第1章复数与复变函数
合集下载
第一章复变函数

z z 0 r0
为闭区域
(三)复变函数例 1. 多项式
a 0 a1 z a 2 z a n z
2
n
( n 为整数 )
2. 有理分式
a 0 a1 z a 2 z b 0 b1 z b 2 z
2
anz bm z
n m
2
( m 和 n 为整数 )
(e
z
iz
e
z
),
cos z ch z 1 2
1 2
(e
z
iz
e
z
iz
)
(e e
),
(e e
)
ln z ln(| z | e z
s
i Arg z
) ln | z | i Arg z
e
s ln z
( s 为复数 )
sh同sinh,双曲正弦 (hyperbolic sine) ch同cosh, 双曲余弦 (hyperbolic cosine)
全体复数与平面上的点一一对应
y
cos =|z|
•
z=x+iy (x,y) (,)
/2-
复数平面
sin cos(/2-) x
o
z1=x1+i y1 ,z2=x2+i y2,如z1=z2,则x1=x2, y1 = y2
2) 极坐标表示 利用坐标变换:
y arctan 2 2 x 0 2
例5. 指数函数
2 i sin e
i
sin
e 2i
- i
5
3. 辐角主值: 辐角 = Arg
为闭区域
(三)复变函数例 1. 多项式
a 0 a1 z a 2 z a n z
2
n
( n 为整数 )
2. 有理分式
a 0 a1 z a 2 z b 0 b1 z b 2 z
2
anz bm z
n m
2
( m 和 n 为整数 )
(e
z
iz
e
z
),
cos z ch z 1 2
1 2
(e
z
iz
e
z
iz
)
(e e
),
(e e
)
ln z ln(| z | e z
s
i Arg z
) ln | z | i Arg z
e
s ln z
( s 为复数 )
sh同sinh,双曲正弦 (hyperbolic sine) ch同cosh, 双曲余弦 (hyperbolic cosine)
全体复数与平面上的点一一对应
y
cos =|z|
•
z=x+iy (x,y) (,)
/2-
复数平面
sin cos(/2-) x
o
z1=x1+i y1 ,z2=x2+i y2,如z1=z2,则x1=x2, y1 = y2
2) 极坐标表示 利用坐标变换:
y arctan 2 2 x 0 2
例5. 指数函数
2 i sin e
i
sin
e 2i
- i
5
3. 辐角主值: 辐角 = Arg
复数与复变函数

非零复数z的整数n次根式 为:
n
z
=n
iϕ +2kπ
ρe n
=n
ρ (cos ϕ + 2kπ
+ i sin ϕ + 2kπ )
n
n
(k = 0,1,2....n −1)
2. 无穷远点
复平面上一点与球面上的点 一一对应 ,复平面上∝ 点与 球面上N相对应,点的幅角无 意义。复平面+ ∝为闭平面。
(全平面扩充平面)。
ii) 复数“零”的幅角无定义,其模为零.
iii) 当ρ=1时, z = cosϕ + isinϕ = eiϕ称为单位复数.
利用复数的指数形式作乘除法比较简单,如:
z1 z2
=
ρ1 ρ 2 [cos(ϕ1
+ ϕ2 ) + i sin(ϕ1
+ ϕ2 )] =
ρ ρ ei(ϕ1 +ϕ2 ) 12
z1 z2
上却有很大的区别,这是因为实变函数Δx 只沿实轴逼近零
,而复变函数Δz却可以沿复平面上的任一曲线逼近零,因此
复变函数可导的要求比实变函数可导的要求要严格得多.
z x
例: f (z) = z = x − iy 在复平面上处处不可导
∵ z + ∆z − z = ∆z
∆z
∆z
当 Δz→0 沿实轴
∆z = ∆x, ∆z = ∆x → 1 ∆x ∆x
立。
4. 复变函数
例 : 初等单值函数
幂函数: w=zn n=1,2, - - - - -
多项式: a0+a1z1+a2z2+- - - - +anzn n 为整数
复变函数第一章

z1 z1 z2 z2
Arg(
z1 z2
)
Arg
z1
Arg
z2
1、 幂函数
非零复数 z 的 n 次幂
zn rnein rn (cos n i sin n )
其中
zn z n , Arg zn nArg z.
令 r = 1,则得棣莫弗公式
(cos i sin )n cos n i sin n
21
•连续曲线 若实函数 x(t) 和 y(t) 在闭区间[, ]
上连续,则方程组
x x(t),
y
y(t),
( t )
或复数方程 z z(t) x(t) iy(t) ( t )
代表一条平面曲线,称为 z 平面上的连续曲线.
进一步地,若在 t 上,x '(t) 及 y '(t) 存在、
E(C)
线 C 把 z 平面唯一地分成
C、I(C) 及 E(C) 三个点集,
I(C)
它们具有如下性质:
(1)彼此不交;
O
C
x
(2)I(C) 是一个有界区域(称为 C 的内部);
(3)E(C) 是一个无界区域(称为 C 的外部).
25
•单连通区域 设 z 平面上的区域 D, 若在 D 内 无论怎样画简单闭曲线,其内部仍全含于 D, 则称 D 为单连通区域. 非单连通的区域称为多 连通区域.
y
z
v
w
2 O 2 x
4 O 4 u
31
•反函数 假设函数 w=f(z) 的定义域是 z 平面上的 集合 G,值域是 w 平面上的集合 G*. 对 G* 中 的每一个点 w,在 G 中有一个(或至少两个) 点与之相对应,则在 G* 上确定了一个单值(或
复变函数第一章

内点: N (z0 ) E
边界点: N (z0 )既有E的点,也有不是E的点,
集E的全部边界点所组成的集合称为E的边界,
记为 E.
3.开集: 所有点为内点的集合;
闭集: 或者没有聚点,或者所有聚点都属于它;
E' E,
有界集:
M 0,z E, z M, 或M 0,使E NM (0)
例 E {z | z 1}
例3: 设 z 1 ,试证 (1 i)z3 iz 3 .
2
4
证明: (1 i)z3 iz z (1 i)z2 i
z (1i z 2 i )
1 (1 2 1) 1 (1 1) 3
24
22
4
例4: 求复数 1 z 的实部,虚部和模.(z 1)
1 z
解:
1 1
z z
(1 z)(1 1 z 2
由几段依次相接的光滑曲线所组成的曲线 称为按段光滑曲线.
注:按段光滑曲线是可求长的,但简单曲线不一定可求长.
5 单连通区域
复平面上的一个区域D, 如果在其中任作 一条简单闭曲线, 而曲线的内部总属于D, 就称 为单连通域. 一个区域如果不是单连通域, 就称 为多连通域.
单连通域
多连通域
例 (1) 满足下列条件的点集是什么, 如果是区 域, 指出是单连通域还是多连通域?
E的每一点及圆周 z 1上点都是E的聚点, 圆周 z 1为E的边界,
E为开集.
4.聚点(极限点)的等价说法
(1) z0 E', (2) N (z0 ) E有无穷多点, (3) N (z0 )存在异于z0属于E的点, (4) N (z0 )含属于E的两个不同的点,
(5)
{zn}
E, lim n
边界点: N (z0 )既有E的点,也有不是E的点,
集E的全部边界点所组成的集合称为E的边界,
记为 E.
3.开集: 所有点为内点的集合;
闭集: 或者没有聚点,或者所有聚点都属于它;
E' E,
有界集:
M 0,z E, z M, 或M 0,使E NM (0)
例 E {z | z 1}
例3: 设 z 1 ,试证 (1 i)z3 iz 3 .
2
4
证明: (1 i)z3 iz z (1 i)z2 i
z (1i z 2 i )
1 (1 2 1) 1 (1 1) 3
24
22
4
例4: 求复数 1 z 的实部,虚部和模.(z 1)
1 z
解:
1 1
z z
(1 z)(1 1 z 2
由几段依次相接的光滑曲线所组成的曲线 称为按段光滑曲线.
注:按段光滑曲线是可求长的,但简单曲线不一定可求长.
5 单连通区域
复平面上的一个区域D, 如果在其中任作 一条简单闭曲线, 而曲线的内部总属于D, 就称 为单连通域. 一个区域如果不是单连通域, 就称 为多连通域.
单连通域
多连通域
例 (1) 满足下列条件的点集是什么, 如果是区 域, 指出是单连通域还是多连通域?
E的每一点及圆周 z 1上点都是E的聚点, 圆周 z 1为E的边界,
E为开集.
4.聚点(极限点)的等价说法
(1) z0 E', (2) N (z0 ) E有无穷多点, (3) N (z0 )存在异于z0属于E的点, (4) N (z0 )含属于E的两个不同的点,
(5)
{zn}
E, lim n
《复变函数》第一章 复数与复变函数

( z ≠ 0)
的定义域, w 值的全体组成的集合称为函数 w = f ( z ) 的值域. 及 w = z +1
z 1
( z ≠ 1)
均为单值函数,w = n z
均为多值函数.
今后如无特别说明,所提到的函数均为单值函数.
设 w = f ( z ) 是定义在点集 则
容易验证复数的四则运算满足与实数的四则运算相应的运算规律. 全体复数并引进上述运算后称为复数域,必须特别提出的是,在复数域 中,复数是不能比较大小的.
2.复平面
从上述复数的定义中可以看出,一个复数 z = x + iy 实际上是由一对有 序实数 ( x, y ) 唯一确定.因此,如果我们把平面上的点 ( x, y )与复数 z = x + iy 对应,就建立了平面上全部的点和全体复数间的一一对应关系. 由于 x 轴上的点和 y 轴上非原点的点分别对应着实数和纯虚数,因而 通常称
对应相等,即 x1 = x2 且 y1 = y2 虚部为零的复数可看作实数,即x + ii0 = x ,
0 特别地, + ii0 = 0 ,因此,全体实数是全体复数的一部分.
实数为零但虚部不为零的复数称为纯虚数,复数 x + iy 为互为共轭复数,记为
( x + iy ) = x iy
和 x iy
2.区域与约当(Jordan)曲线
定义1.5 若非空点集 D 满足下列两个条件: (1) D 为开集. (2) D 中任意两点均可用全在 D 中的折线连接起来,则称 D 为区域 (图) 定义1.6 若 z0 为区域 D 的聚点且 z0 不是 D 的内点,则称 z0 为 D 的界点, D 的所有界点组成的点集称为 D 的边界,记为 D , 若 r > 0 ,使得 N r ( z0 ) ∩ D = ,则称 z 0 为 D 的外点 定义1.7 区域 D 加上它的边界 C 称为闭区域,记为 D = D + C
的定义域, w 值的全体组成的集合称为函数 w = f ( z ) 的值域. 及 w = z +1
z 1
( z ≠ 1)
均为单值函数,w = n z
均为多值函数.
今后如无特别说明,所提到的函数均为单值函数.
设 w = f ( z ) 是定义在点集 则
容易验证复数的四则运算满足与实数的四则运算相应的运算规律. 全体复数并引进上述运算后称为复数域,必须特别提出的是,在复数域 中,复数是不能比较大小的.
2.复平面
从上述复数的定义中可以看出,一个复数 z = x + iy 实际上是由一对有 序实数 ( x, y ) 唯一确定.因此,如果我们把平面上的点 ( x, y )与复数 z = x + iy 对应,就建立了平面上全部的点和全体复数间的一一对应关系. 由于 x 轴上的点和 y 轴上非原点的点分别对应着实数和纯虚数,因而 通常称
对应相等,即 x1 = x2 且 y1 = y2 虚部为零的复数可看作实数,即x + ii0 = x ,
0 特别地, + ii0 = 0 ,因此,全体实数是全体复数的一部分.
实数为零但虚部不为零的复数称为纯虚数,复数 x + iy 为互为共轭复数,记为
( x + iy ) = x iy
和 x iy
2.区域与约当(Jordan)曲线
定义1.5 若非空点集 D 满足下列两个条件: (1) D 为开集. (2) D 中任意两点均可用全在 D 中的折线连接起来,则称 D 为区域 (图) 定义1.6 若 z0 为区域 D 的聚点且 z0 不是 D 的内点,则称 z0 为 D 的界点, D 的所有界点组成的点集称为 D 的边界,记为 D , 若 r > 0 ,使得 N r ( z0 ) ∩ D = ,则称 z 0 为 D 的外点 定义1.7 区域 D 加上它的边界 C 称为闭区域,记为 D = D + C
复变函数 第1章 复数与复变函数

6
6
1 cos
2 k
6
i sin
2 k
6
( k 0 , 1, 2 , 3 , 4 , 5 )
可求出6个根,它们是
z0 3 2 1 2 i, z 1 i, z2 3 2 1 2 i
z3
3 2
1 2
i,
z 4 i,
z5
3 2
0
}
为 z 0 的去心 —邻域,
开集 如果点集 D 的每一个点都是 D 的内 点,则称 D 为开集. 闭集 如果点集 D 的余集为开集,则称 D 为 闭集. 连通集 设是 D开集,如果对于 D 内任意两 点,都可用折线连接起来,且该折线上的 点都属于 D ,则称开集 D 是连通集. 区域(或开区域) 连通的开集称为区域或 开区域. 闭区域 开区域 D 连同它的边界一起,称为 闭区域,记为 D .
1.3.2 单连通域与多(复)连通域
1. 简单曲线、简单闭曲线 若存在满足 t , t 且 t t 的 t 1 与 t 2,使 z ( t ) z ( t ) ,则称此曲线C有重点, 无重点的连续曲线称为简单曲线或约当 (Jordan)曲线;除 z ( ) z ( ) 外无其它重 点的连续曲线称为简单闭曲线,例如,
n
z z z
n个
若
z r ( cos i sin ,则有 )
z r ( cos i sin )
当 r 1 时,得到著名的棣莫弗(De Moivre) 公式
(cos i sin )
n
cos n i sin n
3
z 1 i 3 2 (c o s
6
1 cos
2 k
6
i sin
2 k
6
( k 0 , 1, 2 , 3 , 4 , 5 )
可求出6个根,它们是
z0 3 2 1 2 i, z 1 i, z2 3 2 1 2 i
z3
3 2
1 2
i,
z 4 i,
z5
3 2
0
}
为 z 0 的去心 —邻域,
开集 如果点集 D 的每一个点都是 D 的内 点,则称 D 为开集. 闭集 如果点集 D 的余集为开集,则称 D 为 闭集. 连通集 设是 D开集,如果对于 D 内任意两 点,都可用折线连接起来,且该折线上的 点都属于 D ,则称开集 D 是连通集. 区域(或开区域) 连通的开集称为区域或 开区域. 闭区域 开区域 D 连同它的边界一起,称为 闭区域,记为 D .
1.3.2 单连通域与多(复)连通域
1. 简单曲线、简单闭曲线 若存在满足 t , t 且 t t 的 t 1 与 t 2,使 z ( t ) z ( t ) ,则称此曲线C有重点, 无重点的连续曲线称为简单曲线或约当 (Jordan)曲线;除 z ( ) z ( ) 外无其它重 点的连续曲线称为简单闭曲线,例如,
n
z z z
n个
若
z r ( cos i sin ,则有 )
z r ( cos i sin )
当 r 1 时,得到著名的棣莫弗(De Moivre) 公式
(cos i sin )
n
cos n i sin n
3
z 1 i 3 2 (c o s
第1章复数与复变函数汇总

2 2
z z (Re z ) (Im z ) z ;
(6) z z 2 Re z, z- z 2i Im z.
利用共轭复数的概念,还可以得到 两个关于复数模的重要公式:
z1 z 2 z1 z 2 Re( z1 z 2 ), z1 z2 z1 z2 Re( z1 z2 ).
(2) ∞的实部,虚部及幅角都无 意义, (3)b≠0(但可为∞)时, b b ,
b ; a 0 , 0, (4)a≠∞时, a a a ; 0 (5)运算∞± ∞,0· ∞, , 0 无意义
§3 复数的乘幂与方根
第一章 复数与复变函数
§1 复数及其代数运算
目录
§2 复数几何表示
§3 复数的乘幂与方根
§4 区 域 §5 复变函数
§6 复变函数的极限和连续性
第一章 复数与复变函数
§1 复数及其代数运算
1.复数的概念 形如 z=x+iy 或 z=x+yi 的数,称为复数 虚部为零的复数就可看作实数,即 x+i· 0=x 复数
z n r n (cosn i sin n ) r nein
n
2k 2k z r (cos i sin ) n n 1
1 n
w0 r (cos i sin ) n n 1 2 2 n
n
w1 r (cos
1 n
………………………………………
当x在第一象限
当x在第二象限 当x在第三象限 当x在第四象限 当z在正y轴上
2 arg z 2 0, ,
当z在负y轴上
当z在正x轴上 当z在负x轴上
z z (Re z ) (Im z ) z ;
(6) z z 2 Re z, z- z 2i Im z.
利用共轭复数的概念,还可以得到 两个关于复数模的重要公式:
z1 z 2 z1 z 2 Re( z1 z 2 ), z1 z2 z1 z2 Re( z1 z2 ).
(2) ∞的实部,虚部及幅角都无 意义, (3)b≠0(但可为∞)时, b b ,
b ; a 0 , 0, (4)a≠∞时, a a a ; 0 (5)运算∞± ∞,0· ∞, , 0 无意义
§3 复数的乘幂与方根
第一章 复数与复变函数
§1 复数及其代数运算
目录
§2 复数几何表示
§3 复数的乘幂与方根
§4 区 域 §5 复变函数
§6 复变函数的极限和连续性
第一章 复数与复变函数
§1 复数及其代数运算
1.复数的概念 形如 z=x+iy 或 z=x+yi 的数,称为复数 虚部为零的复数就可看作实数,即 x+i· 0=x 复数
z n r n (cosn i sin n ) r nein
n
2k 2k z r (cos i sin ) n n 1
1 n
w0 r (cos i sin ) n n 1 2 2 n
n
w1 r (cos
1 n
………………………………………
当x在第一象限
当x在第二象限 当x在第三象限 当x在第四象限 当z在正y轴上
2 arg z 2 0, ,
当z在负y轴上
当z在正x轴上 当z在负x轴上
复变函数-第一章-复数与复变函数

y
28
1 i
2
q
4
w0
r 2
q 2k
n i sin
w2
q 2k
n )
o
w3
x
wk n r (cos
16
例 2. 求
4
-1
解 : 1 cos i sin
4
1 cos
2k
4
i sin
2k
4
, (k 0,1,2,3).
z1
z2
z0 内点
P
D-区域
(6) 连通 D中任意两点可用一条全在D
中的曲线连接起来。
21
外点
z1
z2
z0 内点
P
(7) 区域
连通的开集.
D-区域
区域D与它的边界一起构成闭区域, 或闭域. D
22
(8) 有界区域 如果存在正数M,使得对于一切D中的点z, z M, 有 则称 D为有界区域,否则称为无界区域。 例如
设 w e , 由w z , 有 ne in re iq ,
i n
则 n r , n q 2k
(k为整数 ).
即 w = n z = n re
r (cos
n
i
θ + 2 kπ n
,
q 2k
n )
q 2k
n
i sin
(k为整数).
14
当k=0,1,2,…,n-1时,得到n个相异的根:
z. 共轭 x iy为x iy的共轭复数,记为
注:(1)两个复数相等,是指二者实部、虚部分别相同; (2)两个复数之间无法比较大小,除非都是实数; (3)实部为0,虚部不为0,为纯虚数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
x
arctan y .
x
例3 求 Arg(2 2i) 和 Arg(3 4i) 解
Arg(2 2i) arg(2 2i) 2k
arctan 2 2k
2
2k (k 0, 1, 2,)
4
Arg(3 4i) arg(3 4i) 2k arctan 4 2k
记作 N 0 (z0 , )
z0
开集 如果点集 D 的每一个点都是D 的内 点,则称 D 为开集.
闭集 如果点集 D 的余集为开集,则称D
为闭集.
连通集 设是D 开集,如果对于D 内任意两
点,都可用折线连接起来,且该折线上的
点都属于D ,则称开集D 是连通集.
D
z1
z2
p
区域
区域(或开区域) 连通的开集称为区域 或开区域.
i
x1 y2 x2 y1 x22 y22
r1 r2
c os (1
2)
i sin(1
2 )
r1 r2
exp[i(1
2 )]
两个复数相除等于 它们的模相除,幅 角相减
复数四则运算规律:
(1)加法交换律 z1 z2 z2 z1 (2)乘法交换律 z1 z2 z2 z1 (3)加法结合律 z1 (z2 z3 ) (z1 z2 ) z3 (4)乘法结合律 z1 (z2 z3 ) (z1 z2 )z3 (5)乘法对于加法的分配律
z1 z2
(z2 0)
(5) zz [Re z]2 [Im z]2
(6) Re z z z , Im z z z
2
2i
(7) z z z 为实数.
例. 1
(2 3i)2
化简
2i
解
(2 3i)2 4 9 12i
2i
2i
(5 12i)(2 i) (2 i)(2 i)
6
6
可求出6个根,它们是
(k 0, 1, 2, 3, 4, 5)
z0
3 1 i, 22
z1 i,
z2
3 1i 22
z3
3 1 i, 22
z 4 i,
z5
3 1i 22
例2 计算 1 i
解
因为
1i
2
cos(
3 4
)
i
sin(
z z0 R
连接z1 和z2两点的线段的参数方程为
z z1 t(z2 z1),
(0 t 1)
过两点 z1 和z2的直线L的参数方程为
z z1 t(z2 z1),
( t )
例2:考察下列方程(或不等式)在平面上所描绘的几何图形。
(1) z 2i z 2
第一章 复数与复变函数
复数 复数表示及运算 平面点集 复变函数极限和连续性
复数、复数表示及运算
复数的概念
复数
形如z=x+iy的数被称为复数,其
中x , y∈R。x=Rez,y=Imz分别为
z的实部和虚部,i为虚数单位, 其意义为i2=-1
复数相等
复数不能 比较大小
z1=z2当且仅当Rez1= Rez2且Imz1= Imz1
arctan
y x
,
z在第一、四象限
arg
z
arctan
y x
,
z在第二象限
其中 arctan y
2
x2
arctan
y x
,
z在第三象限
说明:当 z 在第二象限时, arg z 0
2
2
tan( ) tan( ) tan y arctan y
3
(2k 1) arctan 4 (k 0, 1, 2,)
3
复数的表示
代数表示: z=x+iy
三角表示:z r(cos i sin ) rei
指数表示:z rei (r z , Arg z)
注意 在三角表示和指数表示下,两个复数
相等当且仅当模相等且幅角相差 2k
z2
3
i4, 求
z1 z2
和 z1 z2
2.求(1 i)100 和4 1 i
平面点集
邻域 平面上以 z0 为心, 0 为半径的圆:z z0
内部所有点 z 的集合称为点的 —邻域,记
为 N (z0 , ) ,即
N(z0 , ) {z z z0 }
称集合{z 0 z z0 } 为 z 0 的去心 —邻域,
解出 n r , 1 ( 2k )
即
w
z
1 n
[c
os(1
(arg
n
z
2k
))
i
sin(
1
(arg
z
2k
))]
n
n
例 解方程 z6 1 0 解 因为 z6 1 cos i sin
所以
6 1 cos 2k i sin 2k
6
)
i
sin(
6
)
z2
3
i
2 cos(56
)
i sin(5
6
)
所以
z18
28
c
os
(
8
6
)
i
s
in(
8
6
)
z
4 2
2
4
c
os
(20
6
)
i
sin(
20
6
)
24
cos(
28
6
)
i
sin(
28
6
)
11 2i (2 i)(5i) 11 2i 5 10i
25
5i(5i)
25
25
16 8 i 25 25
所以 Re z 16 , Im z 8
25
25
zz (16 8 i)(16 8 i) 64 25 25 25 25 125
1. 复数的乘幂
3 4
)
所以
1 i
4
2 cos
3 2k
4 2
i sin
3 2k
4 2
(k 0, 1)
即
w20
4
2 (c os 3
8
i sin 3
8
)
w12
4
2 (c os 5
8
i
5
8
)
练习
1.设z1
5 i5,
arctan
2 12
arctan
3 3
2) 显z 然 ,4r=c|ozs|(=156, 又 ) i sin(
5 6
)
5 . 因此
6
5 i
4e 6
sin
5
cos
2
5
cos 3 ,
10
cos
该方程表示到点2i和-2距离相等的点的轨迹,所以方程 表示的曲线就是连接点2i 和-2的线段的垂直平分线, 它的方程为y = -x。
(2) Im(i z) 4
设 z = x+ iy,
Im(i z) Im( x i(1 y)) 4
y 3
(3)
arg(
z
i)
4
arg( z i) 表示实轴方向与由点i 到 z 的向量之间交角
复变函数的 理论和方法在数学,自然科学和工程技术中有 着广泛的应用,是解决诸如流体力学,电磁学,热学弹性理论中 平面问题的有力工具。
复变函数中的许多概念,理论和方法是实变函数在复数领域的 推广和发展 。
自变量为复数的函数就是复变函数, 它是本课程的研究对象. 由 于在中学阶段已经学过复数的概念和复数的运算,本章将在原有的基 础上作简要的复习和补充; 然后再介绍复平面上的区域以及复变函 数的极限与连续性的概念, 为进一步研究解析函数理论和方法奠定 必要的基础.
zi 4
中点z的轨迹所在范围。
解:
z z
i i
x2 y2 1 x2 ( y 1)2
i
x2
2x ( y 1)2
10 12 29i 2 29i
4 1
5
例2 设 z 1 2i ( 2 i ) ,求 Re z, Imz 及 zz
解
3 4i 5i
z 1 2i 2 i (1 2i)(3 4i) 2 i 3 4i 5i (3 4i)(3 4i) 5i
5
sin
2
5
因此
sin z
3 10 cos
3
.
i sin
3
i 3
e 10