幻方之填法(自我学习总结)

合集下载

填幻方的规律口诀

填幻方的规律口诀

填幻方的规律口诀
“填幻方的规律口诀”是一种帮助人们快速解决填幻方问题的口头提示。

它由一些有关填幻方规则的简洁明了的语句所组成,使用者可以根据这些语句来记住填幻方的规则,从而更快地解决填幻方问题。

填幻方的规律口诀主要有三条:
第一条规律口诀:“横竖角及斜行之和皆相等。

”这条规律口诀提示我们,填幻方中每一行、每一列以及对角线上的数字总和都应相等,即所有行、列和对角线上的数字之和应为15。

第二条规律口诀:“每行每列必不重复。

”这条规律口诀告诉我们,填幻方中每一行和每一列上的数字都不能重复,即同一行、同一列上的数字不能重复出现。

第三条规律口诀:“宫宫相连互不重复。

”这条规律口诀提示我们,填幻方中每个小宫格中的数字都不能重复,即每个小宫格中的数字不能重复出现。

填幻方的规律口诀可以帮助人们记住填幻方的规则,并辅助人们快速解决填幻方问题。

首先,我们可以根据“横竖角及斜行之和皆相等”的规则口诀,计算出每一行、每一列以及对角线上的数字之和应为15。

其次,根据“每行每列必不重复”的规则口诀,我们可以确保每一行
和每一列上的数字不会重复出现。

最后,根据“宫宫相连互不重复”的规则口诀,我们可以确保每个小宫格中的数字不会重复出现。

因此,“填幻方的规律口诀”是一种非常有用的工具,可以帮助人们快速解决填幻方问题。

使用者可以根据这些口诀记住填幻方的规则,从而更快地解决填幻方问题。

幻方填写技巧

幻方填写技巧

幻方的填写技巧摘要:发现了一种任意阶幻方的填法规律,只通过简单的计算就能很快地填出任意阶幻方。

关键词:幻方填法奇数阶幻方偶数阶幻方幻方,古称“纵横图”,就是用自然数1、2、3、…、n2排成n 行,n列的“方阵”,如果每一行,每一列以及每一对角线上的n个数的和都相等(等于n(n2+1)/2),这个“方阵”就叫做n阶幻方。

古今中外很多科学家都对幻方有过深入研究。

介绍幻方的书很多,但大都只介绍了奇数阶幻方的填法,而对于偶数阶幻方的填法,都没有过多的介绍。

我通过对幻方的深入研究,得到了一种n阶幻方的填法规律,利用这个规律,可以很快地填出任意阶幻方(已用V.B语言编成了程序,在计算机上只需要几秒钟就可以得到上千阶幻方)。

现把n阶幻方的填法介绍给大家。

1、奇数阶幻方奇数阶幻方的填法很多书上都有介绍,现选谭浩强著《QBASIC 语言教程》中方法,以5阶幻方为例说明填法(如图1):图1①先将“1”放在第一行当中一列;②从“2”开始直到“n 2”为止,各数依次按下列规则放数:每一个数放的行比前一个数的行数减1,列数加1。

如“6”放的第3行第2列,则“7”放在第2行第3列;③如果上一个数的行数为1,则下一数的行数为n (最下一行)。

如“8”放在第1行第4列,则“9”放在第5行第5列;④如果上一个数的列数为n ,则下一个数的列数应为1,行数减1。

如“3在第4行第5列,则“4”应放在第3行第1列;⑤如下一个数应放的位置已被其它数占用,则下一个数放在上一个数的下面。

如“5”的下一个数“6”应放在第1行第3列,但该位置已被“1”占用,故将“6”放在“5”的下面。

根据上述五点,可以填出所有的奇数阶幻方。

2、偶数阶幻方分是否能被4整除两种情况而用不同的方法。

(1)、当n 能被4整除时,设n=4k(k ≥1),最简单的4k 阶幻方为k =1时的4阶幻方,前人的填法为:①先画一个4×4的格子,从小到大依次填入1至16各数(如a b (同列对调) c (同行对调)图2图2a)。

幻方之填法(自我学习总结)

幻方之填法(自我学习总结)

幻方的填写技巧一、N阶幻方的分类:1、奇数阶幻方:当n=2k+1时,称为奇数阶幻方。

2、偶数阶幻方:(1)双偶数幻方:当n=4k=2×2k时,称为双偶数数阶幻方。

(2)单偶数幻方:当n=4k+2=2×(2k+1)时,称为单偶数阶幻方。

二、幻方的填写方法:1、奇数阶幻方:可按照如下方法操作:Merzirac法,有人也叫楼梯法,我管它叫斜步法,即走X+Y斜步(数字按右上方顺序填入),-Y跳步(如果右上方已有数字或出了对角线,则向下移一格继续填写)。

其实斜步法可以向4个方向依次填写数字,即右上、右下、左上、左下4个方向,每种斜步都可有2种跳步,即左(右)跳步、上(下)跳步。

对于X+Y斜步相应的跳步可以为-X,-Y。

【记住,跳步是X+Y斜步的X(或Y)相反方向即可。

如右上方向斜步,跳步就为向左(或向下)一步;左下方向斜步,跳步就为向右(或向上)一步;等等等等】(2)杨辉“阳动阴静”法南宋杨辉不仅精通数学,而且精通易学,在他1275年所著的《续古摘奇算法》中,就对河图和洛书的数学问题进行了详尽的研究。

其中对3阶幻方的排列,找出了一种奇妙的规律:“九子斜排,上下对易,左右相更,四维挺出,戴九履一,左三右七,二四为肩,六八为足”,清代,2、双偶数阶幻方:可按照如下方法操作:(一)四阶幻方:(1) 对角线上的数字一律不动;(2) 对角线以外的数字关于对角线交点作中心对称对换位置即可。

(3) 完成后的四阶幻方如下:(1)对角线上的数字一律不动;(2)对角线以外的数字关于对角线交点作中心对称对换位置即可。

(3)3、(按奇数阶幻方填法按区域填写)(二)十阶幻方:我就在旁边静静地呆着,不言不语,生怕惊扰这静谧的美好,惟愿时光驻留,变成永恒回忆;惟愿几十年后,两鬓斑白的我们仍然携手坐在阳台上,不谈悲喜,只闻花香。

携手的日子总是温暖多过于寒冷,欢笑多过于失意,此时此刻,感恩日子的温润让自己满足。

一个人的独立,两个人的扶持,让光阴有滋有味,富有弹性。

填幻方涉及的数学知识

填幻方涉及的数学知识

填幻方涉及的数学知识
填幻方是一种古老的数学游戏,它涉及到许多有趣的数学知识。

填幻方的核心是在一个正方形的格子中填入一系列数字,使得每一行、每一列以及对角线上的数字之和都相等。

这个数字之和被称为“幻方的常数”。

填幻方涉及的数学知识包括数论、代数、排列组合等多个领域。

首先,填幻方要求玩家对数字的性质有一定的了解。

比如,奇数阶
幻方的构造需要对奇数的特性有所了解,偶数阶幻方的构造则需要
对偶数的性质有所了解。

此外,填幻方还涉及到排列组合的知识,
因为填入每个格子的数字不能重复,需要进行排列组合的计算。


填幻方的解法也涉及到代数方程的求解,需要运用代数知识来推导
出每个格子中的数字。

填幻方不仅是一种趣味盎然的数学游戏,更是一种锻炼数学思
维的好方法。

通过填幻方,玩家可以加深对数学知识的理解,培养
逻辑推理能力和数学解题的技巧。

因此,填幻方涉及的数学知识不
仅有助于提高数学水平,也能够激发学生对数学的兴趣,让数学学
习变得更加有趣和生动。

幻方解法整理归纳

幻方解法整理归纳

在一个由若干个排列整齐的数组成的正方形中,图中任意一横行、一纵行及的几个数之和都相等,具有这种性质的图表,称为“幻方”。

我国古代称为“”、“”,又叫“”。

1、奇数阶幻方——罗伯特法(也有人称之为楼梯法)(如图一:以五阶幻方为例)奇数阶幻方n 为奇数 (n=3,5,7,9,11……) (n=2×k+1,k=1,2,3,4,5……)奇数阶幻方最经典的填法是罗伯特法(也有人称之为楼梯法)。

填写方法是这样:把1(或最小的数)放在第一行正中; 按以下规律排列剩下的n×n-1个数:(1)每一个数放在前一个数的右上一格;(2)如果这个数所要放的格已经超出了顶行那么就把它放在底行,仍然要放在右一列;(3)如果这个数所要放的格已经超出了最右列那么就把它放在最左列,仍然要放在上一行;(4)如果这个数所要放的格已经超出了顶行且超出了最右列,那么就把它放在前一个数的下一行同一列的格内;(5)如果这个数所要放的格已经有数填入,处理方法同(4)。

这种写法总是先向“右上”的方向,象是在爬楼梯。

口诀:1居首行正中央,依次右上莫相忘上出格时往下放,右出格时往左放.排重便往自下放,右上出格一个样图一2、单偶数阶幻方()122+=m n ——分区调换法(如图二:以六阶幻方为例) ① 把()122+=m n 阶的幻方均分成4个同样的小幻方A 、B 、C 、D(如图二)图二(注意A 、B 、C 、D 的相对位置不能改变,因为12+m 为奇数,所以A 、B 、C 、D 均为奇数阶幻方) ② 用连续摆数法在A 中填入21a ——构成幻方,同理,在B 中填入()2221a a ——+、在C 中填入()22312a a ——+、在D 中填入()22413a a ——+均构成幻方(2na =)(如图三)图三(因为12+m 为奇数,所以A 、B 、C 、D 均为奇数阶幻方,必然可以用连续摆数法构造幻方)③ 在A 的中间一行上从左侧的第二列起取m 个方格,在其它行上则从左侧第一列起取m 个方格,把这些方格中的数与D 中相应方格中的数字对调(如图四):图四不管是几阶幻方,在A 中取数时都要从中间一行的左侧第二列开始;因为当6=n 时,1=m ,所以本例中只取了一个数)④ 在A 中从最右一列起在各行中取1-m 个方格,把这些方格中的数与D 中相应方格中的数字对调。

幻方最优填法

幻方最优填法

如何填幻方幻方最早记载于我国公元前500年的春秋时期《大戴礼》中,这说明我国人民早在2500年前就已经知道了幻方的排列规律。

而在国外,公元130年,希腊人塞翁才第一次提起幻方。

我国不仅拥用幻方的发明权,而且是对幻方进行深入研究的国家。

公元13世纪的数学家杨辉已经编制出3-10阶幻方,记载在他1275年写的《续古摘厅算法》一书中。

在欧洲,直到574年,德国著名画家丢功才绘制出了完整的4阶幻方。

数学上已经证明,对于n>2,n阶幻方都存在。

目前填写幻方的方法,是把幻方分成了三类,每类又有各种各样的填写方法。

1、奇数阶幻方n为奇数(n=3,5,7,9,11……) (n=2×k+1,k=1,2,3,4,5……)奇数阶幻方最经典的填法是罗伯特法(也有人称之为楼梯法)。

填写方法是这样:把1(或最小的数)放在第一行正中;按以下规律排列剩下的n×n-1个数:(1)每一个数放在前一个数的右上一格;(2)如果这个数所要放的格已经超出了顶行那么就把它放在底行,仍然要放在右一列;(3)如果这个数所要放的格已经超出了最右列那么就把它放在最左列,仍然要放在上一行;(4)如果这个数所要放的格已经超出了顶行且超出了最右列,那么就把它放在前一个数的下一行同一列的格内;(5)如果这个数所要放的格已经有数填入,处理方法同(4)。

这种写法总是先向“右上”的方向,象是在爬楼梯。

2、双偶阶幻方n为偶数,且能被4整除(n=4,8,12,16,20……) (n=4k,k=1,2,3,4,5……)先说明一个定义。

互补:如果两个数字的和,等于幻方最大数和最小数的和,即n*n+1,称为互补。

先看看4阶幻方的填法:将数字从左到右、从上到下按顺序填写:这个方阵的对角线,已经用蓝色标出。

将对角线上的数字,换成与它互补的数字。

这里,n×n+1 = 4×4+1 = 17;把1换成17-1 = 16;把6换成17-6 = 11;把11换成17-11 = 6……换完后就是一个四阶幻方。

幻方的认识和填写方法

幻方的认识和填写方法

n阶幻方幻方,亦称纵横图。

台湾称为魔术方阵。

将自然数1,2,3,……n*n排列成一个n*n方使得每行、每列以及两对角线上的各个数之和都相等,等于n/2*(n*n+1),这样的方阵称为幻方。

一般地,将连续的正整数1,2,3,…,n2填入n×n个方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n阶幻方,记n阶幻方的对角线上数的和为N,则例如:把1,2,3,4,5,6,7,8,9填入3*3的格子,使得:每行、每列、两条对角线的和是15。

n是它的阶数,比如上面的幻方是3阶。

n/2*(n*n+1)为幻方的变幻常数。

数学上已经证明,对于n>2,n阶幻方都存在。

目前填写幻方的方法,是把幻方分成了三类,每类又有各种各样的填写方法。

这里对于这三类幻方,仅举出一种方便手工填写的方法。

1、奇数阶幻方n为奇数(n=3,5,7,9,11……) (n=2*k+1,k=1,2,3,4,5……)奇数阶幻方最经典的填法是罗伯特法(也有人称之为楼梯方)。

填写方法是这样:把1(或最小的数)放在第一行正中;按以下规律排列剩下的n*n-1个数:(1)、每一个数放在前一个数的右上一格;(2)、如果这个数所要放的格已经超出了顶行那么就把它放在底行,仍然要放在右一列;(3)、如果这个数所要放的格已经超出了最右列那么就把它放在最左列,仍然要放在上一行;(4)、如果这个数所要放的格已经超出了顶行且超出了最右列,那么就把它放在前一个数的下一行同一列的格内;(5)、如果这个数所要放的格已经有数填入,处理方法同(4)。

这种写法总是先向“右上”的方向,象是在爬楼梯。

2、双偶阶幻方n为偶数,且能被4整除(n=4,8,12,16,20……) (n=4k,k=1,2,3,4,5……)先说明一个定义:互补:如果两个数字的和,等于幻方最大数和最小数的和,即n*n+1,称为互补。

先看看4阶幻方的填法:将数字从左到右、从上到下按顺序填写:这个方阵的对角线,已经用蓝色标出。

幻方填入规律

幻方填入规律

幻方,亦称纵横图。

台湾称为魔术方阵。

将自然数1,2,3,……n*n排列成一个n*n 方阵,使得每行、每列以及两对角线上的各个数之和都相等,等于n/2*(n*n+1),这样的方阵称为幻方。

例如:把1,2,3,4,5,6,7,8,9填入3*3的格子,使得:每行、每列、两条对角线的和是15。

n是它的阶数,比如上面的幻方是3阶。

n/2*(n*n+1)为幻方的变幻常数。

数学上已经证明,对于n>2,n阶幻方都存在。

目前填写幻方的方法,是把幻方分成了三类,每类又有各种各样的填写方法。

这里对于这三类幻方,仅举出一种方便手工填写的方法。

1、奇数阶幻方n为奇数(n=3,5,7,9,11……) (n=2*k+1,k=1,2,3,4,5……) 奇数阶幻方最经典的填法是罗伯特法(也有人称之为楼梯法)。

填写方法是这样:把1(或最小的数)放在第一行正中;按以下规律排列剩下的n*n-1个数:(1)、每一个数放在前一个数的右上一格;(2)、如果这个数所要放的格已经超出了顶行那么就把它放在底行,仍然要放在右一列;(3)、如果这个数所要放的格已经超出了最右列那么就把它放在最左列,仍然要放在上一行;(4)、如果这个数所要放的格已经超出了顶行且超出了最右列,那么就把它放在前一个数的下一行同一列的格内;(5)、如果这个数所要放的格已经有数填入,处理方法同(4)。

这种写法总是先向“右上”的方向,象是在爬楼梯。

2、双偶阶幻方n为偶数,且能被4整除(n=4,8,12,16,20……) (n=4k,k=1,2,3,4,5……) 先说明一个定义:互补:如果两个数字的和,等于幻方最大数和最小数的和,即n*n+1,称为互补。

先看看4阶幻方的填法:将数字从左到右、从上到下按顺序填写:将对角线上的数字,换成与它互补的数字。

这里,n*n+1 = 4*4+1 = 17;把1换成17-1 = 16;把6换成17-6 = 11;把11换成17-11 = 6……换完后就是一个四阶幻方。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

幻方的填写技巧
一、N阶幻方的分类:
1、奇数阶幻方:当n=2k+1时,称为奇数阶幻方。

2、偶数阶幻方:
(1)双偶数幻方:当n=4k=2×2k时,称为双偶数数阶幻方。

(2)单偶数幻方:当n=4k+2=2×(2k+1)时,称为单偶数阶幻方。

二、幻方的填写方法:
1、奇数阶幻方:可按照如下方法操作:
Merzirac法,有人也叫楼梯法,我管它叫斜步法,即走X+Y斜步(数字按右上方顺序填入),-Y跳步(如果右上方已有数字或出了对角线,则向下移一格继续填写)。

其实斜步法可以向4个方向依次填写数字,即右上、右下、左上、左下4个方向,每种斜步都可有2种跳步,即左(右)跳步、上(下)跳步。

对于X+Y斜步相应的跳步可以为-X,-Y。

【记住,跳步是X+Y斜步的X(或Y)相反方向即可。

如右上方向斜步,跳步就为向左(或向下)一步;左下方向斜步,跳步就为向右(或向上)一步;等等等等】
(2)杨辉“阳动阴静”法
南宋杨辉不仅精通数学,而且精通易学,在他1275年所著的《续古摘奇算法》中,就对河图和洛书的数学问题进行了详尽的研究。

其中对3阶幻方的排列,找出了一种奇妙的规律:“九子斜排,上下对易,左右相更,四维挺出,戴九履一,左三右七,二四为肩,六八为足”,清代,
2、双偶数阶幻方:可按照如下方法操作:
(一)四阶幻方:
(1) 对角线上的数字一律不动;
(2) 对角线以外的数字关于对角线交点作中心对称对换位置即可。

(3) 完成后的四阶幻方如下:
(1)对角线上的数字一律不动;
(2)对角线以外的数字关于对角线交点作中心对称对换位置即可。

(3)
3、
(按奇数阶幻方填法按区域填写)
(二)十阶幻方:
我就在旁边静静地呆着,不言不语,生怕惊扰这静谧的美好,惟愿时光驻留,变成永恒回忆;惟愿几十年后,两鬓斑白的我们仍然携手坐在阳台上,不谈悲喜,只闻花香。

携手的日子总是温暖多过于寒冷,欢笑多过于失意,此时此刻,感恩日子的温润让自己满足。

一个人的独立,两个人的扶持,让光阴有滋有味,富有弹性。

时光清浅,流年素淡,携挽着光阴同行,缠绕着故事与共。

酸甜苦辣和油盐酱醋茶的生活让日子交织着烟火味,感受生活的踏实和柔韧。

时光如梦,梦里梦外总是有许多憧憬美好,执着这份美好,烟火的生活在平淡中闻到花香,茶香和米香。

静坐时光,把喧嚣关在窗外,悠然恬淡。

一缕缕柔风也会温润流年,一轮明月也会涌出丝丝柔情。

岁月静好,与君语;细水长流,与君同;时光如水,与君老。

相伴的时光,简单微笑着,从容平淡着。

如若真心,那份灵犀,那份执意,那份默契,让一切俗世纷扰,也过得惬意悠然。

爱就一个懂,一份守,一个眼神就领会了眼眸里的含义,一个怀抱就温暖了整个身心。

光阴无言流淌,岁月无声的叩问着百味世事,彼此相视一笑,你在,我在,阳光还是那么明媚,日子还是那么温馨,你若安好,岁月无恙。

红尘陌上,择一方心灵的净土,种下文字的馨香,于文字中寻一份感悟,让心安暖;于岁月中守一份懂得,感恩生命。

朝霞暮露,四季更迭,花开花谢皆如画,月圆月缺皆如诗。

当时光辗转着记忆的年轮,当清风摇曳起祝福的风铃,我在风中优雅的翩跹,回味携手的光阴,淡淡的犹如一朵茉莉花,洁白淡雅,清香宜人。

在素色光阴里,有古韵婉转的琴音入耳,有清幽淡然的花香入鼻,有真情实意的友情入心,有相处不厌的爱入魂,温柔地牵起时光的手,用善待一朵花开的温婉,来守望一生的幸福。

人生会在知足中嫣然一笑,花香依旧。

凉风习习,花影阑珊,瓜果飘香,时光是多么轻盈、温柔和生动。

永远是多长,爱意有多浓,一切无足轻重,只想把此刻定格成温暖的笑靥。

回味,感恩,彼此执手的岁月,是多么知足和无悔。

相关文档
最新文档