DES实验报告

合集下载

DES加密算法的简单实现实验报告

DES加密算法的简单实现实验报告

DES加密算法的简单实现实验报告一、实验目的本实验的主要目的是对DES加密算法进行简单的实现,并通过实际运行案例来验证算法的正确性和可靠性。

通过该实验可以让学生进一步了解DES算法的工作原理和加密过程,并培养学生对算法实现和数据处理的能力。

二、实验原理DES(Data Encryption Standard,数据加密标准)是一种对称密钥加密算法,它是美国联邦政府采用的一种加密标准。

DES算法使用了一个共享的对称密钥(也称为密钥),用于加密和解密数据。

它采用了分组密码的方式,在进行加密和解密操作时,需要将数据分成固定长度的数据块,并使用密钥对数据进行加密和解密。

DES算法主要由四个步骤组成:初始置换(Initial Permutation),轮函数(Round Function),轮置换(Round Permutation)和最终置换(Final Permutation)。

其中初始置换和最终置换是固定的置换过程,用于改变数据的顺序和排列方式。

轮函数是DES算法的核心部分,它使用了密钥和数据块作为输入,并生成一个与数据块长度相同的输出结果。

轮置换将轮函数的输出结果与前一轮的结果进行异或操作,从而改变数据的排列方式。

通过多轮的迭代运算,DES算法可以通过一个给定的密钥对数据进行高强度的加密和解密操作。

三、实验步骤2.初始置换:将输入数据按照一定的规则重新排列,生成一个新的数据块。

初始置换的规则通过查表的方式给出,我们可以根据规则生成初始置换的代码。

3.轮函数:轮函数是DES算法的核心部分,它使用轮密钥和数据块作为输入,并生成一个与数据块长度相同的输出结果。

在实际的算法设计和实现中,可以使用混合逻辑电路等方式来实现轮函数。

4.轮置换:轮置换将轮函数的输出结果与前一轮的结果进行异或操作,从而改变数据的排列方式。

轮置换的规则也可以通过查表的方式给出。

5.最终置换:最终置换与初始置换类似,将最后一轮的结果重新排列,生成最终的加密结果。

des算法实验报告

des算法实验报告

des算法实验报告DES算法实验报告一、引言数据加密标准(Data Encryption Standard,简称DES)是一种对称密钥加密算法,由IBM公司于1975年研发并被美国国家标准局(NBS)采纳为联邦信息处理标准(FIPS)。

二、算法原理DES算法采用了分组密码的方式,将明文数据划分为固定长度的数据块(64位),并通过密钥进行加密和解密操作。

其核心是Feistel结构,每轮加密操作包括置换和替代两个步骤。

1. 置换步骤DES算法的初始置换(IP)和逆初始置换(IP-1)通过一系列的位重排操作,将输入的64位明文数据打乱,以增加加密的强度。

2. 替代步骤DES算法中使用了8个S盒(Substitution Box),每个S盒接受6位输入,并输出4位结果。

S盒的作用是将输入的6位数据映射为4位输出,通过这种非线性的映射关系,增加了算法的安全性。

3. 轮函数DES算法的加密过程包含16轮迭代,每轮迭代中都会对数据进行一系列的位重排和替代操作。

其中,轮函数是DES算法的核心部分,它通过使用子密钥对数据进行异或操作,并通过S盒替代和P盒置换操作,产生新的数据块。

三、实验步骤为了更好地理解DES算法的加密过程,我们进行了以下实验步骤:1. 输入明文和密钥我们选择了一个64位的明文数据块和一个56位的密钥作为输入。

明文数据块经过初始置换(IP)后,得到L0和R0两个32位的数据块。

2. 生成子密钥通过对密钥进行置换和循环左移操作,生成16个48位的子密钥。

3. 迭代加密对明文数据块进行16轮的迭代加密,每轮加密包括以下步骤:a. 将R(i-1)作为输入,经过扩展置换(E-box),得到48位的扩展数据。

b. 将扩展数据和子密钥Ki进行异或操作,得到48位的异或结果。

c. 将异或结果分为8个6位的数据块,分别经过8个S盒替代操作,得到32位的S盒替代结果。

d. 将S盒替代结果经过P盒置换,得到32位的轮函数输出。

DES加密解密实验

DES加密解密实验

实验一:DES加密解密实验1.基本原理DES算法为密码体制中的对称密码体制,又被成为美国数据加密标准,是1972年美国IBM公司研制的对称密码体制加密算法。

明文按64位进行分组, 密钥长64位,密钥事实上是56位参与DES运算(第8、16、24、32、40、48、56、64位是校验位,使得每个密钥都有奇数个1)分组后的明文组和56位的密钥按位替代或交换的方法形成密文组的加密方法。

置换规则表其功能是把输入的64位数据块按位重新组合,并把输出分为L0、R0两部分,每部分各长32位,其置换规则见下表:58,50,42,34,26,18,10,2,60,52,44,36,28,20,12,4,62,54,46,38,30,22,14,6,64,56,48,40,32,24,16,8,57,49,41,33,25,17, 9,1,59,51,43,35,27,19,11,3,61,53,45,37,29,21,13,5,63,55,47,39,31,23,15,7,即将输入的第58位换到第一位,第50位换到第2位,...,依此类推,最后一位是原来的第7位。

L0、R0则是换位输出后的两部分,L0是输出的左32位,R0 是右32位,例:设置换前的输入值为D1D2D3......D64,则经过初始置换后的结果为:L0=D58D50...D8;R0=D57D49 (7)经过16次迭代运算后。

得到L16、R16,将此作为输入,进行逆置换,即得到密文输出。

逆置换正好是初始置换的逆运算。

例如,第1位经过初始置换后,处于第40位,而通过逆置换,又将第40位换回到第1位,其逆置换规则如下表所示:40,8,48,16,56,24,64,32,39,7,47,15,55,23,63,31,38,6,46,14,54,22,62,30,37,5,45,13,53,21,61,29,36,4,44,12,52,20,60,28,35,3,43,11,51,19,59,27,34,2,42,10,50,18,58 26,33,1,41, 9,49,17,57,25,放大换位表32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 8, 9, 10,11,12,13,12,13,14,15,16,17,16,17,18,19,20,21,20,21,22,23,24,25,24,25,26,27,28,29,28,29,30,31,32, 1,单纯换位表16,7,20,21,29,12,28,17, 1,15,23,26, 5,18,31,10,2,8,24,14,32,27, 3, 9,19,13,30, 6,22,11, 4,25,功能表在f(Ri,Ki)算法描述图中,S1,S2...S8为选择函数,其功能是把48bit数据变为32bit数据。

密码学案例实验报告书

密码学案例实验报告书

一、实验背景随着信息技术的飞速发展,信息安全问题日益突出。

密码学作为保障信息安全的核心技术,在数据加密、身份认证、数字签名等领域发挥着重要作用。

为了加深对密码学原理的理解,提高实际应用能力,我们开展了本次密码学案例实验。

二、实验目的1. 掌握DES加密算法的基本原理和操作步骤。

2. 熟悉RSA加密算法的原理和应用。

3. 学习数字签名技术的应用。

4. 培养动手实践能力,提高解决实际问题的能力。

三、实验内容1. DES加密算法(1)实验目的:了解DES加密算法的基本原理,掌握DES加密和解密过程。

(2)实验内容:① 设计一个简单的DES加密程序,实现明文到密文的转换。

② 设计一个简单的DES解密程序,实现密文到明文的转换。

(3)实验步骤:① 编写DES加密程序,输入明文和密钥,输出密文。

② 编写DES解密程序,输入密文和密钥,输出明文。

2. RSA加密算法(1)实验目的:了解RSA加密算法的基本原理,掌握RSA加密和解密过程。

(2)实验内容:① 设计一个简单的RSA加密程序,实现明文到密文的转换。

② 设计一个简单的RSA解密程序,实现密文到明文的转换。

(3)实验步骤:① 编写RSA加密程序,输入明文和密钥对,输出密文。

② 编写RSA解密程序,输入密文和私钥,输出明文。

3. 数字签名技术(1)实验目的:了解数字签名技术的基本原理,掌握数字签名的生成和验证过程。

(2)实验内容:① 设计一个简单的数字签名程序,实现签名生成和验证。

(3)实验步骤:① 编写数字签名程序,输入明文、私钥和签名算法,输出签名。

② 编写数字签名验证程序,输入明文、公钥和签名,验证签名是否正确。

四、实验结果与分析1. DES加密算法实验结果通过编写DES加密和解密程序,成功实现了明文到密文和密文到明文的转换。

实验结果表明,DES加密算法在保证数据安全的同时,具有较高的效率。

2. RSA加密算法实验结果通过编写RSA加密和解密程序,成功实现了明文到密文和密文到明文的转换。

des加密算法实验报告

des加密算法实验报告

DES加密算法实验报告1. 引言DES(Data Encryption Standard)是一种对称密码算法,于1977年被美国联邦信息处理标准(FIPS)确定为联邦标准。

DES加密算法采用分组密码的思想,将明文按照64位分为一组,经过一系列的置换、替代和迭代操作,最终输出加密后的密文。

本实验旨在通过对DES加密算法的实际操作,深入理解DES的工作原理和加密过程。

2. 实验步骤2.1. 密钥生成DES加密算法的核心在于密钥的生成。

密钥生成过程如下:1.将64位的初始密钥根据置换表进行置换,生成56位密钥。

2.将56位密钥分为两个28位的子密钥。

3.对两个子密钥进行循环左移操作,得到循环左移后的子密钥。

4.将两个循环左移后的子密钥合并,并根据压缩置换表生成48位的轮密钥。

2.2. 加密过程加密过程如下:1.将64位的明文按照初始置换表进行置换,得到置换后的明文。

2.将置换后的明文分为左右两部分L0和R0,每部分32位。

3.进行16轮迭代操作,每轮操作包括以下步骤:–将R(i-1)作为输入,经过扩展置换表扩展为48位。

–将扩展后的48位数据与轮密钥Ki进行异或操作。

–将异或结果按照S盒进行替代操作,得到替代后的32位数据。

–对替代后的32位数据进行置换,得到置换后的32位数据。

–将置换后的32位数据与L(i-1)进行异或操作,得到Ri。

–将R(i-1)赋值给L(i)。

4.将最后一轮迭代后得到的数据合并为64位数据。

5.对合并后的64位数据进行逆置换,得到加密后的64位密文。

3. 实验结果对于给定的明文和密钥,进行DES加密实验,得到加密后的密文如下:明文:0x0123456789ABCDEF 密钥:0x133457799BBCDFF1密文:0x85E813540F0AB4054. 结论本实验通过对DES加密算法的实际操作,深入理解了DES加密算法的工作原理和加密过程。

DES加密算法通过对明文的置换、替代和迭代操作,混淆了明文的结构,使得密文的产生与密钥相关。

des 加密算法实验报告

des 加密算法实验报告

des 加密算法实验报告DES加密算法实验报告一、引言数据加密标准(Data Encryption Standard,简称DES)是一种对称加密算法,由IBM公司于1975年研发并被美国联邦政府采用为标准加密算法。

DES算法具有高效、可靠、安全等特点,被广泛应用于信息安全领域。

本实验旨在通过对DES算法的实验研究,深入了解其原理、性能和应用。

二、DES算法原理DES算法采用对称密钥加密,即加密和解密使用相同的密钥。

其核心是Feistel结构,将明文分成左右两部分,经过16轮迭代加密后得到密文。

每一轮加密中,右半部分作为下一轮的左半部分,而左半部分则通过函数f和密钥进行变换。

DES算法中使用了置换、代换和异或等运算,以保证加密的安全性。

三、DES算法实验过程1. 密钥生成在DES算法中,密钥长度为64位,但实际上只有56位用于加密,8位用于奇偶校验。

实验中,我们随机生成一个64位的二进制密钥,并通过奇偶校验生成最终的56位密钥。

2. 初始置换明文经过初始置换IP,将明文的每一位按照特定规则重新排列,得到初始置换后的明文。

3. 迭代加密经过初始置换后的明文分为左右两部分,每轮加密中,右半部分作为下一轮的左半部分,而左半部分则通过函数f和子密钥进行变换。

函数f包括扩展置换、S盒代换、P盒置换和异或运算等步骤,最后与右半部分进行异或运算得到新的右半部分。

4. 逆初始置换经过16轮迭代加密后,得到的密文再经过逆初始置换,将密文的每一位按照特定规则重新排列,得到最终的加密结果。

四、DES算法性能评估1. 安全性DES算法的密钥长度较短,易受到暴力破解等攻击手段的威胁。

为了提高安全性,可以采用Triple-DES等加强版算法。

2. 效率DES算法的加密速度较快,适用于对大量数据进行加密。

但随着计算机计算能力的提高,DES算法的加密强度逐渐降低,需要采用更加安全的加密算法。

3. 应用领域DES算法在金融、电子商务、网络通信等领域得到广泛应用。

DES文件加密实验报告

DES文件加密实验报告

DES文件加密实验报告一、DES算法简介DES是Data Encryption Standard(数据加密标准)的缩写。

它是由IBM公司研制的一种加密算法,美国国家标准局于1977年公布把它作为非机要部门使用的数据加密标准,二十年来,它一直活跃在国际保密通信的舞台上,扮演了十分重要的角色。

DES是一个分组加密算法,他以64位为分组对数据加密。

同时DES也是一个对称算法:加密和解密用的是同一个算法。

它的密匙长度是56位(因为每个第8 位都用作奇偶校验),密匙可以是任意的56位的数,而且可以任意时候改变。

其中有极少量的数被认为是弱密匙,但是很容易避开他们。

所以保密性依赖于密钥。

二、用C#实现DES文件加密指定文件,输入密钥来加密和解密数据。

DESCryptoServiceProvider基于对称加密算法。

Symmetricencryption 需要一个密钥和一个初始化向量(IV) 加密请。

要解密的数据,必须具有相同的密钥和IV。

使用的加密提供程序来获取encryptingobject (CreateEncryptor) 创建CryptoStream类的一个实例,现有输出文件流对象的构造函数的一部分。

要解密文件,执行以下步骤:创建一个方法,并命名该按钮DecryptFile.解密过程是类似于theencryption 进程,但是,DecryptFile过程从EncryptFile过程的两个主要区别。

而不是CreateEncryptor使用CreateDecryptor来创建CryptoStream对象,用于指定如何使用该对象。

解密的文本写入目标文件,CryptoStream对象是现在而不是目标流的来源。

三、运行环境可将DES文件加解密软件的可执行.exe文件直接在xp,win7等系统上运行。

四、实验结果1、开始界面2、打开要加密文件、输入密钥3、加密4、打开要解密文件、输入密钥5、解密五、主要算法代码public static void EncryptFile(string sInputFilename, string sOutputFilename, string sKey){FileStream fsInput = new FileStream(sInputFilename, FileMode.Open, FileAccess.Read);FileStream fsEncrypted = new FileStream(sOutputFilename, FileMode.Create, FileAccess.Write);DESCryptoServiceProvider DES = new DESCryptoServiceProvider();DES.Key = ASCIIEncoding.ASCII.GetBytes(sKey);DES.IV = ASCIIEncoding.ASCII.GetBytes(sKey);ICryptoTransform desencrypt = DES.CreateEncryptor();CryptoStream cryptostream = new CryptoStream(fsEncrypted, desencrypt, CryptoStreamMode.Write);byte[] bytearrayinput = new byte[fsInput.Length];fsInput.Read(bytearrayinput, 0, bytearrayinput.Length);cryptostream.Write(bytearrayinput, 0, bytearrayinput.Length);cryptostream.Close();fsInput.Close();fsEncrypted.Close();}public static void DecryptFile(string sInputFilename, string sOutputFilename, string sKey){try{DESCryptoServiceProvider DES = new DESCryptoServiceProvider();DES.Key = ASCIIEncoding.ASCII.GetBytes(sKey);DES.IV = ASCIIEncoding.ASCII.GetBytes(sKey);FileStream fsread = new FileStream(sInputFilename, FileMode.Open, FileAccess.Read);ICryptoTransform desdecrypt = DES.CreateDecryptor();CryptoStream cryptostreamDecr = new CryptoStream(fsread, desdecrypt, CryptoStreamMode.Read);StreamWriter fsDecrypted = new StreamWriter(sOutputFilename);fsDecrypted.Write(new StreamReader(cryptostreamDecr,Encoding.GetEncoding("GB2312")).ReadToEnd());fsDecrypted.Flush();fsDecrypted.Close();}catch (Exception e){MessageBox.Show(e.Message);}}。

des算法 实验报告

des算法 实验报告

des算法实验报告DES算法实验报告引言:数据加密标准(Data Encryption Standard,简称DES)是一种对称密钥加密算法,由IBM公司在20世纪70年代初开发。

DES算法通过将明文分块加密,使用相同的密钥进行加密和解密操作,以保护数据的机密性和完整性。

本实验旨在深入了解DES算法的原理和应用,并通过实验验证其加密和解密的过程。

一、DES算法原理DES算法采用分组密码的方式,将明文分为64位的数据块,并使用56位的密钥进行加密。

其加密过程主要包括初始置换、16轮迭代和逆初始置换三个步骤。

1. 初始置换(Initial Permutation,IP):初始置换通过将明文按照特定的置换表进行重排,得到一个新的数据块。

这一步骤主要是为了增加密文的随机性和混淆性。

2. 16轮迭代(16 Rounds):DES算法通过16轮迭代的运算,对数据块进行加密操作。

每一轮迭代都包括四个步骤:扩展置换(Expansion Permutation,EP)、密钥混合(Key Mixing)、S盒替换(Substitution Boxes,S-Boxes)和P盒置换(Permutation,P)。

其中,S盒替换是DES算法的核心步骤,通过将输入的6位数据映射为4位输出,增加了加密的复杂性。

3. 逆初始置换(Inverse Initial Permutation,IP-1):逆初始置换是初始置换的逆运算,将经过16轮迭代加密的数据块按照逆置换表进行重排,得到最终的密文。

二、实验步骤本实验使用Python编程语言实现了DES算法的加密和解密过程,并通过实验验证了算法的正确性。

1. 密钥生成:首先,根据用户输入的密钥,通过置换表将64位密钥压缩为56位,并生成16个子密钥。

每个子密钥都是48位的,用于16轮迭代中的密钥混合操作。

2. 加密过程:用户输入明文数据块,将明文按照初始置换表进行重排,得到初始数据块。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告
课程名称电子商务安全
实验项目名称实验二DES加密算法
班级与班级代码07电商1班072511031
实验室名称(或课室)实验大楼809 专业 2007电子商务1班
任课教师
学号:072511031
姓名:
机器号码:3组F(周二)
实验日期:2010年10月19 日
广东商学院教务处制
姓名汪江实验报告成绩
评语:
指导教师(签名)
年月日说明:指导教师评分后,实验报告交院(系)办公室保存。

实验二 DES加密算法
实验目的
1、理解对称加密算法的原理和特点。

2、理解DES和AES算法的加密原理。

实验原理
DES是一种分组加密算法,所谓分组加密算法就是对一定大小的明文或密文来做加密或解密动作。

而在DES这个加密系统中,每次加密或解密的分组大小均为64位,所以DES没有密文扩充的问题。

对大于64位的明文只要按每64位一组进行切割,而对小于64位的明文只要在后面补“0”即可。

另一方面,DES所用的加密或解密密钥也是64位大小,但因其中有8个位是用来作奇偶校验的,所以64位中真正起密钥作用的只有56位,密钥过短也是DES最大的缺点。

DES加密与解密所用的算法除了子密钥的顺序不同外,其他部分完全相同。

实验设备
Windows虚拟机
CIS工具箱——该实验使用加密解密工具。

实验步骤
step 1:输入明文数据和密钥是一样的,都为本人的学号后8位(51103119)。

明文和密钥要求键盘输入8个字符,在系统里换算成asc码就变成16进制的16个字符实验结果。

如图1所示。

图1
step 2:点击“密钥生成演示”,可以得到第一次迭代后的64位密钥、
56位密钥、Ci 、Di 、Ci+1、Di+1、子密钥。

如图2所示。

图2
64位密钥的二进制矩阵如下: 56位压缩密钥的二进制矩阵如下:
Ci 的二进制矩阵如下: Di 的二进制矩阵如下:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1
1
1
1
0 0 1 1 0 1 0 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0
1
1
Ci+1的二进制矩阵如下: Di+1的二进制矩阵如下:
子密钥的二进制矩阵如下:
压缩矩阵1和压缩矩阵2的二进制矩阵如下:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
1
1
1
1
1
1
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1
1
1
1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
1
1
1
1
1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1
1
1
1
1
0 1 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 0 1 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0
1
Step 3:再点击“下一个”,得到第二次迭代结果,如图3所示。

图3
Ci+1的二进制矩阵 Di+1的二进制矩阵
子密钥的二进制矩阵
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
1
1
1
1
0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
1
1
1
1
0 1 0 1 0 0 0 0 1 0 1 0 1 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0
1
Step 4:再点击“下一个”,得到第三次迭代结果。

如图4所示。

图4
Ci+1的二进制矩阵 Di+1的二进制矩阵
子密钥的二进制矩阵
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
1
1
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1
1
1
1
1 1 0 1 0 0 0 0 1 0 1 0 1 1 0 0 0 0 1 0 0 1 1 0 1 1 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0
1
经过16次迭代后,得到如图5所示的结果。

图5
Step 5:密钥生成演示完毕,点击“初始置换”,得到结果如图6所示。

图6
置换前的二进制矩阵: 置换后的二进制矩阵:
0 0 1 1 0 1 0 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 0
1
1
1
1
Step 6:点击“下一轮”进行第一轮迭代,结果如图7所示。

图7
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1
Li 的二进制矩阵 Ri 的二进制矩阵
Li+1的二进制矩阵 Ri+1的二进制矩阵
Ki 的二进制矩阵
Step 7:点击“F(Ri,Ki)”,得到F函数,结果如图8所示。

图8
扩展型换位矩阵的Ri:扩展型换位后的Ki:
0 0 0 0
0 0 0 0
1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0
0 0 0 0 1 0
1 1 0 0 1 0 1 0 1 1 0 0 0 1 1 0 0 1
0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0
异或后的503B53A408E0的二进制: S 盒后的B24ADF39二进制:
“换位”表示置换矩阵P
Step 8:经过16轮迭代后,得到结果如图9所示。

图9
0 1 0 1 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 0
1 0 1 1 0 0 1 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1 1 1 0 0 1 1 1
1
16 7
20 21
29 12 28 17
1 15 23 26
5 18 31 10
2 8 24 14
32 27 3 9
19 13 30 6
22 11 4 25
Step 9:点击“终结置换”,得到最终的密文结果。

如图10所示。

图10
实验分析
DES采用传统的换位和置换的方法进行加密,在56b密钥的控制下,将64b明文块变换为64b密文块,加密过程包括16轮的加密迭代,每轮都采用一种乘积密码方式(代替和移位)。

结论
由64位明文51103119,经过64位密钥51103119加密后,最终得到16进制的64位密文,该密文为7952400804754D53
实验总结与心得体会
由于本次实验是通过软件来实现的,真正涉及到详细过程的步骤比较少,在实验过程中不会遇到很大困难。

但是这个实验要充分了解其原理,我想这才是做这个实验的真正目的,而不是单纯地只按照软件的操作步骤来完成这个实验。

在这个实验中,我觉得比较难的就是,要将明文和密钥经过初始变换和十六轮加密变换等一系列变换后才能得到张结置换,其中的变换步骤比较多,而且比较复杂,还要将十六进制转化为二进制,工作量比较大。

由本次DES算法实验我们可以看到:DES算法中只用到64位密钥中的其中56位,而第8、16、24、......64位8个位并未参与DES 运算,这一点,向我们提出了一个应用上的要求,即DES的安全性
是基于除了8,16,24,......64位外的其余56位的组合变化256才得以保证的。

因此,在实际应用中,我们应避开使用第8,16,24, (64)
位作为有效数据位,而使用其它的56位作为有效数据位,才能保证DES算法安全可靠地发挥作用。

如果不了解这一点,把密钥Key的8,16,24,..... 64位作为有效数据使用,将不能保证DES加密数据的安全性,对运用DES来达到保密作用的系统产生数据被破译的危险,这正是DES算法在应用上的误区,留下了被人攻击、被人破译的极大隐患。

相关文档
最新文档