颜色特征常用的特征提取与匹配方法

合集下载

颜色特征提取方法的实现与应用

颜色特征提取方法的实现与应用

颜色特征提取方法的实现与应用在计算机视觉中,颜色特征提取是一项重要的任务。

在图像处理、目标检测、图像分类等领域中,颜色特征都有着非常广泛的应用。

本文将介绍颜色特征提取的方法以及其在实际应用中的意义。

一、颜色特征提取的方法1. RGB颜色空间RGB颜色空间是计算机视觉中最常用的颜色表示方法。

在该颜色空间中,颜色由三个独立变量--红、绿、蓝--来表示。

对于每一个像素,都可以通过其RGB值来确定其颜色。

但是,由于RGB值中包含的信息过于单一,而且RGB值并不能直接体现出颜色之间的关系,所以在实际应用中,RGB颜色空间并不能满足需求。

2. HSL颜色空间HSL颜色空间是以色相、饱和度、亮度为基础的一种颜色表示方法。

其中,“色相”表示颜色的种类,如红、绿、蓝等;“饱和度”表示颜色的纯度,即颜色的深浅;“亮度”表示颜色的明暗程度。

在HSL颜色空间中,同一种色相的颜色会被分到一类中,不同颜色之间的距离也很容易计算。

3. HSV颜色空间HSV颜色空间较HSL颜色空间更加强调颜色的可感性。

其中,“色相”表示颜色的种类,如红、绿、蓝等;“饱和度”表示颜色的纯度,即颜色的深浅;“明度”表示颜色的亮度,即颜色的明暗程度。

HSV颜色空间相对于HSL颜色空间而言,更能体现出颜色的差异性和可感性。

在实际应用中,HSV颜色空间也更受欢迎。

二、颜色特征提取的意义在实际应用中,颜色特征提取的意义是非常重要的。

例如,在图像分类中,颜色特征可以帮助我们区分不同类型的物品。

对于服装分类而言,颜色特征可以帮助我们区分不同颜色的衣服。

而对于食品分类而言,颜色特征可以帮助我们区分不同食材的颜色,如草莓和西瓜的颜色就有很大的区别。

另外,颜色特征还可以帮助我们进行目标检测。

例如,在人脸识别中,通过提取人脸中不同位置的颜色特征,可以较为准确地识别出人脸的位置和轮廓。

三、颜色特征提取的实现在实现颜色特征提取时,需要依据实际需求和场景的不同选择不同的方法。

使用图像处理技术实现图像特征提取的技巧与方法

使用图像处理技术实现图像特征提取的技巧与方法

使用图像处理技术实现图像特征提取的技巧与方法图像特征提取是图像处理领域中的一个重要任务,它旨在从图像数据中提取出有意义的特征信息,用于后续的图像分析和理解。

图像特征可以描述图像的某种属性或结构,如颜色、纹理、形状等,通过对图像进行特征提取,可以实现图像分类、目标检测、图像搜索等任务。

在实际应用中,图像特征提取的技巧和方法有很多种。

下面将介绍几种常用的图像特征提取方法。

首先是颜色特征提取技术。

颜色是图像中最直观、最容易获取和识别的特征之一。

常用的颜色特征提取方法包括直方图、颜色空间转换和颜色描述子等。

直方图能够统计图像中每个颜色的像素数目,通过对颜色直方图的分析,可以获取图像的颜色分布特征。

颜色空间转换可以将图像从RGB空间转换成其他颜色空间,如HSV、Lab等,从而提取出不同颜色通道的特征。

颜色描述子能够对图像的颜色进行定量化描述,如颜色矩、颜色矢量等。

其次是纹理特征提取技术。

纹理是指图像中像素间的某种规律或重复性,常用于描述物体表面的细节特征。

常用的纹理特征提取方法有灰度共生矩阵、小波变换和局部二值模式等。

灰度共生矩阵能够统计图像中不同像素间的灰度共生关系,通过计算共生矩阵中的纹理特征,可以获取图像的纹理信息。

小波变换能够将图像从空间域转换到频率域,通过分析不同频率的小波系数,可以提取出图像的纹理特征。

局部二值模式是一种基于像素邻域的纹理特征描述方法,通过比较像素与其邻域像素之间的灰度差异,可以刻画图像的纹理细节。

还有形状特征提取技术。

形状是物体的外形和轮廓特征,常用于目标检测和识别。

常用的形状特征提取方法有轮廓描述子、边缘检测和形状匹配等。

轮廓描述子能够基于物体的边缘轮廓提取其形状特征,如轮廓长度、曲率等。

边缘检测可以通过检测图像中的边缘信息,提取物体的形状特征。

形状匹配则是通过比较不同物体的形状特征,实现目标的检测和识别。

除了以上提到的方法,还有很多其他的图像特征提取技巧和方法,如兴趣点检测、尺度不变特征变换等。

遥感影像处理中的特征提取方法和应用

遥感影像处理中的特征提取方法和应用

遥感影像处理中的特征提取方法和应用遥感影像是通过无人机、卫星等载体获取的地球表面的影像数据。

特征提取是遥感影像处理中的一项重要任务,旨在从遥感影像中提取出地物的特定特征,以实现对地物的分类、识别和监测等应用。

本文将介绍遥感影像处理中常用的特征提取方法及其应用。

一、特征提取方法1. 基于像素的特征提取方法基于像素的特征提取方法是从单个像素点的信息中提取特征。

常用的方法包括:(1)颜色特征提取:利用遥感影像中的颜色信息进行特征提取。

常用的方法包括二值化、RGB分量、HSV、归一化差异植被指数(NDVI)等。

(2)纹理特征提取:利用遥感影像中的纹理信息进行特征提取。

常用的方法包括灰度共生矩阵(GLCM)、灰度值标准差、平均灰度值等。

(3)形状特征提取:利用遥感影像中的形状信息进行特征提取。

常用的方法包括链码、Hu不变矩、区域面积等。

2. 基于目标的特征提取方法基于目标的特征提取方法是在已知地物目标的前提下,根据地物目标的特定特征进行特征提取。

常用的方法包括:(1)形状特征提取:利用地物目标的形状信息进行特征提取。

常用的方法包括面积、周长、伸长率等。

(2)纹理特征提取:利用地物目标的纹理信息进行特征提取。

常用的方法包括纹理能量、纹理熵、纹理对比度等。

(3)上下文特征提取:利用地物目标的上下文信息进行特征提取。

常用的方法包括边界连接、邻居分析、局部空间关系等。

二、特征提取应用1. 地物分类特征提取在地物分类中起到了关键作用。

通过提取不同地物的特定特征,可以将遥感影像中的地物进行分类,如水体、森林、建筑等。

特征提取方法可以通过训练分类器来实现自动分类。

2. 土地利用监测特征提取可以应用于土地利用监测。

通过提取遥感影像中地物的特定特征,可以实现对土地的类型和变化进行监测,如农田的扩张、森林的退化等,为土地规划和资源管理提供支持。

3. 城市规划特征提取在城市规划中具有重要意义。

通过提取遥感影像中的建筑、道路等特定特征,可以分析城市的发展趋势和扩张方向,为城市规划和交通规划提供数据支持。

无人机图像处理中的特征提取与目标识别

无人机图像处理中的特征提取与目标识别

无人机图像处理中的特征提取与目标识别无人机技术作为当今社会中的重要应用领域之一,正在发展迅速。

在无人机的图像处理中,特征提取与目标识别是至关重要的一步。

本文将探讨无人机图像处理中的特征提取和目标识别的相关技术和方法。

一、特征提取在无人机图像处理中,特征提取是将原始图像中的有用信息提取出来,以便后续的目标识别和跟踪。

特征提取的目标是找到能够最好地表示图像内容的特征,包括颜色、纹理、形状和边界等信息。

1. 颜色特征提取颜色是图像中最直观且易于理解的特征之一。

在无人机图像处理中,通过对颜色的提取和分析,可以识别物体的类别和性质。

常用的颜色特征提取方法包括颜色直方图、颜色矩和颜色共生矩阵等。

2. 纹理特征提取纹理是图像中描述物体表面细节的特征。

在无人机图像处理中,纹理特征提取可以用于识别不同材质的物体。

常用的纹理特征提取方法包括局部二值模式(LBP)、灰度共生矩阵(GLCM)和小波变换等。

3. 形状特征提取形状是物体在图像中的外部轮廓和内部结构等几何特征。

在无人机图像处理中,形状特征提取可以用于识别不同形状的目标。

常用的形状特征提取方法包括边缘检测、轮廓描述和形状匹配等。

4. 边界特征提取边界是物体与背景之间的分界线,包括物体的边缘和轮廓等信息。

在无人机图像处理中,边界特征提取可以用于目标的定位和分割。

常用的边界特征提取方法包括Canny算子、Sobel算子和Prewitt算子等。

二、目标识别在无人机图像处理中,目标识别是将提取的特征与预先训练好的模型进行匹配,从而确定图像中的物体类别和位置。

目标识别的目标是提高识别的准确性和速度,以满足实时应用的需求。

1. 机器学习方法机器学习方法是目标识别中常用的方法之一。

通过训练样本和算法模型,可以对图像中的目标进行准确的分类和识别。

常用的机器学习方法包括支持向量机(SVM)、卷积神经网络(CNN)和随机森林等。

2. 深度学习方法深度学习方法是目标识别中近年来快速发展的方法之一。

imagetest 原理解析

imagetest 原理解析

imagetest 原理解析imagetest原理解析imagetest是一种基于图像处理技术的测试方法,它主要用于图像分类、图像识别和图像检索等领域。

该方法通过对图像进行特征提取和模式匹配,实现对图像的自动化分析和处理。

一、特征提取特征提取是imagetest方法的关键步骤之一。

在这一步骤中,系统会对输入的图像进行预处理,提取出图像的特征信息,以便后续的模式匹配和分类。

常用的特征提取方法包括颜色特征、纹理特征、形状特征等。

1. 颜色特征提取颜色是图像中最直观和最容易获取的特征之一。

通过对图像中的像素进行统计分析,可以得到图像的颜色直方图。

颜色直方图描述了图像中各个颜色的分布情况,可以用于图像分类和检索。

2. 纹理特征提取纹理是图像中的重要特征之一,它描述了图像中像素之间的空间关系。

常用的纹理特征提取方法包括灰度共生矩阵、小波变换、Gabor滤波器等。

这些方法可以提取出图像中的纹理信息,用于图像分类和识别。

3. 形状特征提取形状是图像中物体的重要属性之一,它描述了物体的外轮廓和内部结构。

常用的形状特征提取方法包括边缘检测、边界描述、轮廓匹配等。

这些方法可以提取出图像中的形状信息,用于物体识别和检测。

二、模式匹配模式匹配是imagetest方法的另一个关键步骤。

在这一步骤中,系统会将特征提取得到的图像特征与预先存储的模板进行比对,找出最相似的模板,从而实现对图像的分类和识别。

1. 相似度计算相似度计算是模式匹配的核心内容之一。

常用的相似度计算方法包括欧氏距离、余弦相似度、相关系数等。

通过对图像特征和模板特征进行相似度计算,可以得到它们之间的相似程度,从而确定最匹配的模板。

2. 决策规则决策规则是模式匹配的另一个重要内容。

在这一步骤中,系统会根据相似度计算的结果,确定图像的分类或识别结果。

常用的决策规则包括最邻近分类法、支持向量机、神经网络等。

三、应用领域imagetest方法可以应用于多个领域,包括图像分类、图像识别和图像检索等。

颜色特征提取

颜色特征提取

颜色特征提取
颜色特征提取是指从图像中提取出颜色特征的一种方法。

它是一种基于计算机视觉的技术,能够提取出图像中的一些有用的信息,如颜色、纹理和其他的颜色特征,从而实现图像的分类、检索等功能。

(二)颜色特征提取的常用方法
1.HSV颜色模型:HSV模式是一种将颜色表示为三个连续变量
H(Hue)、S(Saturation)、V(Value)的色彩系统,它可以以连续色调的形式来表达颜色,比RGB模式更加符合人眼的观感。

2.YUV颜色模型:YUV模型是一种将色彩表示为三个分量Y、U、V的方法,Y代表亮度(luminance),U、V代表彩度(chrominance)。

YUV模型可以空间分解,即将一种颜色分解成YUV三个分量,从而便于计算机对色彩的处理。

3.GLCM纹理特征:GLCM是Gray-Level Co-occurrence Matrix 的缩写,指的是灰度共生矩阵,是用来描述图像纹理特征的一种常用算法。

它的原理是提取出灰度值相邻像素之间的关系,从而获取其空间结构和灰度分布特征。

(三)颜色特征提取的用途
1.图像分类:颜色特征提取技术可以提取出图像中的颜色特征,比如颜色、纹理和其他信息,从而可用于图像分类,帮助系统更好地理解图像。

2.图像检索:颜色特征提取可以用于图像检索,例如,在图像检索系统中,可以使用颜色特征提取技术来查找出与搜索图像最相似的
图像。

3.物体识别:颜色特征提取可以用作物体识别,例如,可以使用颜色特征提取技术来识别物体,帮助机器人以及自动检测软件更准确地识别物体。

图像处理中的特征提取与分类算法

图像处理中的特征提取与分类算法

图像处理中的特征提取与分类算法图像处理是指通过计算机技术对图像进行分析、处理和识别,是一种辅助人类视觉系统的数字化技术。

在图像处理中,特征提取与分类算法是非常重要的一个环节,它能够从图像中提取出不同的特征,并对这些特征进行分类,从而实现图像的自动化处理和识别。

本文将对图像处理中的特征提取与分类算法进行详细介绍,主要包括特征提取的方法、特征分类的算法、以及在图像处理中的应用。

一、特征提取的方法1.1颜色特征提取颜色是图像中最直观的特征之一,它能够有效地描述图像的内容。

颜色特征提取是通过对图像中的像素点进行颜色分析,从而得到图像的颜色分布信息。

常用的颜色特征提取方法有直方图统计法、颜色矩法和颜色空间转换法等。

直方图统计法是通过统计图像中每种颜色的像素点数量,从而得到图像的颜色直方图。

颜色矩法则是通过对图像的颜色分布进行矩运算,从而得到图像的颜色特征。

颜色空间转换法是将图像从RGB颜色空间转换到其他颜色空间,比如HSV颜色空间,从而得到图像的颜色特征。

1.2纹理特征提取纹理是图像中的一种重要特征,它能够描述图像中不同区域的物体表面特性。

纹理特征提取是通过对图像中的像素点进行纹理分析,从而得到图像的纹理信息。

常用的纹理特征提取方法有灰度共生矩阵法、小波变换法和局部二值模式法等。

灰度共生矩阵法是通过统计图像中不同像素点的灰度级别分布,从而得到图像的灰度共生矩阵,进而得到图像的纹理特征。

小波变换法是通过对图像进行小波变换,从而得到图像的频域信息,进而得到图像的纹理特征。

局部二值模式法是采用局部像素间差异信息作为纹理特征,从而得到图像的纹理特征。

1.3形状特征提取形状是图像中的一种重要特征,它能够描述图像中物体的外形和结构。

形状特征提取是通过对图像中的像素点进行形状分析,从而得到图像的形状信息。

常用的形状特征提取方法有轮廓分析法、边缘检测法和骨架提取法等。

轮廓分析法是通过对图像中物体的外轮廓进行分析,从而得到图像的形状特征。

图像处理技术中的特征提取方法

图像处理技术中的特征提取方法

图像处理技术中的特征提取方法特征提取是图像处理技术中的重要步骤,它能够从原始图像中提取出具有代表性的特征,为后续的图像分析与处理提供基础。

在本文中,我们将介绍一些常用的图像处理技术中的特征提取方法。

1. 梯度特征提取法梯度特征提取法是一种基于图像边缘信息的特征提取方法。

通过计算图像中像素值的梯度来获取图像边缘信息。

其中,常用的方法包括Sobel算子、Prewitt算子和Canny边缘检测等。

这些算法可以有效地提取出图像的边缘特征,用于物体检测、目标跟踪等应用。

2. 纹理特征提取法纹理特征提取法是一种基于图像纹理信息的特征提取方法。

通过分析图像中的纹理分布和纹理特征,可以揭示图像中的纹理结构和纹理性质。

常用的纹理特征提取方法包括局部二值模式(LBP)、灰度共生矩阵(GLCM)等。

这些方法可以用于图像分类、纹理识别等领域。

3. 颜色特征提取法颜色特征提取法是一种基于图像颜色信息的特征提取方法。

通过提取图像中的颜色分布和颜色特征,可以区分不同物体以及不同场景。

常用的颜色特征提取方法包括颜色矩、颜色直方图等。

这些方法可以用于图像检索、目标识别等应用。

4. 形状特征提取法形状特征提取法是一种基于图像形状信息的特征提取方法。

通过分析图像中的几何形状和边界形状,可以用于目标检测和图像分割等任务。

常用的形状特征提取方法包括边缘描述子如链码、轮廓拟合等。

这些方法可以用于目标检测、目标跟踪等应用。

5. 光流特征提取法光流特征提取法是一种基于图像运动信息的特征提取方法。

通过分析图像序列中像素的位移信息,可以获取图像中的运动信息。

常用的光流特征提取方法包括Lucas-Kanade光流法、Horn-Schunck光流法等。

这些方法可以用于目标跟踪、行为识别等应用。

在实际应用中,通常需要结合多种特征提取方法来提取更加丰富和具有区分度的特征。

例如,可以将梯度特征、纹理特征和颜色特征进行融合,以提取更加综合的特征表示。

还可以利用机器学习算法如支持向量机(SVM)、神经网络等对提取的特征进行分类和识别。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

颜色直方图:
全局颜色直方图:反映的是图像中颜色的组成分布,即出现了哪些颜色以及各种颜色出现的概率,Swain 和 Ballard最先提出了使用颜色直方图作为图像颜色特征的表示方法。

他们还指出:颜色直方图相对于图像的以观察轴为轴心的旋转以及幅度不大的平移和缩放等几何变换是不敏感的,颜色直方图对于图像质量的变化(如模糊)也不甚敏感。

颜色直方图的这种特性使得它比较适合于检索图像的全局颜色相似性的场合,即通过比较颜色直方图的差异来衡量两幅图像在颜色全局分布上的差异。

颜色直方图的主要性质有:直方图中的数值都是统计而来,描述了该图像中关于颜色的数量特征,可以反映图像颜色的统计分布和基本色调;直方图只包含了该图像中某一颜色值出现的频数,而丢失了某象素所在的空间位置信息;任一幅图像都能唯一的给出一幅与它对应的直方图,但不同的图像可能有相同的颜色分布,从而就具有相同的直方图,因此直方图与图像是一对多的关系;如将图像划分为若干个子区域,所有子区域的直方图之和等于全图直方图;一般情况下,由于图像上的背景和前景物体颜色分布明显不同,从而在直方图上会出现双峰特性,但背景和前景颜色较为接近的图像不具有这个特性。

累加直方图:当图像中的特征并不能取遍所有可取值时,统计直方图中会出现一些零值。

这些零值的出现会对相似性度量的计算带来影响,从而使得相似性度量并不能正确反映图像之间的颜色差别。

为解决这个问题,在全局直方图的基础上,Stricker和Orengo进一步提出了使用“累加颜色直方图”的概念。

在累加直方图中,相邻颜色在频数上是相关的。

相比一般直方图,虽然累加直方图的存储量和计算量有很小的增加,但是累加直方图消除了一般直方图中常见的零值,也克服了一般直方图量化过细过粗检索效果都会下降的缺陷。

一般的颜色直方图由于颜色空间是三维的,具有相同的三通道独立分布,但其联合分布并不为一。

这种不考虑联合分布的方法,会导致在结果集中不相似的图像数目增加。

因此便产生了1x3D的颜色直方图,设三个通道的量化级数分别是l、m、n,则总的量化级数K=lxmxn。

这种方法虽然克服了一维的缺点,但颜色分辨率较低,而特征为数较高。

对于一般的直方图特征维数是K=l+m+n,因此1x3D直方图的高维数,给特征处理带来了极大的不便。

因此便想到了量化直方图。

考虑到不同颜色空间的特性,各通道对人眼的视觉重要程度不同,可以对不同的颜色通道给于不同的量化级数。

预先给定量化级数,用联合的方法建立直方图比较简单,但是却存在一下的不足:首先,没有考虑图像本身的特点;其次,没有考虑颜色空间的特点,l、m、n的不同取值,不足以反映不同颜色空间的3D分布情况;最后,颜色集合的代表性差。

主色调直方图方法:考虑到量化直方图的上述问题便产生了主色调直方图的方法。

因一幅图像中,往往少数几种颜色就涵盖了图像的大多数像素,而且不同颜色在图像中的出现概率是不同的,因此,可以通过统计图像中各种颜色出现的概率,选出最频繁出现的几种做为主色。

使用主色并不会降低颜色匹配的效果,因为颜色直方图中出现频率很低的哪些颜色往往不是图像的主要内容,从某种程度上讲,是对图像内容表示的一种噪声。

颜色矩:
颜色矩是一种简单而有效的颜色特征,是由Stricker和Oreng提出的,这种方法的数学基础是图像中的任何的颜色分布均可以用它的矩来表示。

此外,由于颜色分布信息主要集中在低阶矩中,因此,仅采用颜色的一阶矩(mean)、二阶矩(Variance)和三阶矩(Skewness)就足以表达图像的颜色分布,与颜色直方图相比,该方法的另一个好处是无须对特征进行量化。

设p(i,j)图像的像素值,N为像素数,则:
Mean=(sum(p(I,j)))/N
Variance=sqrt(sum(p(I,j )-mean)^2/N)
Skewness= Variance= (sum(p(I,j )-mean)^3/N)^1/3
图像的颜色矩一共有九个分量,每个颜色通道均有三个低阶矩。

颜色矩仅仅使用少数几个矩,从而导致过多的虚警,因此颜色矩常和其他特征结合使用。

颜色集:
为了提高检索的速度,Smith和Chang提出了用颜色集的方法,首先将RGB 颜色空间转换成视觉均衡的颜色空间(HSV),并将颜色空间量化成若干个bin,然后运用颜色自动分割技术将图像分为若干个区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达成一个二进制的颜色索引表。

在图像匹配中,比较不同图像颜色集之间的距离和颜色区域的空间关系。

因为,颜色集表达为二进制的特征向量,可以构造二分查照树来加快检索速度,对大规模的图象集合十分有力。

图像的颜色聚合向量:
图像的颜色聚合向量是颜色直方图的一种演变,其核心思想是将属于直方图每一个bin的像素分为两部分:如果该bin内的某些像素所占据的连续区域的面积大于给定的阈值,则该区域内的像素作为聚合像素,否则作为非聚合像素。

设a(i)和b(i)分别是第i个bin中聚合像素和非聚合像素的数量,图像的聚合向量可以表示为[(a(1),b(1)), (a(2),b(2), (a(3),b(3)……(a(N),b(N)],而
[(a(1),b(1)), (a(2),b(2), (a(3),b(3)……(a(N),b(N)]就是该图像的颜色直方图。

并且包含了颜色分布的空间信息,颜色聚合向量相比颜色直方图可以达到更好的检索效果。

颜色聚合向量的最大特点是:克服了颜色直方图和颜色矩的缺点,将颜色在图像中的空间信息与颜色直方图结合了起来。

这样既考虑了颜色分布的统计信息,又考虑了颜色的空间分布信息。

颜色相关图
颜色相关图(color correlogram)是图像颜色分布的另一种表达方式[16]。

这种特征不但刻画了某一种颜色的像素数量占整个图像的比例,还反映了不同颜色对之间的空间相关性。

实验表明,颜色相关图比颜色直方图和颜色聚合向量具有更高的检索效率,特别是查询空间关系一致的图像。

假设I表示整张图像的全部像素,Ic(i) 则表示颜色为c(i)的所有像素。

颜色相关图可以表达为:
其中 i, j ∈{1, 2, …, N},k∈{1, 2, …, d},| p1 – p2 | 表示像素p1和p2之间的距离。

颜色相关图可以看作是一张用颜色对<i, j>索引的表,其中<i, j>的第k个分量表示颜色为c(i)的像素和颜色为c(j)的像素之间的距离小于k的概率。

如果考虑到任何颜色之间的相关性,颜色相关图会变得非常复杂和庞大 (空间复杂度为O(N2d))。

一种简化的变种是颜色自动相关图(color auto-correlogram),它仅仅考察具有相同颜色的像素间的空间关系,因此空间复杂度降到O(Nd)。

相关文档
最新文档