药代动力学模型
群体药代动力学模型

群体药代动力学模型
群体药代动力学模型是指通过对一组具有相似特征的研究对象进行药代动力学研究,推导出该组研究对象中个体和群体对于药物吸收、分布、代谢和排泄的平均趋势和特征的科学方法。
该模型基于药代动力学基本原理,通过对研究对象进行药代动力学研究,建立数学模型,以描述和预测药物在体内吸收、分布、代谢和排泄的平均趋势和特征。
药物基因组学可以说是基因功能学与分子药理学的有机结合。
以药物效应及安全性为目标,研究各种基因突变与药物反应的关系,在个体化给药中应用,从而为临床用药提供理论依据,使患者用药更安全、更有效。
群体药代动力学模型的应用范围广泛,可以用于药物疗效研究、不良反应分析、药物相互作用分析、新药开发、临床试验设计等方面。
群体药代动力学研究技术指导原则如下:
1.概述。
药物在人体内的药代动力学行为普遍存在个体间变异。
2.适用范围。
给药方案的优化,特定人群用药方案的选择,儿科人群的用药
研究,种族因素分析,药物相互作用评价,生成暴露-效应分析的暴露指标。
3.在临床研究设计中的相关考虑。
研究人群,样本量,协变量,采样设计,
检测物质,生物样品分析等。
4.数据分析。
分析计划,数据处理,模型建立,模型评价,模型模拟。
5.质量控制。
分析报告和数据提交。
需要注意的是,群体药代动力学模型的应用需要具备一定的统计学和药代动力学基础知识,并且需要严格遵守科学伦理和相关法律法规。
药代动力学公式范文

药代动力学公式范文一室模型是最简单的药代动力学模型,假设药物在体内只存在于一个组织或器官,如血浆。
该模型的公式如下:Cp=D/Vd*e^(-K*t)其中,Cp为单位时间内的药物浓度,D为给定剂量,Vd为分布容积,K为消除常数,t为时间。
Cp=(D/Vc)*(e^(-K1*t)-e^(-K2*t))其中,Cp为单位时间内的药物浓度,D为给定剂量,Vc为中心室的分布容积,K1和K2为消除常数,t为时间。
3. 生物利用度(Bioavailability)生物利用度是指给定药物经口给药后进入循环系统的比例,常用F表示。
生物利用度可以通过以下公式计算:F=AUC口服/AUC静脉注射其中,AUC口服为给定药物经口给药后测得的血药浓度-时间曲线下的面积,AUC静脉注射为给定药物静脉注射后测得的血药浓度-时间曲线下的面积。
4. 绝对生物利用度(Absolute bioavailability)绝对生物利用度是指给定药物通过口服给药与静脉注射给药后的生物利用度比例,常用F'表示。
绝对生物利用度可以通过以下公式计算:F'=(D/AUC口服)*(AUC静脉注射/D)其中,D为给定剂量,AUC口服为给定药物经口给药后测得的血药浓度-时间曲线下的面积,AUC静脉注射为给定药物静脉注射后测得的血药浓度-时间曲线下的面积。
5. 清除率(Clearance)清除率是指单位时间内完全从体内清除药物的速率,常用Cl表示。
清除率可以通过以下公式计算:Cl=D/AUC其中,D为给定剂量,AUC为给定药物测得的血药浓度-时间曲线下的面积。
6. 半衰期(Half-life)半衰期是指药物浓度降低一半所需的时间。
半衰期可以通过以下公式计算:t1/2=0.693/K其中,t1/2为半衰期,K为消除常数。
以上是常见的药代动力学公式,通过使用这些公式,可以预测药物在体内的浓度变化,进而指导合理用药。
需要注意的是,不同药物具有不同的药代动力学特征,因此需要根据具体药物的特点选择合适的药代动力学模型和相应的公式。
药物药代动力学模型建立与验证

药物药代动力学模型建立与验证药物代谢动力学是研究药物在体内的吸收、分布、代谢和排泄的过程以及这些过程之间的相互关系的学科。
药代动力学模型是对药物代谢动力学过程进行量化和描述的数学模型。
建立和验证合适的药代动力学模型对于药物的研发和药物治疗的优化至关重要。
一、药物药代动力学模型的建立药物药代动力学模型的建立是一个复杂的过程,需要考虑药物在各个器官和组织中的分布、药物的代谢过程以及体内的各种生理功能。
建立药物药代动力学模型的一般步骤包括:1. 数据收集与处理在建立药物药代动力学模型之前,需要收集和整理相关的药物代谢动力学实验数据。
这些数据可以来自于体外实验、动物实验或者人体临床试验。
收集的数据需要进行处理,包括数据的纠正、筛选和校正等。
2. 模型选择与建立根据药物的性质和研究目的,选择合适的药代动力学模型。
常见的药代动力学模型包括单室模型、双室模型、生理药动模型和机械药动模型等。
根据实验数据进行参数估计,确定模型的参数。
3. 参数估计与模型验证通过药代动力学模型中的参数估计方法,对模型中的吸收、分布、代谢和排泄过程的参数进行估计。
估计得到的参数需要进行模型的验证,与实验数据进行比较,评估模型的拟合程度和预测能力。
二、药物药代动力学模型的验证药物药代动力学模型的验证是判断模型的可靠性和适用性的过程。
常用的验证方法包括:1. 模型的预测能力验证将模型应用于新的实验数据,观察模型在新数据上的拟合效果和预测精度。
如果模型能够准确预测新数据的代谢过程和药物浓度变化,说明模型具有较好的预测能力。
2. 模型参数的稳定性验证通过对模型参数进行敏感性分析,评估模型中参数的稳定性和可靠性。
敏感性分析包括参数估计误差对模型输出的影响程度的评估,以及模型参数的置信区间的计算和分析。
3. 模型的同质性验证将模型应用于不同个体或不同实验条件下的数据,观察模型在不同情况下的适应性和一致性。
如果模型在不同个体和不同实验条件下的数据上都能够良好地拟合,说明模型具有较好的同质性。
药物代谢动力学(第六章)非房室模型

• 十、 非房室模型和房室模型的优缺点比较1
• 非房室模型的最基本的优点是限制性假设较少, 只要求药时曲线的尾端符合指数消除,而这一点 容易被实验所证实。此外,解决了不能用相同房 室模型拟合全部实验数据的问题。例如,有的实 验对象其数据符合一房室模型,另有部分对象数 据符合二房室模型,很难比较各参数。而用非房 室模型分析,不管指数项有多少,都可以比较各 组参数,如AUC、MRT、Cl等。但是从另一个角 度看,这也是非房室模型的缺点,不能提供药时 曲线的细节,只能提供总体参数。
• 二、 生物利用度
• 生物利用度通常是指某口服剂量实际到达 血液循环的分数(F),用于指药物经血管外 给药后,药物被吸收进入血液循环的速度 和程度的一种量度,是评价制剂吸收程度 的重要指标。生物利用度分为绝对生物利 用度和相对生物利用度。
由于通常静脉注射剂量的生物利用度等于1,故绝对生物利 用度计算公式为:
令: f ( t) = C/ AUC (0 ≤t < ∞) 由于在区间( - ∞,0) 上C = 0 ,从而f ( t) = 0 ,故有:
AUC 0 c(t)dt
表明函数f ( t) 可视为随机变量———药物在 体内滞留时间的概率密率函数.
• 非房室模型的统计矩方法以概率论和数理 统计学中的统计矩(Statistical Moment)方法 为理论基础,对数据进行解析,包括零阶
MRT代表药物分子在体内的平均驻留时间,VRT为其方差。 零阶矩与一阶矩可以用于药物动力学分析,VRT为较高阶的 矩,由于误差较大,结果难以肯定,应用价值很小
• MRT概念的理解:
• 一次给药含有无数个的药物分子,例如对 于分子量为300g/mol,即使1mg的药物也 含有2×1018个药物分子。这些药物在体内 停留的时间并不一致,有些被迅速排泄, 而有一些可能停留较长的时间,极少数甚 至可能停留终生。上述平均驻留时间MRT 中“平均”就是这些药物分子停留时间的 平均值。
药代动力学及其参数基本概念

正常受试者药代动力学研究
——单剂量给药的临床药代动力学研究
二、试验设计
一般应选用高、中、低3个剂量组,根据人体 耐受性试验的结果 高剂量组的剂量一般应高于临床试验的治疗 剂量,但不应超过人体的最大耐受剂量 受试人数:每组8~12例
正常受试者药代动力学研究
——单剂量给药的临床药代动力学研究
三、 试验操作步骤
三种单剂量的药代动力学试验结果反映不同药物 剂量(小、中、大剂量)的吸收和消除动力学的 规律是线性或非线性动力学
正常受试者药代动力学研究
——单剂量给药的临床药代动力学研究
五、药代动力学参数的估算
线性或非线性动力学的判断标准举例:依立雄胺 (epristeride)的9名健康男性受试者单剂量口服 5 mg、10 mg、20 mg爱普列特片剂进行药代动 力学研究结果如下(表8-2、表8-3)
或因与血浆蛋白结合力高,不易进入组织,其Vd 值常较小,约为0.15~0.3L/kg;与此相反,碱性 有机药物如苯丙胺、山莨菪碱等易被组织所摄取, 血中浓度较低,Vd值常超过体液总量(60kg的正 常人,体液约36L,即0.6L/kg)。例如,地高辛 的Vd达600L(10 L/kg),说明该药在深部组织大 量储存。
物效的 浓最 度临低 。床中最毒佳浓效度果,是(维C持SS)药min物大的于(药CS物S)m的ax最小低于有药
(六)负荷剂量(Loading dose,DL)
概念:临床上为了使药物尽快到达稳态 从而尽早发挥疗效,常常先给予一个较维持 剂量大的剂量使药物迅速达到稳态水平,然 后在预定的给药间隔时间给予维持剂量维持 稳态水平,这个在第一次使用的剂量称为负 荷剂量。
应用
3. 根据表观分布容积调整剂量 通常药物的表观分布容积与体表面积成正
第九章 药代动力学与药效学动力学结合模型

第九章药代动力学与药效动力学结合模型第一节概述药代动力学(Pharmacokinetics,PK)和药效动力学(Pharmacodynamics,PD)是按时间同步进行着的两个密切相关的动力学过程,前者着重阐明机体对药物的作用,即药物在体内的吸收、分布、代谢和排泄及其经时过程;后者描述药物对机体的作用,即效应随着时间和浓度而变化的动力学过程,后者更具有临床实际意义。
传统的药效动力学主要在离体的水平进行,此时药物的浓度和效应呈现出一一对应的关系,根据药物的量效关系可以求得其相应的药效动力学参数,如亲和力和内在活性等。
但药物的作用在体内受到诸多因素的影响,因而其在体内的动力学过程较为复杂。
以往对于药动学和药效学的研究是分别进行的,但实际上药动学和药效学是两个密切相关的动力学过程,两者之间存在着必然的内在联系。
早期的临床药动学研究通过对治疗药物的血药浓度的监测(Therapeutic Drug Monitoring, TDM)来监测药物效应变化情况,其理论基础是药物的浓度和效应呈现出一一对应的关系,这一关系是建立在体外研究的基础之上的,这里所说的浓度实际上是作用部位的浓度,但在临床研究中我们不可能直接测得作用部位的药物浓度,因而常常用血药浓度来代替作用部位的浓度。
随着药代动力学和药效动力学研究的不断深入人们逐渐发现药物在体内的效应动力学过程极为复杂,其血药浓度和效应之间并非简单的一一对应关系,出现了许多按传统理论无法解释的现象,如效应的峰值明显滞后于血药浓度峰值,药物效应的持续时间明显长于其在血浆中的滞留时间,有时血药浓度和效应的曲线并非像在体外药效动力学研究中观察到的S形曲线,而是呈现出一个逆时针滞后环。
进一步研究发现血药浓度的变化并不一定平行于作用部位药物浓度的变化,因而出现了上述的一些现象,所以在体内不能用血药浓度简单地代替作用部位的浓度来反映药物效应的变化情况。
针对上述问题Sheiner等人于1979年首次提出了药动学和药效学结合模型,并成功地运用这一模型解释了上述的现象。
药代动力学模型ppt(38张)

Css
k0 kV
定义任意时间血药浓度与稳态浓度比为fss, 即:
f ss
C C ss
从而可以计算血药浓度达到稳态浓度的某一分数fss所需要的时间长短。
假定该时间相当于nt1/2,由3-19式得到: n ln(1 f ss ) 0.693
静脉滴注给药存在下列特征:
1) 按恒速滴注给药, 血药浓度随时间递增,当时间趋
药物进入组织中的速率主要受组织血流灌注速率的控制 膜限制模型(membrane limited) 毛细血管膜的通透性成为药物进入组织的主要限制因素。 如脑、睾丸等
药代动力学模型(PPT38页)
药代动力学模型(PPT38页)
肝清除率(Hepatic clearance,CLH )
概念:在单位时间内肝脏清除药物的总量与当
无穷大时, 血药浓度达稳态。对于同一药物,稳态浓度
大小取决于滴注速率。
2) 达到稳态某一分数所需要的时间长短取决于半衰期,
而与滴注速率无关。当时间相当于3.32t1/2,时,血药浓度 相当于稳态浓度的90%, 当时间相当于6.64t1/2时,血药 浓度相当于稳态浓度的99%。
3)已知期望血药浓度,可以确定静脉滴注速率k0
各阶统计矩的计算
1.零阶矩
AUC c(t)dt
0
2.一阶矩
MRT 0 tC(t)dt AUMC
AUC
AUC
3.二阶矩
误差大、结果不肯定、应用价值小,故不用
药代动力学模型(PPT38页)
用统计矩计算药代动力学参数
一、清除率
是指单位时间内多少表观分布容积内的药物被清除掉。
Cl
( dx )dt 0 dt
第3节 生理药物代谢动力学模型 一、生理药物代谢动力学模型的基础
药代动力学模型及应用

药代动力学模型及应用药代动力学模型,这名字听起来是不是很高大上?别紧张,其实它就是在研究药物在我们身体里的“旅程”。
想象一下,你吃下去的药,经过了怎样的“冒险”。
药物在体内可不是随便走走就完事了,它们有自己的路线图,分成几个阶段:吸收、分布、代谢、排泄。
就好比一部精彩的电影,药物作为主角,得经历各种戏剧性的情节,才能顺利“落幕”。
首先说说吸收。
想象一下,你刚吃下药,药物开始在胃里开party。
胃酸一波接一波地冲击,药物得快速分解,才能进入血液。
这个过程可不是一蹴而就的。
有些药物就像小孩子,特别调皮,根本不听话,吸收得慢腾腾的。
而有的药物则像闪电,嗖的一下就进了血液。
这可真是个千差万别的世界!药物到底怎么选择“路线”的呢?这跟它的化学结构、溶解度还有配方都有关系。
太复杂了,听起来就让人头疼,但其实了解这些,对我们选药很有帮助哦。
药物进入血液后,得开始分布。
这就好比一个旅行团,药物们要找到各自的目的地。
有些药物偏爱特定的器官,比如心脏、肝脏,它们总是挤在一起,互相打招呼,搞得热闹非凡。
还真是个“聚会”呢!而有些药物则爱自由,喜欢在全身各处闲逛。
分布的速度和范围也因药物的性质而异。
想想看,哪种药物在身体里最受欢迎,哪个又总是被冷落,真是有趣的事情!然后,代谢登场。
药物在身体里待久了,得想办法换个“新装”。
这时候,肝脏就成了“时尚设计师”,负责将药物转变成可以被身体更好处理的形式。
代谢的过程也很复杂,有的药物在这里翻身成了超级英雄,有的则变得毫无用处。
这个过程就像变魔术,有时候药物变得更加活跃,有时候却变得懦弱无比。
你说,这不就是药物“变身”的时刻吗?药物得离开我们的身体。
这一步叫做排泄。
想象一下,药物经历了这么多,终于到了回家的时候。
主要通过肾脏来完成,尿液的产生就是药物离开的“出口”。
不过,有的药物在离开前还得经过一番复杂的处理,变得更容易被排出。
就好比一个好旅客,总得带着清爽的气息回家,不能留下“臭味”呀!说到这里,药代动力学模型的应用就来了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
残差法
Ba
b
消除相(b相)
t
药物
中央室 Xc,Vc
Ke(k10)
k12
k21
周边室 Xp。Vp
dXc dt =-(k12+k10)Xc+k21Xp dXp dt =k12Xc- k21Xp 经拉普拉斯转换
Ct=A e- a t + B e- b t
计算药代动力学参数的程序
MRT0
tC(t)dt
AUMC
AUC AUC
3.二阶矩
误差大、结果不肯定、应用价值小,故不用
药代动力学模型(PPT38页)
药代动力学模型(PPT38页)
用统计矩计算药代动力学参数
一、清除率
是指单位时间内多少表观分布容积内的药物被清除掉。
Cl
( dx )dt 0 dt
Cdt
X0 AUC
0
对于血管外途径给药,则:
统计矩的优点: 1.不依赖动力学模型,只要求药物的 体内过程属线性动力学 2.解决了不能用房室模型拟合的问题 3.可取代房室模型分析
统计矩的缺点: 不能提供血药浓度-时间曲线的细节,
只能提供总体参数。
药代动力学模型(PPT38页)
药代动力学模型(PPT38页)
第3节 生理药物代谢动力学模型 一、生理药物代谢动力学模型的基础
药代动力学模型(PPT38页)
定义任意时间血药浓度与稳态浓度比为fss, 即:
f ss
C C ss
从而可以计算血药浓度达到稳态浓度的某一分数fss所需要的时间长短。
假定该时间相当于nt1/2,由3-19式得到: n ln(1 fss) 0.693
静脉滴注给药存在下列特征:
1) 按恒速滴注给药, 血药浓度随时间递增,当时间趋
第2节
统计矩理论为基础的非房室模型
概述
统计矩(Statistical Moment)的概念:
是以概率论和数理统计学中的统计矩方法为理 论基础,对数据进行解析一种方法。
统计矩的特征参数***
1.零阶矩 AUC
反映体内药物量
2.一阶矩
MRT (mean residence time) 平均驻留时间
反映速度的参数
第3章 药代房室动模型力的学判定模型
第1节 房室模型
一、药物浓度-时间曲线(药时曲线)
血
药
达峰时间
浓
度
吸 收 分 布 过 程 潜伏期 持续期
最低中毒浓度
药峰 浓度 安全范围
最低有效浓度
代谢排泄过程
残留期
时间
二、房室模型理论 (一)开放式一室模型
1.静脉注射给药
K:消除速率常数
dX kX 积分后 Xt=X0 e-kt
性质:建立在机体的生理、 生化、解剖和药物热力学 性质基础上的一种整体模型
药代动力学模型(PPT38页)
药代动力学模型(PPT38页)
二、药物在组织中的命运
基于生理特性的组织 房室模型
药量变化速率=进入速率-输出速率-消除速率+合成速率 血流灌注速率限制性模型(perfusion-rate limited)
Cl FX0 AUC
药代动力学模型(PPT38页)
药代动力学模型(PPT38页)
二、MRT与半衰期关系
1. i.v.给药
.
1 k
t1/2 0.693
2. 血管外给药
11 MR ex.eTkka MR ivTMAT
MAT:平均吸收时间 MAT=1/Ka
3.短时间静脉滴注给药
MRTMRivTT2 T为滴注时间
C F0 X (ek(tta)e ) ka(tt0) V(kka)
药代动力学模型(PPT38页)
3.静脉滴注药物代谢动力学
假定静脉滴注给药速率为k0, 得到体内药量的速率方程
dX dt
k0
k
X
解方程
C k0 (1ekt) kV
血药浓度-时间曲线方程
当时间t 趋于无穷大时
C ss
Байду номын сангаас
k0 kV
药代动力学模型(PPT38页)
药代动力学模型(PPT38页)
药代动力学模型(PPT38页)
三、稳态表观分布容积
Vss可在药物单剂量静注后通过清除率与平均驻留时 间积进行计算
VssC•lMRTA Xi.U v. •C MRT
k Cl V ss
药代动力学模型(PPT38页)
药代动力学模型(PPT38页)
非房室模型和房室模型的优缺点比较
3.二阶矩
药代动力学模型(PPT38页)
方差(variance of mean residence 反映MRT的差异 time,VRT)
药代动力学模型(PPT38页)
统计矩的优点: 不依赖动力学模型
用统计矩的条件: 药物的体内过程属线性动力学
各阶统计矩的计算
1.零阶矩
AUC c(t)dt
0
2.一阶矩
药物进入组织中的速率主要受组织血流灌注速率的控制 膜限制模型(membrane limited) 毛细血管膜的通透性成为药物进入组织的主要限制因素。 如脑、睾丸等
药代动力学模型(PPT38页)
药代动力学模型(PPT38页)
肝清除率(Hepatic clearance,CLH )
无穷大时, 血药浓度达稳态。对于同一药物,稳态浓度
大小取决于滴注速率。
2) 达到稳态某一分数所需要的时间长短取决于半衰期,
而与滴注速率无关。当时间相当于3.32t1/2,时,血药浓度 相当于稳态浓度的90%, 当时间相当于6.64t1/2时,血药 浓度相当于稳态浓度的99%。
3)已知期望血药浓度,可以确定静脉滴注速率k0
k0 CsskV
药代动力学模型(PPT38页)
药代动力学模型(PPT38页)
(二)开放式二室模型
药物
Ke(k10) 中央室
k12
k21
周边室
中央室 血液、细胞外液、血流丰富的心、肝、肺, 脾、肾
周边室 血流贫乏的肌肉、脂肪、皮肤等
假定:药物仅从中央室消除
药代动力学模型(PPT38页)
药代动力学模型(PPT38页)
PCNONLIN, 3P87, 3P97, PK-BP-NI等
药代动力学模型(PPT38页)
药代动力学模型(PPT38页)
a bk10k21 abk21k12k10
A X0(ak21) VC(ab)
B X0(k21b) VC(ab)
V c
X0 A B
药代动力学模型(PPT38页)
药代动力学模型(PPT38页)
dt
CX0 V
ek
t
C0ek
t
取对数
VX C
C0
X0 V
lnClnC0kt
2.血管外途径给药的药物代谢动力学
dX a dt
ka X a
dX dt
kaX a kX
解上述微分方程,得到给药后的血药浓度时间曲线:
C FX0 (ek tekat) V(kka)
存在一滞后时间(lag time, t0)