卡方检验

合集下载

统计方法卡方检验

统计方法卡方检验

统计方法卡方检验卡方检验(Chi-Square Test)是一种统计方法,用于检验两个或多个分类变量之间的关系。

它通过比较观察到的频数与期望的频数之间的差异,来判断这些变量是否独立或存在相关性。

卡方检验可以用于不同类型的问题,包括:1.两个分类变量之间的关系:例如,我们可以使用卡方检验来确定性别和吸烟偏好之间是否存在关联。

2.多个分类变量之间的关系:例如,我们可以使用卡方检验来确定教育水平、职业和收入之间是否有关联。

卡方检验的原理是基于观察到的频数与期望的频数之间的差异。

观察到的频数是指在实际数据中观察到的变量组合的频数。

期望的频数是指在假设独立的情况下,根据变量边际分布计算得到的预期频数。

卡方检验通过计算卡方统计量来衡量这两组频数之间的差异。

在进行卡方检验之前,需要设置零假设(H0)和备择假设(Ha)。

零假设通常是指两个或多个分类变量之间独立的假设,而备择假设则是指两个或多个分类变量之间存在相关性的假设。

卡方检验的计算过程可以分为以下几个步骤:1.收集观察数据:将观察到的数据以交叉表格的形式整理起来。

表格的行和列分别代表两个或多个分类变量的不同组合,表格中的数值表示观察到的频数。

2.计算期望频数:根据变量边际分布计算得到期望频数。

期望频数是在零假设成立的情况下,根据变量边际分布计算得到的预期频数。

3.计算卡方统计量:根据观察频数和期望频数之间的差异计算卡方统计量。

卡方统计量的计算公式为:X^2=Σ((O-E)^2/E)其中,Σ代表对所有单元格进行求和,O表示观察到的频数,E表示期望频数。

4. 计算自由度:自由度(degrees of freedom)是进行卡方检验时需要考虑的自由变量或条件的数量。

在卡方检验中,自由度等于(行数 - 1)乘以(列数 - 1)。

5.查找临界值:使用给定的自由度和显著性水平(通常为0.05)查找卡方分布表格,以确定接受或拒绝零假设。

6.比较卡方统计量和临界值:如果卡方统计量大于临界值,则拒绝零假设,认为两个或多个分类变量之间存在相关性;如果卡方统计量小于临界值,则接受零假设,认为两个或多个分类变量之间独立。

卡方检验的名词解释

卡方检验的名词解释

卡方检验的名词解释
卡方检验是一种非参数检验方法,用于检验样本是否符合某种分布,或者两个样本是否来自于同一分布。

其基本思想是根据样本数据计算出某个统计量,然后通过这个统计量的值与期望值的比较来判断样本数据是否偏离预期分布。

卡方检验适用于样本数据不服从正态分布或样本大小较小的情况。

卡方检验的应用非常广泛,例如在医学研究中用于比较治疗方法的效果、在社会学研究中用于比较不同群体的特征等。

卡方检验的结果可以用卡方值、自由度和显著性水平来表示。

其中,卡方值表示样本数据与预期分布之间的差异,自由度表示卡方检验中减去的理论频数,显著性水平表示样本数据是否显著偏离预期分布。

在实际应用中,要根据具体情况选择合适的卡方检验方法,并根据卡方检验结果做出相应的决策。

第四章 卡方检验

第四章   卡方检验

4.1 适合度检验
④ SPSS 点击确定。再点击菜单分析→非参数检验 →旧对话框→卡方:
4.1 适合度检验
④ SPSS
弹出对话框,将数量选择到检验变量列表中,在 期望值下面选择值,按比例从小到大分别输入1, 添加,3,添加:
4.1 适合度检验
④ SPSS
点击确定,即可得到结果:
4.1 适合度检验
② SPSS 点击继续,返回上级对话框,点击确定,得到结果:
df=1时,需要看连续校正的卡方值,为23.174,对应的p值为0.000, 小于0.01表明两种人群的气管炎患病率有非常显著的差异。
4.2.1.1 需要校正的四格表资料的χ2检验
例 某医师欲比较胞磷胆碱与神经节苷酯治疗脑 血管疾病的疗效,将78例脑血管疾病患者随机分 为两组,结果见表。问两种药物治疗脑血管疾病 的有效率是否相等?
4.1 适合度检验
④ SPSS 定义变量,输入数据,点击菜单数据→
加权个案,弹出对话框,选择加权个案, 将数量选择到频率变量下面,点击确定。 再点击菜单分析→非参数检验→旧对话框 →卡方,弹出对话框,将数量选择到检验 变量列表中,在期望值下面选择值,按比 例从小到大分别添加1,3,32×2表)分析:
4.2.1.3 四格表资料的Fisher确切概率法
① DPS 立刻得到结果:
4.2.1.3 四格表资料的Fisher确切概率法
② SPSS 定义变量,输入数据,点击菜单数据→加权个案,弹
出对话框,选择加权个案,将数量选择到频率变量下面, 点击确定。点击菜单分析→描述统计→交叉表:
4.2.1.1 需要校正的四格表资料的χ2检验
① DPS 在DPS中输入数据,选择数据,点击菜单分类
数据统计→四格表→四格表(2×2表)分析:

卡方检验名词解释

卡方检验名词解释

卡方检验名词解释
卡方检验属于非参数检验,由于非参检验不存在具体参数和总体正态分布的假设,所以有时被称为自由分布检验。

参数和非参数检验最明显的区别是它们使用数据的类型。

非参检验通常将被试分类,如民主党和共和党,这些分类涉及名义量表或顺序量表,无法计算平均数和方差。

卡方检验分为拟合度的卡方检验和卡方独立性检验。

我们用几个例子来区分这两种卡方检验:
•对于可口可乐公司的两个领导品牌,大多数美国人喜欢哪一种?•公司采用了新的网页页面B,相较于旧版页面A,网民更喜欢哪一种页面?
以上两个例子属于拟合度的卡方检验,原因在于它们都是有关总体比例的问题。

我们只是将个体分类,并想知道每个类别中的总体比例。

它检验的内容仅涉及一个因素多项分类的计数资料,检验的是单一变量在多项分类中实际观察次数分布与某理论次数是否有显著差异。

拟合度的卡方检验定义:
主要使用样本数据检验总体分布形态或比例的假说。

测验决定所获得的的样本比例与虚无假设中的总体比例的拟合程度如何。

拟合度的卡方检验又叫最佳拟合度的卡方检验,为何取名“最佳拟合”?这是因为最佳拟合度的卡方检验的目的是比较数据(实际频数)与虚无假设。

确定数据如何拟合虚无假设指定的分布,因此取名“最佳拟合”。

关于拟合度的卡方检验有一些翻译上的区别,其实表达的是一个意思:
拟合度的卡方检验=卡方拟合优度检验=最佳拟合度卡方检验
以下统称:卡方拟合优度检验
卡方统计的公式:卡方卡方=χ2=Σ(fo−fe)2fe
公式中O代表observation,即实际频数;E代表Expectation,即期望频数。

卫生统计学卡方检验

卫生统计学卡方检验

卫生统计学卡方检验
26/94
(一) 多个样本率比较
例3 某研究者欲比较A、B、C 三种方案治疗轻、中度 高血压疗效,将年纪在50~70岁240例轻、中度高血压患 者随机等分为3组,分别采取三种方案治疗。一个疗程 后观察疗效,结果见表11.4。问三种方案治疗轻、中度 高血压有效率有没有差异?
卫生统计学卡方检验
卫生统计学卡方检验
29/94
④ 确定P值
υ=(3-1)(2-1)=2,查 2 界值表得P<0.01。
⑤ 下结论
因为P<0.01,按α=0.05水准,拒绝H0,接收 H1,差异有统计学意义。即可认为三种方案治疗轻 、
中度高血压有效率不等或不全等
卫生统计学卡方检验
30/94
例 某市重污染区、普通污染区和农村出生婴儿致畸情 况以下表,问三个地域出生婴儿致畸率有没有差异?
① 建立假设 H0:π1=π2 H1:π1≠π2
② 确定检验水准
α=0.05
③ 计算统计量 2 值
2(2 62-73 6-7 1/2 )27 12 .7 5 3 33 86 29
④ 确定P值
υ=(2-1) (2-1)=1,查 2界值表得P>0.05。
卫生统计学卡方检验
24/94
⑤ 下结论 因为P>0.05,按α=0.05水准,不拒绝H0,差 异无统计学意义。尚不能认为甲、乙两疗法对小 儿单纯性消化不良治愈率不等。
9/94
TRC
nR nC n
n R 为对应行累计
n C 为对应列累计
n 为总例数。
卫生统计学卡方检验
10/94
表1 两药治疗消化道溃疡4周后疗效
卫生统计学卡方检验
11/94

08卡方检验

08卡方检验
及格 农民 干部 32 55 不及格 13 17
知识分子
25
11
4. 初步统计频数卡方独立性检验:SPSS

New file > Variable View > define variables Data View > input data Data > Weight Cases > “Counts” to be weighted Run “Crosstabs” analysis
统计方法与数据分析
第七讲 卡方检验
1. 卡方检验:概述



卡方(Chi-square), 数学符号表示为χ2, 是一种非 参数检验方法。它适用于比较两组(或以上)互斥 的频数数据之间是否存在显著差异。 卡方比较的是观测频数(observed frequency)和 期待频数(expected frequency)之间的比例,以 考察是否存在显著差异。 期待频数也称理论频数,通常是指假定各组均等的 频数。

卡方检验结果显示,对语言教学影响因素的看法受教龄的 影响显著(χ2=35.300,df=2,p<0.05)。教龄5年以上的教 师认为语言/学习因素是主要的;教龄5年以下的教师认为 环境和学习者因素是主要的(下表)。这可能是因为…
4. 初步统计频数卡方独立性检验:练习

一项研究得到家庭背景不同的学生(农民、干部、 知识分子)的英语学习成绩(及格、不及格)。 现要考察“家庭背景”与“英语成绩”之间是否 彼此独立?
卡方拟合检验SPSS结果(2)
卡方拟合检验结果在论文中的呈现方式

卡方检验结果显示,双语教师的课堂用语有显著差异 (χ2=340.556,df=5,p<0.05)。大多数双语教师使用英语 的量多于汉语,或至少英语汉语使用比例差不多。仅使用 英语或汉语授课的教师极少(下表)。这可能是因为…

生物统计学—卡方检验

生物统计学—卡方检验

卡方检验的原理和方法
由于离散型资料的卡方检验只是近似地服从连 续型变量的卡方分布,所以在对离散型资料进行 卡方检验计算的时,结果常常偏低,特别是当自 由度df=1时,有较大偏差,为此需要进行矫正:
cc
2 i 1 k

Oi Ei 0.5 Ei
2
当自由度df>1时,与连续型随机变量卡方分相 近似,这时可以不做连续性矫正 注意:要求各个组内的理论次数不小于5,如某 组理论次数小于5,则应把它与其相邻的一组或 几组合并,知道理论次数大于5为止
卡方检验的原理和方法
Pearson定理的基本含义: 如果样本确实是抽自由(P1,P2,…,Pk)代 表的总体,Oi和Ei之间的差异就只是随机误差, 则Pearson统计量可视为服从卡方分布 反之,如果样本不是抽自由(P1,P2,…,Pk) 代表的总体,Oi和Ei之间的差异就不只是是随机 误差,从而使计算出的统计量有偏大的趋势 因此,对Pearson统计量进行单尾检验(即 右尾检验)可用于判断离散型资料的观测值与理 论值是不是吻合
当用样本平均数估计总体平均数时,有:
c
2
1

2
x x
2
将样 s 2
2
其c2服从自由度为(k-1)的卡方分布
卡方函数的使用
2 2 假设 H 0: 2 0 , 适用右尾检验 ,其否定区为: c 2 c
假设 H 0: 2 02 , 适用左尾检验 ,其否定区为: c 2 c12 假设
卡方检验的原理和方法
统计假设: H0:观测值与理论值的差异是由随机误差引起 HA:观测值与理论值之间有真实差异
所以卡方值是度量实际观测值与理论值偏南 程度的一个统计量 卡方值越小,表明观测值与理论值越接近 卡方值越大,表明观测值与理论值相差越大 卡方值为0,表明H0严格成立,且它不会有下侧 否定区,只能进行右尾检验

医学统计学-卡方检验

医学统计学-卡方检验
医学统计学-卡方检验
卡方检验是一种常用的统计方法,用于比较观察值和期望值之间的差异。它 在医学研究中有着广泛的应用,可以帮助我们验证假设、推断总体特征以及 分析类别变量的相关性。
卡方检验的定义和原理
卡方检验是一种基于卡方分布的统计检验方法。它基于观察值与期望值之间 的差异来判断样本数据与理论分布的拟合程度。
卡方检验的局限性和注意事项
• 卡方检验只能验证分类变量之间的关联性,不能验证因果关系。 • 卡方检验对样本足够大和数据分类合理的要求比较严格。 • 卡方检验结果受样本选择和观察误差的影响,需要谨慎解释。 • 在进行卡方检验前,需要对数据进行充分的清洗和准备。
结论和要点
卡方检验是一种常用的统计方法
卡方检验的应用领域
医学研究
卡方检验可以用来分析疾病的发生与某个因素之间的关联性,如吸烟与肺癌。
社会科学
卡方检验可以用来研究不同人群之间的行模式和态度偏好,如性别与政治观点。
市场调研
卡方检验可以用来分析消费者的购买偏好和市场细分,如年龄与产品偏好。
卡方检验的假设和前提条件
1 独立性假设
卡方检验基于观察值和期望值之间的差异来验证两个变量之间是否存在独立性。
它可以帮助我们验证假设、推断总体特征以 及分析类别变量的相关性。
结果解读和意义
卡方检验的结果可以帮助我们了解变量之间 的关系,并为决策提供依据。
应用广泛
卡方检验在医学研究、社会科学和市场调研 等领域都有着重要的应用。
局限性和注意事项
卡方检验有一定的局限性,需要注意样本大 小和数据分类的合理性。
4
比较卡方值和临界值
判断卡方值是否大于临界值,从而做出关于拒绝或接受原假设的决策。
卡方检验的结果解读和意义
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
χ 2检验是现代统计学的创始人 之一,英国统计学家K . Pearson (1857-1936)于1900年提出的一 种具有广泛用途的统计方法,常称 为Pearson卡方检验,可用于:
两个或多个率间的比较; 两组或多组频数分布(或构成)的比较 两分类变量的关联性分析 拟合优度检验等等。
第一节 卡方检验的基本思想——以四格表为例
4. SNK检验:参照定量资料的原理
χ2检验的其它应用
拟合优度检验(goodness of fit)
判断实际频数与理论频数的吻合程度 应用:
判断分布类型(正态分布、二项分布……) 评价多元回归分析中回归方程的拟合效果
线性趋势检验
资料类型:不同等级分层的百分率 分析目的:百分率虽等级增加而增加的趋势 分析方法:参见相关与回归分析
步骤:例7-4 1. 建立假设,确定检验水准 H0:π1=π2=π3 , 总体率相等 H1:π1,π2,π3 不等或不全相等 α=0.05 2. 计算检验统计量
3. 确定P值,作出推断结论
二 两组或多组构成比的比较 例7-5:推论多个组的总体分布是否相 同——方法原理同上
三 两个分类变量关联性分析
3.84;
P 0.05,拒绝H0,即1 2
2

2 0.05,1

3.84;
则P 0.05,即不拒绝H0
本例: 2

2 0.05,1

3.84;
P 0.05
两个独立样本率比较的正态近似法 —— z 检验
计算公式:z p1 p2
S p1 p2
p1 p2
例7-6:方法同上 列联系数或关联系数
Pearson列联系数 Cramér列联系数
取值范围:0~√1-1/min(R,C)
行×表分析注意事项
适用条件:不宜有1/5以上格子的理论 频数小于5,且T>1
条件不满足
1. 合并:将相邻组合并 2. 删除:将不满足条件的行或列删除 3. Fisher精确概率或Monte Carlo模拟 4. 增加样本含量
表7-1 两种疗法疗效的比较的四格表(four-fold table)
分组
疗效 有效 无效
合计 有效率
A
73
9
B
52
22
合计
125
31
82
89.02%
74
70.27%
156 80.13%
πA = πB
pA ≠ pB
pA = pB?
πA ≠ πB ?
表7-1 两种疗法疗效的比较的四格表(four-fold table)
pc
(1
pc
)(
1 n1

1 n2
)
pc

X1 X2 n1 n2

n1 p1 n2 p2 n1 n2
适用条件:n1p1 和n1(1- p1)与 n2p2 和n2(1- p2)均>5
u 2 仅在自由度为1时
适用条件
普通四格表资料的适用条件:
1. n≥40,且T≥5 专用公式勿需校正 2. n≥40,而1≤T<5时,用连续性校正公式
——Yates校正公式 一种建议:条件(1)亦做校正。 3. 当n<40或T<1时,Fisher精确检验 (Fisher exact test) 4. χ2接近χ2界值时或P≈0.05时, 亦用Fisher精确概率法
连续性校正公式
χ 2分布是一连续型分布,而行×列表资料属离散
型分布,对其进行校正称为连续性校正 (correction for continuity) 又称Yates(耶茨)校正(Yates’ correction)
T12=16.3 T21=59.3 T22=14.7
如果假设检验成立,A与T不应该相差太大。 理论上可以证明:
2 (A T )2 T
服从χ2分布(附后)。 计算出χ2值后,查χ2界值表判断这么大的χ2
是否为小概率事件,以判断假设检验是否 成立。
χ2分布(chi-square distribution)
α=0.05
2. 计算检验统计量
判断适用条件:n? Tmin?
正确选用公式
c2

(a
( ad bc n / 2)2 n b)(c d )(a c)(b
d)

3.28
3. 确定P值,作出推断结论
Fisher确切概率法
以7-8为例 1. 建立假设,确定检验水准 2. 检验统计量——直接计算概率
卡方检验
Chi-square test
内容摘要
两组二分类资料对比 普通四格表的χ 2检验
Fisher确切概率法
配对设计四格表资料的χ 2检验
行×列(R×C)表资料的χ 2检验
多组二分类(多个率)——χ 2检验 多组多分类(无序)——χ 2检验 关联性分析
卡方检验(Chi-square test)
当其中一个变量为等级资料,且分析 目的为比较处理效应时,用秩和检验 如表8-3
第四节 两两比较
1. 卡方分割
两两比较计算卡方 无统计学意义的合并
2. Scheffè可信区间法 3. Bonferroni法:调整检验水准
k=R(R-1)/2,α’=α/k
例7-4: α’=0.05 / 3=0.0167 结果保守
校正公式:
通用公式的校正 专用公式的校正

2 c

( A T 0.5)2 T

2 c

(a
( ad bc n / 2)2 n b)(c d)(a c)(b
d)
卡方检验完整的分析步骤
例7-2
1. 建立假设,确定检验水准
H0:π1=π2 H1:π1≠π2
甲法
+ + - - … -
乙法
- + + + … +
甲法
编号 结果
1- 2- 3+ … n1 +
乙法
编号 结果
1+ 2- 3+ … n2 +
配对四格表的χ2检验(McNemar's test)
例7-3 分析目的:两法有无差别 假设(+,-)与(-,+)两格子理
论频数相等均为:
Q. McNemar 1900-1986 美国心理学家 统计学家
f
( 2)

1
2(
/
2)

2
2
(
/ 21)
e2 / 2
第二节 普通四格表χ 2检验与专用公式
简化的专用公式:
2 (A T )2
(ad bc)2 n
T (a b)(c d)(a c)(b d)
推断结论:
2

2 0.05,1

分组
疗效
有效
无效
合计
AHale Waihona Puke 73982
B
52
22
74
合计
125
31
156
实际频数A :a、b、c、d
理论频数T:H0:π1=π2=π假设为pc=(a+c.)/ n
T

行(row)合计 列(column)合计 总例数

nR nC n

nim j n
T11= (a+b)×pc= (a+b)×[(a+c.)/ n]=nRnC/n =65.7
b+c <25——确切概率法 例7-9 原理:二项分布 公式:
k
单侧
P(X k)
Ci bc
0.5bc
i0
双侧
k
P(X k) 2
Ci bc
0.5bc
i0
例7-9 P(X≤3)=0.0176<0.05
第四节 行×表资料的χ2检验
一 多个率比较的卡方检验
75 11
2

; 2 0.005,1
P 0.005
配对设计多分类R×C表
McNemar-Bowker 检验
配对号 甲法 乙法
1
+-
2 ++
3 ++ +
4 -+
5 + ++
… ……
n -+
甲法 乙法
- + ++
- 23 45 56 + 34 23 67 ++ 12 34 21
配对四格表的确切概率法
小结
1. 资料类型与统计方法
两个样本率对比的卡方检验 配对设计两个率对比的卡方检验 多个率对比的R×C表的卡方检验 两组或多组构成比的R×C表的卡方检验
2. 适用条件
普通四格表 n? T? 配对四个表 b+c? R×C表 T?
配对四格表的χ 2检验
H0:B=C 或两种方法检出率相同
H1:B≠C 或两种方法检出率不同
α=0.05。 b+c≥40:
2 (b c)2
b
25≤b+c<40:连续性校正
c 2

(
b
c 1)2 bc
b+c <25
确切概率法
本例b+c=86 2 (75 11)2 47.63
判断适用条件:n? Tmin? 正确选用公式——确切概率法
超几何分布原理直接计算周边合计不变的 条件下各种组合的概率
P=∑Pi(Pi≤P样本)
作出推断结论
第三节 配对四格表资料的χ2检验
设计类型:配对设计
例7-3:
配对设计与完全随机设计的区别
配对设计
相关文档
最新文档