 24x =+ ……………………4分因为x =x =2x 的值均为3,原式的计算结果都为7.所以把“x =“x =,计算结果也是正确的.……………………5分四、解答题(共3个小题,17题8分,18、19题各5分,共18分.) 17.解:(1)画出树状图或列表正确给4分,(图略)所以,他拨对小东电话号码的概率是110……………………2分 (2)解不等式(1)得x >112……………………3分 解不等式(2)得x ≤8……………………4分 ∴ 解不等式组的解集是:112<x ≤8 ……………………5分 ∴ 整数解是6,7,8∴□表示的数字可能是 6,7,8……………………6分 (3)他拨对小东电话号码的概率是21……………………8分18.解:由题意得:130,245,4590ABD CDB ∠=∠=∠=∠=∠=∠=BD=18,……………………1分∴∠DCB=∠DBC=45o∴CD =BD =18∴四边形CDBM 是正方形∴CD=BM=CM=18……………………2分 在Rt ACM 中tan 1AMCM∠=∴tan 3018AM CM ===3分 ∴18AB AM BM =+=+4分28AB ∴≈(米)……………………5分答:银杏树高约28米.19.解:(1)设S kn b =+.……………………1分由题设得 {⎩⎨⎧∴-===+=+321741641514445k b b k b k所以,S 关于n 的函数关系式为2174.3S n =-+……………………3分 (2)当63n =时,2631741323S =-⨯+= , ∴每分钟心跳的最高次数为132次.因为这位63岁的人10秒心跳为26次,所以,每分钟心跳为156次, 因此,他有危险,不适合从事如此剧烈的运动.……………………5分五、解答题(共2个小题,20题4分,21题6分,共10分.) 20.解: ,注: 正确给4分,此题只有0分或4分。
2 2018年北京中考二模作图题汇(答案版)

2018昌平二模1.“直角”在初中几何学习中无处不在.课堂上李老师提出一个问题:如图,已知∠AOB .判断∠AOB 是否为直角(仅限用直尺和圆规).李老师说小丽的作法正确,请你写出她作图的依据: . 2018朝阳二模2.下面是“作三角形一边上的高”的尺规作图过程.请回答:该尺规作图的依据是 . 2018东城二模 3. 阅读下列材料:已知:△ABC .求作:△ABC 的边BC 上的高AD .作法:如图, (1)分别以点B 和点C 为圆心,BA,CA 为半径 作弧,两弧相交于点E ;(2)作直线AE 交BC 边于点D. 所以线段AD 就是所求作的高.数学课上老师布置一道作图题:小东的作法如下:老师说:“小东的作法是正确的.”请回答:小东的作图依据是 . 2018房山二模 4.阅读下面材料:老师说:“小亮的作法正确”请回答:小亮的作图依据是.丰台二模5.数学课上,老师提出如下问题:△ABC 是⊙O 的内接三角形,OD ⊥BC 于点D .请借助直尺,画出△ABC 中∠BAC 的平分线.C晓龙同学的画图步骤如下: (1)延长OD 交»BC于点M ; (2)连接AM 交BC 于点N.所以线段AN 为所求△ABC 中∠BAC 的平分线.请回答:晓龙同学画图的依据是 .2018海淀二模请回答:在上面的作图过程中,①ABC △是直角三角形的依据是 ;②ABC △是等腰三角形的依据是 .2018平谷二模7.在数学课上,老师提出一个问题“用直尺和圆规作以AB 为底的等腰直角三角形ABC ”. 小美的作法如下:○1分别以点A ,B 为圆心,大于12AB 作弧,交于点M ,N ; ○2作直线MN ,交AB 于点O ; ○3以点O 为圆心,OA 为半径,作半圆,交直线MN 于点C ; ○4连结AC ,BC . OQB所以,△ABC 即为所求作的等腰直角三角形. 请根据小美的作法,用直尺和圆规作以AB 为底的等腰直角三角形ABC ,并保留作图痕迹.这种作法的依据是 .2018石景山二模8.已知:在四边形ABCD 中,∠ABC =∠ADC =90º,M 、N 分别是CD 和BC 上的点. 求作:点M 、N ,使△AMN 的周长最小. 作法:如图,(1)延长AD ,在AD 的延长线上截取DA ´=DA ; (2)延长AB ,在AB 的延长线上截取B A″=BA ; (3)连接A′A″,分别交CD 、BC 于点M 、N . 则点M 、N 即为所求作的点.请回答:这种作法的依据是_____________.2018怀柔二模9. 下面是“已知线段AB ,求作在线段AB 上方作等腰Rt △ABC .”的尺规作图的过程. 已知:线段AB .求作:在线段AB 上方作等腰Rt △ABC . 作法:如图(1)分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于E ,F 两点; (2)作直线EF ,交AB 于点O ;(3)以O 为圆心,OA 为半径作⊙O ,在AB 上方交EF 于点C ; (4)连接线段AC ,BC .△ABC 为所求的等腰Rt △ABC .请回答:该尺规作图的依据是____________________________. 2018顺义二模ABA ''A 'N MDCBA ABCD AB10.同学们设计了一个重复抛掷的实验:全班48人分为8个小组,每组抛掷同一型号的一枚瓶盖300次,并记录盖面朝上的次数,下表是依次累计各小组的实验结果.根据实验,你认为这一型号的瓶盖盖面朝上的概率为 ,理由是: . 2018门头沟二模11. 以下是通过折叠正方形纸片得到等边三角形的步骤问题:在折叠过程中,可以得到PB=PC ;依据是________________________.参考答案:1.两条边相等的三角形为等腰三角形,等腰三角形的三线合一2.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义.3.三边分别相等的两个三角形全等;全等三角形的对应角相等;两点确定一条直线;内错角相等两直线平行.4. 两点确定一条直线;同圆或等圆中半径相等;5. 垂径定理,等弧所对的圆周角相等.6.①直径所对的圆周角为直角②线段垂直平分线上的点与这条线段两个端点的距离相等7. 线段垂直平分线上的点到线段两个端点的距离相等;直径所对的圆周角是直角;到线段两个端点的距离相等的点在线段的垂直平分线上.8①线段垂直平分线的定义(或线段垂直平分线的判定,或轴对称的性质即对称点的连线段被对称轴垂直平分)②线段垂直平分线上的点到线段两个端点的距离相等(线段垂直平分线的性质);③两点之间线段最短.9.到线段两端距离相等的点在线段的垂直平分线上;线段的垂直平分线上的点到线段两端距离相等;两点确定一条直线;圆的定义;直径所对的圆周角为90°.10. 0.532 ,在用频率估计概率时,试验次数越多越接近,所以取1-8组的频率值.11. 线段垂直平分线上的点到线段两端的距离相等。
北京市各区2018年初三数学中考二模《代几综合题》汇编.docx

北京市各区2018 年初三下学期数学二模试题分类汇编2018 昌平二模28.在平面直角坐标系xOy 中,对于任意三点A、B、 C我们给出如下定义:“横长” a:三点中横坐标的最大值与最小值的差,“纵长”b:三点中纵坐标的最大值与最小值的差,若三点的横长与纵长相等,我们称这三点为正方点 .例如:点 A ( 2 ,0),点 B (1,1),点 C( 1, 2 ),则A、B、C 三点的“横长”a=|1 (2)|= 3 ,A、B、C三点的“纵长”b = |1 ( 2) |=3. 因为a = b ,所以A、B、C三点为正方点 .(1)在点R (3,5), S (3,2),T (4, 3 )中,与点A、B为正方点的是;(2)点 P (0,t) 为y轴上一动点,若A,B,P三点为正方点,t 的值为y432B1Ax –4–3–2–1O1 2 3 4–1C–2–3–4;(3)已知点D (1 ,0) .①平面直角坐标系中的点 E 满足以下条件:点 A ,D, E 三点为正方点,在图中画出所有符合条件的点 E 组成的图形;1m 上存在点N,使得 A ,D,N三点为正方点,直接写出m 的取②若直线 l :yx2值范围.y y55443322A 1A1DxDx–5–4–3–2–1 O 1 2 3 4 5–5–4–3–2–1 O 1 2 3 4 5–1–1–2–2–3–3–4–4–5–52018 朝阳二模28. 对于平面直角坐标系xOy 中的点 P 和直线 m,给出如下定义:若存在一点P,使得点 P 到直线 m 的距离等于,则称P为直线m的平行点.(1)当直线m 的表达式为y=x 时,①在点 P1(1, 1), P2( 0, 2 ),P3(2,2)中,直线m的平行点是;22②⊙ O 的半径为10 ,点Q在⊙O上,若点Q为直线m的平行点,求点Q 的坐标 .(2)点 A 的坐标为( n, 0),⊙ A 半径等于1,若⊙ A 上存在直线y3x 的平行点,直接写出 n 的取值范围.2018 东城二模28. 研究发现,抛物线 y1x 2 上的点到点 F(0,1)的距离与到直线 l : y1的距离相等 .4如图 1 所示,若点 P 是抛物线 y1 x2 上任意一点, PH ⊥ l 于点 H ,则 PFPH .4基于上述发现, 对于平面直角坐标系 x O y 中的点 M ,记点 M 到点 P 的距离与点 P 到点 F的距离之和的最小值为d 称 d 为点 M 关于抛物线y1 2 ,x 的关联距离; 当 2≤ d ≤4 时,4称点 M 为抛物线 y1x 2 的关联点 .4( 1 )在点 M 1 (2,0) , M 2 (12), , M 3 (4,5) , M 4 (0, 4) 中,抛物线 y1x 2 的关联点是4______ ;(2)如图 2,在矩形 ABCD 中,点 A(t ,1) ,点 C (t 13),①若 t=4,点 M 在矩形 ABCD 上,求点 M 关于抛物线 y1 x2 的关联距离 d 的取值范4围;②若矩形 ABCD 上的所有点都是抛物线y1 x2 的关联点,则 t 的取值范围是4__________.2018 房山二模28. 已知点 P,Q 为平面直角坐标系xOy 中不重合的两点,以点 P 为圆心且经过点Q 作⊙ P,则称点 Q 为⊙ P 的“关联点” ,⊙ P 为点 Q 的“关联圆” .(1)已知⊙O的半径为1,在点E F13( 1, 1),(-2,2),M( 0,- 1)中,⊙ O 的“关联点”为;(2)若点P2, 0),点Q n Q为点P的“关联圆” ,且⊙Q的半径为 5 ,求n (( 3,),⊙的值;3)已知点D0 2H m2),⊙D是点H的“关联圆” ,直线 y4((,),点(,x 4与 x3轴, y 轴分别交于点A, B. 若线段 AB 上存在⊙ D 的“关联点” ,求 m 的取值范围 .2018 丰台二模28.在平面直角坐标系 xOy 中,将任意两点 P x 1 , y 1 与 Q x 2, y 2 之间的“直距” 定义为:D PQ x 1 x 2y 1 y 2 .MN1 32 ( 5) 5例如:点 M ( 1,), 点 N ( 3,5),则2D.已知点 A(1, 0)、点 B(- 1,4).(1)则 D AO_______ , D BO _______;( 2)如果直线 AB 上存在点 C ,使得 D CO 为 2,请你求出点 C 的坐标;( 3)如果⊙ B 的半径为 3,点 E 为⊙ B 上一点,请你直接写出 D EO 的取值范围 .yy6 6 5 5 4 4 3 3 2 2 117 6 5 4 3 2 1 O1 2 3 4 5 6 x 7 6 5 4 3 2 1O 1 2 3 4 5 6 x1 12 23 34 45 56 67 7 882018 海淀二模28.对某一个函数给出如下定义:若存在实数 k ,对于函数图象上横坐标之差为 1 的任意两点 (a,b1) , (a 1,b2 ) ,b2 b1k 都成立,则称这个函数是限减函数,在所有满足条件的 k 中,其最大值称为这个函数的限减系数.例如,函数y x 2 ,当x取值a和 a1时,函数值分别为 b1a 2 , b2a1,故 b2 b11k ,因此函数 y x 2 是限减函数,它的限减系数为 1 .(1)写出函数y2x1的限减系数;(2)m 0,已知y 1x m, x0 )是限减函数,且限减系数k 4 ,求m的取( 1x值范围.(3)已知函数y x2的图象上一点P ,过点 P 作直线l垂直于 y 轴,将函数y x2的图象在点 P 右侧的部分关于直线l 翻折,其余部分保持不变,得到一个新函数的图象,如果这个新函数是限减函数,且限减系数k 1 ,直接写出P点横坐标n的取值范围.y y665544332211 7 6 5 4 3 2 1 O1 2 3 4 5 6 x 7 6 5 4 3 2 1O1 2 3 4 5 6 x11 22 33 44 55 66 77 882018 平谷二模28.对于平面直角坐标系xOy 中的点 P 和⊙M,给出如下定义:若⊙M 上存在两个点A,B,使 AB=2PM,则称点 P 为⊙M的“美好点”.(1)当⊙M半径为 2,点 M 和点 O 重合时,○P 2,0P 11,P 2,2中,⊙ O 的“美好点”是;1点1,2,3○2点 P 为直线 y=x+b 上一动点,点P 为⊙O的“美好点”,求 b 的取值范围;(2)点 M 为直线 y=x 上一动点,以 2 为半径作⊙M,点 P 为直线 y=4 上一动点,点P 为⊙ M 的“美好点”,求点M 的横坐标 m 的取值范围.2018 石景山二模28.在平面直角坐标系 xOy 中,对于任意点 P ,给出如下定义:若⊙ P 的半径为 1,则称⊙ P 为点 P 的“伴随圆” .(1)已知,点 P 1,0 ,①点 A1,3 22在点 P 的“伴随圆” (填“上”或“内”或“外”);②点 B 1,0 在点 P 的“伴随圆”(填“上”或“内”或“外” );(2)若点 P 在 x 轴上,且点 P 的“伴随圆”与直线 y3x 相切,求点 P 的坐标;(3)已知直线 y x 2 与 x 、 y 轴分别交于点3x 2 与 x 、 y 轴分别交于点 A ,B ,直线 yC ,D ,点 P 在四边形 ABCD 的边上并沿 AB BCCDDA 的方向移动,直接写出点 P 的“伴随圆”经过的平面区域的面积.2018 西城二模28. 对于平面直角坐标系xOy 中的点Q( x, y)( x≠0),将它的纵坐标 y 与横坐标 x 的比y称x为点 Q 的“理想值” ,记作L Q .如Q(21,2) 的“理想值” L Q 2 .1(1)①若点Q(1,a)在直线y x 4上,则点 Q 的“理想值”L Q等于_________;②如图, C( 3,1) ,⊙C的半径为 1.若点Q在⊙C上,则点Q的“理想值”L Q的取值范围是.(2)点 D 在直线y 3x+3 上,⊙D的半径为1,点Q在⊙D上运动时都有0≤ LQ≤ 3 ,3求点 D 的横坐标x D的取值范围;(3)M (2, m)( m> 0),Q 是以 r 为半径的⊙ M 上任意一点,当0≤ L Q≤2 2 时,画出满足条件的最大圆,并直接写出相应的半径r 的值 .(要求画图位置准确,但不必尺规作图)2018 怀柔二模1AP28. A 为⊙ C 上一点,过点 A 作弦 AB,取弦 AB 上一点 P,若满足1,则称P3AB为点 A 关于⊙ C 的黄金点.已知⊙ C 的半径为 3,点 A 的坐标为( 1, 0).(1)当点 C 的坐标为( 4,0)时,①在点 D( 3, 0), E(4, 1), F( 7, 0)中,点 A 关于⊙ C 的黄金点是;②直线 y33x上存在点 A 关于⊙ C 的黄金点 P,求点 P 的横坐标的取值范围;33(2) 若 y 轴上存在点 A 关于⊙ C 的黄金点,直接写出点 C 横坐标的取值范围...。
2018年北京市昌平区中考二模数学试题及答案 精品

昌平区2018年初三年级第二次统一练习2014.6铅笔作答,其他试题一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的.1.5-的相反数是A.5B.15C.15-D.5-2.植树造林可以净化空气、美化环境. 据统计一棵50年树龄的树,以累计计算,除去花、果实与木材价值,总计创值约196 000美元.将196 000用科学记数法表示应为A.319610⨯ B.419.610⨯ C.51.9610⨯D.60.19610⨯3.若右图是某几何体的三视图,则这个几何体是A.三菱锥 B.圆柱 C.球D.圆锥俯视图 主视图 左视图4.六边形的内角和为A .360︒B .540︒C .720︒D .1080︒5.如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应的颜色,转动转盘,随机转盘停止后,指针指向蓝色区域的概率是A .16 B .13 C .12 D .236.如图,把一块直角三角板的直角顶点放在直尺的一边上,1=35°,那么∠2的度数为 A .35°B .45°C .55°D .65°7.10名同学分成A 、B 两队进行篮球比赛,他们的身高(单位:cm )如下表所示:AO DC 183设A 、B 两队队员身高的平均数分别为A x ,B x ,身高的方差分别为2A S ,2B S ,则下列关系中完全正确的是A .AB x x =,22A B S S>B .A B x x =,22A B S S<C .A B x x >,22A B S S > D .A B x x <,22A B S S<8.如图1,已知点E 、F 、G 、H 是矩形ABCD 各边的中点,AB=6,AD=8.动点M 从点E 出发,沿E →F →G →H →E 匀速运动,设点M 运动的路程为x ,点M 到矩形的某一个顶点的距离为y , 如果y 关于x 的函数图象如图2所示,则矩形的这个顶点是H GFED A图1 图2A .点A B. 点B C. 点C D. 点D二、填空题(共4道小题,每小题4分,共16分)9.函数y x 的取值范围是 .10.如图,⊙O 的直径CD ⊥弦AB ,∠AOC =50°,则∠CDB 的大小为 .11.如图,李大爷要借助院墙围成一个矩形菜园ABCD ,用篱笆围成的另外三边总长为24m ,设BC 的长为x m ,矩形的面积为y m 2,则y 与x 之间的函数表达式为 .12.如图,在平面直角坐标系中,已知点()()3,00,4A B -,,对△AOB 连续作旋转变化,依次得到三角形①、②、③、④、…,则第⑦个三角形的直角顶点的坐标是 ;第 个三角形的直角顶点的坐标是 .三、解答题(共6道小题,每小题5分,共30分) 13.计算:013sin60(-1)2π-︒+-.14. 解不等式组:34,554 2.x x x x +>⎧⎨-<-⎩菜园DC BA墙1715. 如图,AD ⊥BC 于点D ,BE ⊥AC 于点E ,AD 与BE 相交于点F ,且BF =AC .求证:DF =DC .A BCFE16.已知3=y x ,求22222()x y x y xy xy y --÷-的值.17.已知关于 x 的一元二次方程 2410x x m -+-= 有两个相等的实数根,求m 的值及方程的根.18.如图,已知□ABCD ,E ,F 是对角线BD 上的两点,且BE =DF .(1)求证:四边形AECF 是平行四边形;(2)当AE 垂直平分BC 且四边形AECF 为菱形时,直接写出AE ∶AB 的值.E BA四、解答题(共4道小题,每小题5分,共20分)19.如图,定义:若双曲线(0)k y k x=>与直线y =x 相交于A 、B 两点,则线段AB 的长度为双曲线(0)k y k x=>的对径.(1)求双曲线1y x =的对径;(2)若双曲线(0)ky k x=>的对径是,求k 的值.20.在某中学开展的“书香伴我行”读书活动中,为了解九年级300名学生读书情况,随机调查了九年级50名学生读书的册数.统计数据如下表所示:(1)这50个样本数据的众数是 ,中位数是 ;(2)根据样本数据,估计该校九年级300名学生在本次活动中读书多于2册的人数;(3)学校广播站的小记者对被调查的50名学生中读书册数最少和最多的人进行随即采访,请利用树状图或列表,求被采访的两人恰好都是读书册数最多的学生的概率.21.如图,已知BC为⊙O的直径, EC是⊙O的切线,C是切点,EP 交⊙O于点A,D,交CB延长线于点P. 连接CD,CA,AB.(1)求证:∠ECD=∠EAC;(2)若PB=OB=2,CD=3,求PA的长.22.如右图,把边长为a=2的正方形剪成四个全等的直角三角形,在下面对应的正方形网格(每个小正方形的边长均为1)中画出用这四个直角三角形按要求分别拼成的新的多边形(要求全部用上,互不重叠,互不留隙).(1)矩形(非正方形);(2)菱形(非正方形);(3)四边形(非平行四边形).(2)(1)(3)五、解答题(共3道小题,第23题7分,第24题7分,第25题8分,共22分)23.已知抛物线2(31)2(1)(0)y ax a x a a=-+++≠.(1)求证:无论a为任何非零实数,该抛物线与x轴都有交点;(2)若抛物线2(31)2(1)=-+++与x轴交于A(m,0)、B(n,0)y ax a x a两点,m、n、a均为整数,一次函数y=kx+b(k≠0)的图象经过点P(n -l,n+l)、Q(0,a),求一次函数的表达式.24.【探究】如图1,在△ABC中, D是AB边的中点,AE⊥BC于点E,BF⊥AC于点F,AE,BF相交于点M,连接DE,DF. 则DE,DF 的数量关系为 .【拓展】如图2,在△ A B C 中 ,C B = C A ,点 D 是AB 边的 中点 ,点M 在 △ A B C 的内部 ,且 ∠MBC =∠MAC . 过点M 作ME ⊥BC 于点E ,MF ⊥AC 于点F ,连接DE ,DF . 求证:DE =DF ;【推广】如图3,若将上面【拓展】中的条件“CB =CA ”变为“CB ≠CA ”,其他条件不变,试探究DE 与DF 之间的数量关系,并证明你的结论.ADBECMFAD BCMF MABCDF图3图2图125.如图,已知点A (1,0),B (0,3),C (-3,0),动点P (x ,y )在线段AB 上,CP 交y 轴于点D ,设BD 的长为t . (1)求t 关于动点P 的横坐标x 的函数表达式;(2)若S △BCD :S △AOB =2:1,求点P 的坐标,并判断线段CD 与线段AB 的数量及位置关系,说明理由;(3)在(2)的条件下,若M 为x 轴上的点,且∠BMD 最大,请直接写出点M 的坐标.昌平区2013—2014学年初三第二次统一练习数学试卷参考答案及评分标准2014.6一、选择题(共8个小题,每小题4分,共32分)二、填空题(共4个小题,每小题4分,共16分)三、解答题(共6道小题,每小题5分,共30分) 13.解:原式=1312- …………………………………………………………………… 4分12+. ……………………………………………………………………………… 5分14.解:34,554 2.x x x x +>⎧⎨-<-⎩①②由①得,2x >-. ………………………………………………………………………… 2分由②得,3x <. …………………………………………………………………………… 4分∴原不等式组的解集为:23x -<<. (5)分15.证明:∵AD ⊥BC 于D ,BE ⊥AC 于E , ∴90.BDF ADC BEC ∠=∠=∠=︒ 在Rt BEC ∆和Rt ADC ∆中,∠C =∠C ,∴.B A ∠=∠ (1)分在△BDF 和△ADC 中,,,.BDF ADC B A BF AC ∠=∠∠=∠=⎧⎪⎨⎪⎩………………………… 3分 ∴△BDF≌△ADC . ……………………………………………………………………4分∴DF =DC . ……………………………………………………………………………… 5分A BCFE16.解:原式=()()2()()2y x y x y x y xy x y -+-⋅- …………………………………………………………………2分=2x y x+. …………………………………………………………………………………3分 ∵ 3xy =,∴3x y =. …………………………………………………………………………………4分 ∴原式=32233y y y +=⨯. …………………………………………………………… 5分17.解:∵关于 x 的一元二次方程 2410x x m -+-= 有两个相等的实数根, ∴164(1)0m ∆=--=. ……………………………………………………………1分 ∴5m =. …………………………………………………………………………………2分 ∴方程可化为2440x x -+=. ……………………………………………………………3分∴2(2)0x -=.∴122x x ==. (5)分注:正确求出一个根,扣1分.18. (1)证明:连接对角线AC 交对角线BD 于点O . ∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD . …………………………… 2分 ∵点E ,F 是对角线BD 上的两点,且BE =DF ,∴.OB BE OD DF -=-即OE =OF . …………………………… 3分 ∴四边形AECF 是平行四边形. ………………………………………………… 4分 (2)…………………………………………………………………………………………… 5分四、解答题(共4道小题,每小题5分,共20分) 19. 解:(1) ∵1y x=与 y =x 相交于A 、B 两点,∴A (1,1),B (-1,-1). ……………………………………………………OABCDEF……………… 2分∴AB =……………………………………………………………………………3分(2) ∵双曲线(0)k y k x=>的对径是∴AB =.则OA = (4)分设(,)A m m ,OA == ∴m =5. ∴k =25. ……………………………………………………………………………5分20.解:(1)众数为3,中位数为2. …………………………………………………………………2分(2)在50名学生中,读书多于2本的学生有20名,所以,300×=120.………………………………………………………………………3分答:该校八年级300名学生在本次活动中读书多于2册的约有120名.(3)设读书最少的人为A ,读书最多的人为B 1,B 2,B 3.B 2 ……………………………………………………………………………4分被采访的两人恰好都是读书册数最多的学生的情况如下:(B 1,B 2)、(B 1,B 3)、(B 2,B 1)、(B 2,B 3)、(B 3,B 1)、(B 3,B 2),共6种,所以,被采访的两人恰好都是读书册数最多的学生的概率为P==.…………………5分 21. (1)证明:连接BD .∵BC 为⊙O 的直径, ∴90.CDB ∠=︒…………………………………………1分∵EC 与⊙O 相切, ∴90.ECP ∠=︒∵90,90,ECD DCB ECB DBC DCB ∠+∠=∠=︒∠+∠=︒ ∴.ECD CBD ∠=∠ ………………………………2分∵,EAC CBD ∠=∠ ∴∠ECD =∠EAC . ………………………………………………………………………3分(2)作DF ⊥BC 于点F . 在Rt△CDB 中,BD =37CD BD DF BC ==在Rt △CDF 中,9.4CF ==∴15.4PF PC CF =-=在Rt △DFP中,DP ==∵,,PAB PCD P P ∠=∠∠=∠∴PAB ∆∽.PCD ∆.PBPD==. ∴PA = ……………………………………………………………………………5分 22.解:如图,(1) …………………………………………………………………………………… 1分(2)………………………………………………………………………………………… 3分(3)……………………………………………………………………………………… 5分(1)(2)(3)五、解答题(共3道小题,第23题7分,第24题7分,第25题8,共22分)23.解:(1)证明:∵△=[]2a a a-+-⨯+……………………………………………………(31)42(1)1分=221a a-+=2a-≥(1)0∴无论a为任何非零实数,该抛物线与x轴都有交点.……………………………… 2分(2)解:∵抛物线2(31)2(1)=-+++与x轴交于A(m,0)、y ax a x aB(n,0)两点,(3)∴1a≠.令2(31)2(1)(0)y ax a x a a =-+++≠中y =0, 有:2(31)2(1)0ax a x a -+++=.解得:x =2,11.x a=+…………………………………………………………………3分∵m 、n 、a 均为整数, ∴a =-1,m =0,n =2或m =2,n =0. ……………………………………………………… 5分∵一次函数y =kx +b (k ≠0) 的图象经过点P (n -l ,n +l )、Q (0,a ),∴当a =-1,n =2时,有P (1,3)、Q (0,-1),解得:4 1.y x =- ……………………………………………………………6分当a =-1,n =0时,有P (-1,1)、Q (0,-1),解得:2 1.y x =-- ……………………………………………………… 7分24.【探究】DE =DF . …………………………………………………………………………………1分【拓展】如图2,连接CD .∵在△ A B C 中 ,C B = C A ,F MD A∴∠CAB =∠CBA . ∵∠MBC =∠MAC ,∴∠MAB =∠MBA . …………………………… 2分 ∴AM =BM .∵点 D 是 边 AB 的 中点 ,∴点M 在CD上. ……………………………………………………………………… 3分∴CM 平分∠FCE . ∴∠FCD =∠ECD .∵ME ⊥BC 于E ,MF ⊥AC 于F , ∴MF =ME . 又∵CM =CM , ∴△CMF ≌△CME . ∴CF =CE . ∵CD =CD ,∴△CFD ≌△CED . ∴DE =DF . ……………………………………………………………………………… 4分【推广】 DE =DF .如图3,作AM 的中点G ,BM 的中点H .GFDA∵点 D 是 边 AB 的 中点 , ∴1//,.2DG BM DG BM =同理可得:1//,.2DH AM DH AM =∵ME ⊥BC 于E ,H 是BM 的中点, ∴在Rt △BEM 中, 1.2HE BM BH ==∴DG =HE . ………………………………………………………………………………… 5分同理可得:.DH FG = ∵DG //BM ,DH //GM ,∴四边形DHMG 是平行四边形. ∴∠DGM =∠DH M .∵∠MGF =2∠MAC , ∠MHE =2∠MBC , 又∵∠MBC =∠MAC , ∴∠MGF =∠MHE .∴∠DGM +∠MGF =∠DHM +∠MHE . ∴∠DGF =∠DHE . ………………………………………………………………………6分∴△DHE ≌△FGD . ∴DE =DF . ………………………………………………………………………………… 7分25.解:(1)如图,∵点A (1,0),B (0,3),∴直线AB 的解析式为:3 3.y x =-+ ∵OB =3,BD =t , ∴OD =3-t .设P (x ,-3x +3), 作PE ⊥AC 于E ,则OE =x ,PE =-3x +3.∵PE //y 轴, ∴△COD ∽△CEP . ∴OD OC PE CE=∴33.333t x x -=-++∴12(01).3xt x x =≤≤+ …………………………………………………………………… 3分(2)如图,CD =AB ,CD ⊥AB .∵1313,22AOB S ∆=⨯⨯= S △BCD :S △AOB =2:1,∴ 3.BCD S ∆= ∴BD =2. ∴12 2.3xx =+解得:35x =. ∴36,.55P ⎛⎫ ⎪⎝⎭………………………………………………… 4分∵OD =OA =1,OC =OB =3,∠COD =∠BOA =90°, ∴△COD ≌△BOA .∴CD=AB. …………………………………………………………………………… 5分∵△COD≌△BOA,∴∠OCD=∠ABO.又∵∠CDO=∠BDP,∴∠BPD=∠COD=90°.∴CD⊥AB. …………………………………………………………………………………… 6分,(3)MM(. …………………………………………………………………… 8分。
北京市2018年中考数学二模试题汇编代几综合题

代几综合题2018昌平二模28.在平面直角坐标系中,对于任意三点A 、B 、C 我们给出如xOy 下定义:“横长”a :三点中横坐标的最大值与最小值的差,“纵长”b :三点中纵坐标的最大值与最小值的差,若三点的横长与纵长相等,我们称这三点为正方点.例如:点 (,0) ,点 (1,1) ,点 (, ),则、A 2-BC 1-2-A 、三点的 “横长”=||=3,、、三点的“纵B C a 1(2)--A B C 长”=||=3. 因为=,所以、、三点为正方点.b 1(2)--a b A B C (1)在点 (3,5) ,(3,) , (,)中,与点、R S 2-T 4-3-A 为正方点的是 ;B (2)点P (0,t )为轴上一动点,若,,三点为正方点,的值为 ;y A B P t (3)已知点 (1,0).D ①平面直角坐标系中的点满足以下条件:点,,三点为正方点,在图中画出所有符合条件的E A D E 点组成的图形;E ②若直线:上存在点,使得,,三点为正方点,直接写出m 的取值范围. l 12y x m =+N A D N 2018朝阳二模28. 对于平面直角坐标系xOy 中的点P 和直线m ,给出如下定义:若存在一点P ,使得点P 到直线m 的距离等于,则称1P 为直线m 的平行点.(1)当直线m 的表达式为y =x 时,①在点P 1(1,1),P 2(0,),P 3(,)中,直线m 的平行点是 ;222-22②⊙O 的半径为,点Q 在⊙O 上,若点Q 为直线m 的平行点,求点Q 的坐标.10y xxyyx(2)点A 的坐标为(n ,0),⊙A 半径等于1,若⊙A 上存在直线的平行点,直接写出n 的x y 3=取值范围.2018东城二模28. 研究发现,抛物线上的点到点F (0,1)的距离与到直线l :的距离相等.如图1所214y x =1y =-示,若点P 是抛物线上任意一点,PH ⊥l 于点H ,则PH PF =.214y x =基于上述发现,对于平面直角坐标系x O y 中的点M ,记点到点的距离与点到点的距离之M P P F 和的最小值为d ,称d 为点M 关于抛物线的关联距离;当时,称点M 为抛物线214y x =24d ≤≤的关联点.214y x=(1)在点,,,中,抛物线的关联点是______ ;1(20)M ,2(12)M ,3(45)M ,4(04)M -,214y x =(2)如图2,在矩形ABCD 中,点,点(1)A t ,(13)C t +,①若t =4,点M 在矩形ABCD 上,求点M 关于抛物线的关联距离d 的取值范围;214y x =②若矩形ABCD 上的所有点都是抛物线的关联点,则t 的取值范围是__________.214y x =2018房山二模28. 已知点P ,Q 为平面直角坐标系xOy 中不重合的两点,以点P 为圆心且经过点Q 作⊙P ,则称点Q 为⊙P 的“关联点”,⊙P 为点Q 的“关联圆”.(1)已知⊙O 的半径为1,在点E (1,1),F (,),M (0,-1)中,⊙O 的“关联点”为-1232;(2)若点P (2,0),点Q (3,n ),⊙Q 为点P 的“关联圆”,且⊙Q 的半径为,求n 的值;5(3)已知点D (0,2),点H (m ,2),⊙D 是点H 的“关联圆”,直线与x 轴,y 轴分别443y x =-+交于点A ,B . 若线段AB 上存在⊙D 的“关联点”,求m 的取值范围.2018丰台二模28.在平面直角坐标系xOy 中,将任意两点与之间的“直距”定义为:()11,y x P ()22y x Q ,.2121y y x x D PQ -+-=例如:点M (1,),点N (3,),则.2-5-132(5)5MN D =-+---=已知点A (1,0)、点B (-1,4).(1)则,;_______=AO D _______=BO D (2)如果直线AB 上存在点C ,使得为2,请你求出点C 的坐标;CO D (3)如果⊙B 的半径为3,点E 为⊙B 上一点,请你直接写出的取值范围.EO D2018海淀二模28.对某一个函数给出如下定义:若存在实数,对于函数图象上横坐标之差为1的任意两点,k 1(,)a b ,都成立,则称这个函数是限减函数,在所有满足条件的中,其最大值称为这2(1,)a b +21b b k -≥k 个函数的限减系数.例如,函数,当取值和时,函数值分别为,2y x =-+x a 1a +12b a =-+,故,因此函数是限减函数,它的限减系数为.21b a =-+211b b k -=-≥2y x =-+1-(1)写出函数的限减系数;21y x =-(2),已知()是限减函数,且限减系数,求的取值范围.0m >1y x=1,0x m x -≤≤≠4k =m (3)已知函数的图象上一点,过点作直线垂直于轴,将函数的图象在点2y x =-P P l y 2y x =-右侧的部分关于直线翻折,其余部分保持不变,得到一个新函数的图象,如果这个新函数是限减P l 函数,且限减系数,直接写出点横坐标的取值范围.1k ≥-P n2018平谷二模28.对于平面直角坐标系xOy 中的点P 和⊙,给出如下定义:若⊙上存在两个点A ,B ,使M M AB =2PM ,则称点P 为⊙的“美好点”. M (1)当⊙半径为2,点M 和点O 重合时, M 点 ,,中,⊙的“美好点”是 ;○1()120P -,()211P ,()322P ,O 点P 为直线y=x+b 上一动点,点P 为⊙○2的“美O 好点”,求b 的取值范围;(2)点M 为直线y=x 上一动点,以2为半径作⊙,M 点P 为直线y =4上一动点,点P 为⊙的M “美好点”,求点M 的横坐标m 的取值范围.442018石景山二模28.在平面直角坐标系中,对于任意点P ,给出如下定义:若⊙P 的半径为1,则称⊙P 为点P 的xOy “伴随圆”.(1)已知,点,()1,0P ①点在点P 的“伴随圆” (填“上”或“内”或“外”);13,2A ⎛⎝②点在点P 的“伴随圆” (填“上”或“内”或“外”);()1,0B -(2)若点P 在轴上,且点P 的“伴随圆”与直线相切,求点P 的坐标;x x y 33=(3)已知直线与、轴分别交于点A ,B ,直线与、轴分别交于点C ,D ,点2+=x y x y 2-=x y x y P 在四边形的边上并沿的方向移动,直接写出点P 的“伴随圆”经ABCD DA CD BC AB →→→过的平面区域的面积.2018西城二模28. 对于平面直角坐标系xOy 中的点(x ≠0),将它的纵坐标y 与横坐标x 的比 称为点Q (,)Q x y yx的“理想值”,记作.如的“理想值”.Q L (1,2)Q -221Q L ==--(1)①若点在直线上,则点Q 的“理想值”等于_________;(1,)Q a 4y x =-Q L ②如图,,⊙C 的半径为1. 若点Q 在⊙C 上,则点Q 的“理想值”的取值范围是 .(3,1)C Q L (2)点D 在直线上,⊙D 的半径为1,点Q 在⊙D 上运动时都有0≤L Q ,求点D 的3+3y x =3横坐标的取值范围;D x (3)(m >0),Q 是以r 为半径的⊙M 上任意一点,当0≤L Q ≤(2,)M m 22圆,并直接写出相应的半径r 的值.(要求画图位置准确,但不必尺规作图)2018怀柔二模28. A 为⊙C 上一点,过点A 作弦AB ,取弦AB 上一点P ,若满足,则称P 为点A 关于131<≤ABAP⊙C 的黄金点.已知⊙C 的半径为3,点A 的坐标为(1,0).(1)当点C 的坐标为(4,0)时,①在点D (3,0),E (4,1),F (7,0)中,点A 关于⊙C 的黄金点是 ;②直线上存在点A 关于⊙C 的黄金点P ,求点P 的横坐标的取值范围;3333-=x y (2)若y 轴上存在点A 关于⊙C 的黄金点,直接写出点C 横坐标的取值范围.2018门头沟二模28.在平面直角坐标系xOy 中的某圆上,有弦MN ,取MN 的中点P ,我们规定:点P 到某点(直线)的距离叫做“弦中距”,用符号“”表示.d 中以为圆心,半径为2的圆上.(3,0)W -(1)已知弦MN 长度为2.①如图1:当MN ∥x 轴时,直接写出到原点O 的的长度;d 中 ②如果MN 在圆上运动时,在图2中画出示意图,并直接写出到点O 的的取值范围.d 中(2)已知点,点N 为⊙W 上的一动点,有直线,求到直线的(5,0)M -2y x =-2y x =-d 中备用图2018顺义二模28.已知边长为2a 的正方形ABCD ,对角线AC 、BD 交于点Q ,对于平面内的点P 与正方形ABCD ,给出xyWO如下定义:如果≤,则称点P 为正方形ABCD 的“关联点”.a PQ 在平面直角坐标系xOy 中,若A (-1,1),B (-1,-1),C (1,-1),D (1,1) .(1)在,,中,正方形ABCD 的“关联点”有;11(,0)2-P 21(2P 3P (2)已知点E 的横坐标是m,若点E 在直线上,并且E 是正方形ABCD 的“关联点”,求m 的=y 取值范围;(3)若将正方形ABCD 沿x 轴平移,设该正方形对角线交点Q 的横坐标是n ,直线与x 轴、1=+y y 轴分别相交于M 、N 两点.如果线段MN 上的每一个点都是正方形ABCD 的“关联点”,求n 的取值范围.y xO。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
昌平区2017 - 2018学年第二学期初三年级第二次模拟练习数学试卷2018.5一、选择题(共8道小题,每小题2分,共16分.在下列各题的四个备选答案中,只有一个是正确的.)1.将一副直角三角板如图放置,那么∠AOB的大小为()A.150°B.135°C.120°D.90°2.实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a c>B.bc>C.0a d+>D.2b<-3.窗棂即窗格(窗里面的横的或竖的格)是中国传统木构建筑的框架结构设计,窗棂上雕刻有线槽和各种花纹,构成种类繁多的优美图案.下列表示我国古代窗棂样式结构图案中,是中心对称图形但不是轴对称图形的是()A.B.C.D.4.如图,a∥b,以直线b上两点A和B为顶点的Rt△ABC(其中∠C=90°)与直线a相交,若∠1=30°,则∠ABC的度数为()A.30°B.60°C.120°D.150°5.第六届北京农业嘉年华在昌平区兴寿镇草莓博览园举办,某校数学兴趣小组的同学根据数学知识将草莓博览园的游览线路进行了精简.如图,分别以正东、正北方向为x轴、y轴建立平面直角坐标系,如果表示国际特色农产品馆的坐标为(-5,0),表示科技生活馆的点的坐标为(6,2),则表示多彩农业馆所在的点的坐CBA ba112345–1–2–3–4–50标为( )A .(3,5)B .(5,-4)C .(-2,5)D .(-3,3)6.某九年一贯制学校在六年级和九年级的男生中分别随机抽取40名学生测量他们的身高,将数据分组整理后,绘制的频数分布直方图如下:其中两条纵向虚线上端的数值分别是每个年级抽出的40名男生身高的平均数,根据统计图提供的信息,下列结论不合理的是( ) A .六年级40名男生身高的中位数在第153~158cm 组B .可以估计该校九年级男生的平均身高比六年级的平均身高高出18.6cmC .九年级40名男生身高的中位数在第168~173cm 组D .可以估计该校九年级身高不低于158cm 但低于5%7.某校九年级(1)班在“迎中考百日誓师”活动中打算制做一个带有正方体挂坠的倒计时牌挂在班级,正方体的每个面上分别书写“成功舍我其谁”六个字.如图是该班同学设计的正方体挂坠的平面展开图,那么“我”字对面的字是( ) A .舍B .我C .其D .谁8的距离y (千米)与行驶时间x (小时)的对应关系如图所示,下列叙述正确的是( ) A .甲乙两地相距1200千米 B .快车的速度是80千米∕小时 C .慢车的速度是60千米∕小时D .快车到达甲地时,慢车距离乙地100千米2/cm频数六年级九年级二、填空题(共8道小题,每小题2分,共16分)9.写出一个..a <<的整数a 的值为 . 10.如图,∠1是五边形ABCDE 的一个外角.若∠1=60°,则∠A +∠B +∠C +∠D 的度数为_________. (第10题) 11. 如果230a a +-=,那么代数式221()1a a a a a ++⋅+的值是 . 12.近年来,随着新能源汽车推广力度加大,产业快速发展,越来越多的消费者开始接受并购买新能源汽车,我国新能源汽车的生产量和销售量都大幅增长,下图是2014-2017年新能源汽车生产和销售的情况:根据统计图中提供的信息,预估全国2018年新能源汽车销售量约为 万量,你的预估理由是 .13.《孙子算经》是中国古代重要的数学著作,共三卷.卷上叙述了算筹记数的纵横相间制度和筹算乘除法,卷中举例说明筹算分数算法和筹算开平方法,卷下对后世的影响最深,其中卷下记载这样一道经典的问题:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”意思是:“鸡和兔关在一个笼子里,从上面看,有35个头;从下面看,有94条脚.问笼中各有多少只鸡和多少只兔?”,设有鸡x 只,兔子y 只,可列方程组为_____________.14. 为了测量校园水平地面上一棵不可攀爬的树的高度,小文同学做了如下的探索:根据物理学中光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子放在合适的位置,刚好能在镜子里看到树梢顶点,此时小文与平面镜的水平距离为2.0米,树的底部与平面镜的水平距离为8.0米,若小文的眼睛与地面的距离为1.6米,则树的高度约为______米(注:反射角等于入射角).数量(万辆)1525354555657585ABCDE115.“直角”在初中几何学习中无处不在.课堂上李老师提出一个问题:如图,已知∠AOB .判断∠AOB 是否为直角(仅限用直尺和圆规).出她作图的依16. 如图,在圆O 的内接四边形ABCD 中,AB =3,AD =5,∠BAD =60°,点C 为弧BD 的中点,则AC 的长是 .三、解答题(本题共12道小题,共68分,第17-22题每小题5分,第23-26每小题6分,第27题、第28题每小题各7分)17.计算:06sin 4523)+°.18.本题给出解不等式组24543x x x ⎧-<⎪⎨≤+⎪⎩①②的过程,请结合题意填空,完成本题的解答.(1)解不等式①,得 ; (2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来: (4)此不等式组的解集为 .19.解方程:23139x x x -=-- 20.已知关于x 的一元二次方程03)3(2=++-n x n x .(1)求证:此方程总有两个实数根;(2)若此方程有两个不相等的整数根,请选择一个合适的n 值,写出这个方程并求出此时方程的根.DCBAC21.如图,已知△ACB 中,∠ACB =90°,CE 是△ACB 的中线,分别过点A 、点C 作CE 和AB 的平行线,交于点D .(1)求证:四边形ADCE 是菱形;(2)若CE=4,且∠DAE =60°,求△ACB 的面积.22.如图,在平面直角坐标系x O y 中,一次函数+(0)y a x b a =≠与反比例函数ky k x=≠(0)的图象交于点A (4,1)和B (1-,n ).(1)求n 的值和直线+y ax b =的表达式;(2)根据这两个函数的图象,直接写出不等式 0ka xb x+-<的解集.23.某学校八、九两个年级各有学生180人,为了解这两个年级学生的体质健康情况,进行了抽样调查,过程如下,请补充完整. 收集数据从八、九两个年级各随机抽取20名学生,进行了体质健康测试,测试成绩(百分制)如下:八年级78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77 九年级93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 80 70 40 整理、描述数据按如下分数段整理、描述这两组样本数据:(说明:成绩80分及以上为体质健康优秀,70~79分为体质健康良好,60~69分为体质健康合格,60分以下为体质健康不合格) 分析数据x两组样本数据的平均数、中位数、众数、方差如下表所示:请将以上两个表格补充完整; 得出结论(1)估计九年级体质健康优秀的学生人数为__________;(2)可以推断出_______年级学生的体质健康情况更好一些,理由为__________________.(至少从两个不同的角度说明推断的合理性).24. 如图,AB 是⊙O 的直径,弦CD AB ⊥ 于点E ,过点C 的切线交AB 的延长线于点F ,连接DF . (1)求证:DF 是⊙O 的切线;(2)连接BC ,若BCF ∠=30°,2BF =,求CD 的长.25.有这样一个问题:探究函数3126y x x =-的图象与性质.小彤根据学习函数的经验,对函数3126y x x =-的图象与性质进行了探究.下面是小彤探究的过程,请补充完整:(1)求m 的值为 ;(2)如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出了图象的一部分,请根据剩余的点补全此函数的图象; (3)方程31226x x -=-实数根的个数为 ; (4)观察图象,写出该函数的一条性质 ;FA(5)在第(2)问的平面直角坐标系中画出直线12y x =,根据图象写出方程311262x x x -=的一个正数根约为 (精确到0.1).26.在平面直角坐标系xOy 中,抛物线223(0)y ax ax a a =--≠,与x 轴交于A 、B 两点(点A 在点B 的左侧). (1)求点A 和点B 的坐标;(2)若点P (m ,n )是抛物线上的一点,过点P 作x 轴的垂线,垂足为点D .①在0a >的条件下,当22m -≤≤时,n 的取值范围是45n -≤≤,求抛物线的表达式;②若D 点坐标(4,0),当PD AD >时,求a 的取值范围.27.如图,在△ABC 中,AB =AC >BC ,BD 是AC 边上的高,点C 关于直线BD 的对称点为点E ,连接BE .(1) ①依题意补全图形;②若∠BAC =α,求∠DBE 的大小(用含α的式子表示); (2) 若DE =2AE ,点F 是BE 中点,连接AF ,BD =4,求AF 的长.(备用图)D CB A D CB A28.在平面直角坐标系xOy 中,对于任意三点A 、B 、C 我们给出如下定义:“横长”a :三点中横坐标的最大值与最小值的差,“纵长”b :三点中纵坐标的最大值与最小值的差,若三点的横长与纵长相等,我们称这三点为正方点.例如:点A (2-,0) ,点 B (1,1) ,点 C (1-, 2-),则A 、B 、C 三点的 “横长”a =|1(2)--|=3,A 、B 、C 三点的“纵长”b =|1(2)--|=3. 因为a =b ,所以A 、B 、C 三点为正方点.(1)在点R (3,5) ,S (3,2-) ,T (4-,3-)中,与点A 、B 为正方点的是 ;(2)点P (0,t )为y 轴上一动点,若A ,B ,P 三点为正方点,t 的值为 ; (3)已知点D (1,0).①平面直角坐标系中的点E 满足以下条件:点A ,D ,E 三点为正方点,在图中画出所有符合条件的点E 组成的图形;②若直线l :12y x m =+上存在点N ,使得A ,D ,N 三点为正方点,直接写出m 的取值范围.(备用图)昌平区2017-2018学年度第二学期初三年级第二次模拟测试数学参考答案及评分标准 2018. 6xyyxyx一、选择题(共8道小题,每小题2分,共16分)二、填空题(共8道小题,每小题2分,共16分)三、解答题(共12道题,17—22每题5分,23---26每题6分,27、28每题7分,共68分)17.解:06sin4523)°2= (4)分3=. (5)分18.解:24543xx x⎧-<⎪⎨≤+⎪⎩①②解不等式①,得2x >-.………………………………………………………………1分解不等式②,得3x≤.……………………………………………………………2分∴原不等式组的解集为23x-<≤.………………………5分19.解:23139xx x-=--去分母得:2(3)39x x x+-=-………………………………………………………1分解得:2x=-………………………………………………………3分检验:把2x=-代入2950x-=-≠………………………………………………………4分所以:方程的解为2x=-………………………………………………………5分–1–2–31234520.(1)解:2(3)12n m ∆=+-2(3)n =-.……………………………………… 1分2(3)0n -≥∴方程有两个实数根 ………………………………… 2分(2)答案不唯一例如:方程有两个不相等的实根∴3n ≠0n =时,方程化为230x x -= ………………………………………… 3分因式分解为:(3)0x x -=∴10x =,23x = …………………………………………………………………… 5分21.(1)证明:∵AD //CE ,CD //AE∴四边形AECD 为平行四边形 ……………………… 1分 ∵∠ACB =90°,CE 是△ACB 的中线∴CE=AE ………………………………… 2分 ∴四边形ADCE 是菱形 (2)解:∵CE=4,AE= CE=EB ∴AB =8,AE=4∵四边形ADCE 是菱形,∠DAE =60°∴∠CAE =30°………………………………… 3分 ∵在Rt △ABC 中,∠ACB=90°,∠CAB =30°, AB =8cos AC CAB AB ∠==142CB AB == ∴AC= 4分∴12ABC S AC BC ∆=⋅= 5分D ECBA22.解:(1)把点A (4,1)代入ky x=,解得k =4. 把点B (-1,n )代入4y x=,解得4n =-.…………………………………… 1分 点A (4,1)和B (-1,-4)代入+(0)y ax b a =≠得414k b k b +=⎧⎨-+=-⎩解得13k b =⎧⎨=-⎩∴ 一次函数的表达式为3y x =-.………………………………………………………3分 (2)1x <-或04x <<…………………… 5分 23.解:(1)分析数据两组样本数据的平均数、中位数、众数、方差如下表所示:…………………………………………2分 (2)108;………………………………………………………………………………………………3分(3) 答案不唯一,理由需支撑推断结论………………………………………………………………6分 24(1)证明:连接OD ∵CF 是⊙O 的切线∴∠OCF=90°………………………………………1分 ∴∠OCD+∠DCF=90°∵直径AB ⊥弦CD 错误!未找到引用源。