讨论几种推挽输出变压器的优缺点
推挽开关电源原理讲解

推挽开关电源原理讲解1.输入直流电源:推挽开关电源的输入电源为直流电源,通常是12V或24V的电压。
这个直流电源是通过电池或者直流电源适配器提供的。
2.方波发生器:推挽开关电源中有一个方波发生器,它通过以一定频率和占空比产生高频方波信号。
这个方波信号的频率通常在几十kHz到几百kHz之间。
3.驱动电路:方波信号通过驱动电路传递给弹簧刷式直流电机的转子。
当方波信号为高电平时,转子朝一个方向旋转;当方波信号为低电平时,转子朝另一个方向旋转。
这样,方波信号的高低电平变化使得转子不断地旋转,进而形成交流电信号。
4.变压器:向弹簧刷式直流电机的转子加上一个变压器,可以将直流电转换为交流电。
变压器中的绕组将转子产生的信号隔离开来,从而将信号输出到负载端。
5.输出负载:推挽开关电源的输出端连接到负载,负载可以是无线电设备、汽车电子设备等。
当交流信号通过负载时,可以起到提供相应功能的作用,例如无线电接收天线的放大。
推挽开关电源的主要优点包括效率高、输出稳定、结构简单等。
它可以根据输入信号的变化迅速调整输出功率,从而适应不同负载要求。
此外,推挽开关电源可以轻松实现高效率的电能转换,例如将12V的直流电源转换为220V的交流电源。
不过,推挽开关电源也存在一些缺点。
例如,在使用时,可能会产生电磁干扰,需要采取相应的屏蔽措施。
另外,由于其工作频率较高,需要使用高速开关元件和驱动电路,增加了系统的复杂性和成本。
总之,推挽开关电源是一种常用的电源变换电路,通过转换直流电为交流电实现了电能的高效转换。
其工作原理简单,并且具有高效率、输出稳定等优点,因此被广泛应用于各种电子设备中。
推挽式变压器

推挽全桥双向直流变换器的研究1 引言随着环境污染的日益严重和新能源的开发,双向直流变换器得到了越来越广泛的应用,像直流不停电电源系统,航天电源系统、电动汽车等场合都应用到了双向直流变换器。
越来越多的双向直流变换器拓扑也被提出,不隔离的双向直流变换器有Bi Buck/Boost、Bi Buck-Boost、Bi Cuk、 Bi Sepic-Zeta;隔离式的双向直流变换器有正激、反激、推挽和桥式等拓扑结构。
不同的拓扑对应于不同的应用场合,各有其优缺点。
推挽全桥双向直流变换器是由全桥拓扑加全波整流演变而来。
推挽侧为电流型,输入由蓄电池供给,全桥侧为电压型,输入接在直流高压母线上。
此双向直流变换器拓扑适用在电压传输比较大、传输功率较高的场合。
本文分析了推挽全桥双向直流变换器的工作原理,通过两种工作模式的分析,理论上证明了此拓扑实现能量双向流动的可行性,并对推挽侧开关管上电压尖峰形成原因进行了分析,提出了解决方法,在文章的最后给出了仿真波形和实验波形。
2工作原理图1为推挽全桥双向DC/DC变换器原理图。
图2给出了该变换器的主要波形。
变换器原副边的电气隔离是通过变压器来实现的,原边为电流型推挽电路,副边为全桥电路,该变换器有两种工作模式:(1)升压模式:在这种工作模式下S1 、S2 作为开关管工作; S3,S4 ,S5 ,S6 作为同步整流管工作,整流方式为全桥整流,这种整流方式适用于输出电压比较高,输出电流比较小的场合。
由于电感L 的存在 S1、S2 的占空比必须大于0.5。
(2)降压模式:在这种工作模式下 S3, S4, S5,S6 作为开关管工作,S1 、S2 作为同步整流管工作,整流方式为全波整流。
分析前,作出如下假设:所有开关管、二极管均为理想器件;所有电感、电容、变压器均为理想元件;,;2.1升压工作模式在升压工作模式下,原边输入为电流型推挽电路,副边输出为全桥整流电路。
S1 ,S2 作为开关管工作,S3 , S4, S5,S6 作为同步整流管工作。
关于输出变压器的绕制

关于输出变压器的绕制(单端)一般业余绕制输出变压器不必过多注重理论参数和公式计算,但有三项指标必须重视:1.输出变压器阻抗。
2.尽量大的电感量。
3尽量小的分布电容。
对于输出变压器阻抗,理论上讲即变压器阻抗必须和功放管内阻一致,这样才能达到该功放管的最大设计功率,但实际制作胆机时,往往为了最佳音质而舍弃最佳功率,因而一般都取变压器阻抗远大于胆管内阻。
以805管为例,本人一般设计变压器时都取其胆内阻的3-5倍,因为有如此大的余量,所以只要按原设计者提供的数据绕制,一般都不会有什么问题。
尽量大的电感量和尽量小的分布电容,电感量大则低频好,分布电容小则高频好,但这本身就是一对矛盾,因为要电感量大则分布电容必然也大,要分布电容小则电感量也必然会小,如何解决这一对矛盾,既要电感量大,以保持低频好,又要分布电容小以保持好的高频,这就是我们绕制输出变压器以保证音质的关键所在。
如何解决好这一对矛盾呢?下面详细谈谈个人的制作体会,不对之处请大家讨论。
1.为保证有尽量大的电感量,一定要选择大规格的铁芯,只有大规格铁芯才是大电感量的重要保证,市售成品机往往低频下潜不深、缺乏弹性、没有冲击力,速度慢的重要因素都在其为节约成本选用铁芯太小所致,尤其是单端机,因为要流气缝,铁芯规格小了肯定是不行的,本人用于10-20W的小功率单端机的输出牛铁芯决不会小于舌宽35mm,叠厚不得小于65mm,即35×65以上。
而大功率单端机的输出牛一般都用舌宽41mm,叠厚75mm,也就是41×75以上,以保证该输出牛有足够的电感量,从而保证低频有很好的下潜,弹性和速度。
2.为保证有尽量小的分布电容:a.各绕组尽量分多层绕制,一般来讲初级绕组不得小于5-7层,次级绕组也必须分5-7层,夹在初级绕组当中,因为这样即有很好的藕合,且各绕组的分布电容呈串联结构,而电容是越串联越小的。
b.注意绕制工艺,手法也是减少分布电容的重要措施。
推挽式变压器开关电源原理

推挽式变压器开关电源原理——陶显芳老师谈开关电源原理与设计-所谓双激式变压器开关电源,就是指在一个工作周期之内,变压器的初级线圈分别被直流电压正、反激励两次。
与单激式变压器开关电源不同,双激式变压器开关电源一般在整个工作周期之内,都向负载提供功率输出。
双激式变压器开关电源输出功率一般都很大,因此,双激式变压器开关电源在一些中、大型电子设备中应用很广泛。
这种大功率双激式变压器开关电源最大输出功率可以达300 瓦以上,甚至可以超过1000 瓦。
推挽式、半桥式、全桥式等变压器开关电源都属于双激式变压器开关电源。
本次先就其中的推挽式变压器开关电源进行讲解。
推挽式变压器开关电源的工作原理在双激式变压器开关电源中,推挽式变压器开关电源是最常用的开关电源。
由于推挽式变压器开关电源中的两个控制开关K1 和K2 轮流交替工作,其输出电压波形非常对称,并且开关电源在整个工作周期之内都向负载提供功率输出,因此,其输出电流瞬间响应速度很高,电压输出特性也很好。
推挽式变压器开关电源是所有开关电源中电压利用率最高的开关电源,它在输入电压很低的情况下,仍能维持很大的功率输出,所以推挽式变压器开关电源被广泛应用于DC/AC 逆变器,或DC/DC 转换器电路中。
1.交流输出推挽式变压器开关电源一般的DC/AC 逆变器,如交流不间断电源〔简称UPS〕,大多数都是采用推挽式变压器开关电源电路。
这种DC/AC 逆变器工作频率很高,所以体积可以做得非常小;由于这个特点,推挽式变压器开关电源也经常用于AC/AC 转换电路中,以减小电源变压器的体积。
图1-27 是交流输出纯电阻负载推挽式变压器开关电源的简单原理图。
图中,K1、K2 是两个控制开关,它们工作的时候,一个接通,另一个关断,两个开关轮流接通和关断,互相交替工作;T为开关变压器,N1、N2 为变压器的初级线圈,N3 为变压器的次级线圈;Ui 为直流输入电压,R为负载电阻;uo 为输出电压,io 为流过负载的电流。
推挽变压器工作原理

推挽变压器工作原理推挽变压器是一种常见的电力变压器,常用于直流电源的转换和功率放大电路中。
它具有较高的效率和稳定性,广泛应用于各种电子设备和电力系统中。
推挽变压器由两个相同的互感器组成,分别称为驱动互感器和输出互感器。
驱动互感器接收输入信号并产生交流电压,输出互感器将交流电压转换为所需的输出信号。
推挽变压器的工作原理可以分为两个阶段:工作阶段和切换阶段。
在工作阶段,输入信号被驱动互感器接收,并通过磁耦合效应传递给输出互感器。
驱动互感器和输出互感器的绕组都由导线绕制成螺线管。
当输入信号通入驱动互感器时,驱动互感器的绕组中产生磁场。
这个磁场通过磁路传递给输出互感器的绕组,进而在输出互感器中产生电压。
在切换阶段,输出互感器的绕组中的磁场被切断,继而导致输出电压的变化。
这是通过一个切换器实现的,切换器通常由一个或多个开关管组成。
当切换器关闭时,输出互感器的磁场被切断,导致输出电压下降。
当切换器打开时,输出互感器的绕组中重新建立磁场,导致输出电压上升。
通过不断重复这个过程,输出电压可以以所需的频率和振幅进行切换。
推挽变压器的工作原理可以通过下面的步骤来总结:输入信号通过驱动互感器的绕组,产生磁场。
磁场通过磁路传递给输出互感器的绕组,产生输出电压。
切换器切断输出互感器的磁场,导致输出电压下降。
切换器打开,重新建立输出互感器的磁场,导致输出电压上升。
通过不断重复切换过程,输出电压以所需的频率和振幅进行切换。
推挽变压器的优点是效率高、稳定性好、功率范围广等。
它可以实现高效率的电能转换和功率放大,广泛应用于各种电子设备和电力系统中。
总结起来,推挽变压器是一种通过驱动互感器和输出互感器之间的磁耦合效应实现电能转换和功率放大的设备。
它的工作原理基于输入信号通过驱动互感器产生磁场,磁场通过磁路传递给输出互感器的绕组,产生输出电压。
通过切换器的切断和打开,输出电压可以以所需的频率和振幅进行切换。
推挽变压器具有高效率、稳定性好等优点,是电子设备和电力系统中常用的电力变压器。
图文并茂解析变压器各种绕线工艺!(包含各种拓扑)

图⽂并茂解析变压器各种绕线⼯艺!(包含各种拓扑)⼀、传统变压器篇单路输出 Flyback 及常见的变压器绕组结构红⾊:初级绕组紫⾊:辅助绕组黄⾊:次级绕组特点:辅助绕组位夹在初级、次级中间缺点:1, 临近效应很强,绕组交流损耗⼤2, 初、次级间的漏感较⼤,吸收回路损耗较⼤,效率较低优点:1,⼯艺结构⼗分简单,易于制造2,初级外层接电位静⽌的V+端,易于实现⽆Y改进的 Flyback 变压器绕组结构(简易型)红⾊:初级绕组紫⾊:辅助绕组黄⾊:次级绕组特点:辅助绕组位于线包最⾥层,初级在中间、次级在最外边缺点:临近效应很强,绕组交流损耗⼤优点:1,⼯艺结构⼗分简单,易于制造2,初级外层接电位静⽌的V+端,易于实现⽆Y3,初次级间漏感较⼩,吸收回路损耗较⼩,效率较⾼改进的 Flyback 变压器绕组结构(三明治型)红⾊:初级绕组红⾊:初级绕组紫⾊:辅助绕组黄⾊:次级绕组特点:辅助绕组位于线包最⾥层,然后分别是初级的⼀半,次级全部,初级的另⼀半;缺点:1, 次级临近效应很强,绕组交流损耗⼤2,初级的⼀半绕组没有任何的静电位层供屏蔽⽤,⽆法实现⽆Y优点:1, ⼯艺结构复杂,不利于制造;2, 初次级间漏感较⼩,吸收回路损耗较⼩,效率较⾼3, 初级临近效应较⼩,绕组交流损耗⼩Flyback 多路输出L3 与L4 之间的漏感,引起交叉调整。
实⽤的多路输出型⾼压输出绕组叠在低压绕组之上,双线并绕降低交叉调整功率传输变压器(含正激、推挽、半桥、全桥)合理的绕组结构, 层厚⼩于2Δ红⾊:初级绕组紫⾊:辅助绕组黄⾊:次级绕组实际变压器的模型虚线内为理想变压器脉冲变压器信号传输失真由于原边及幅边漏感,电阻分量的存在,脉冲在经过变压器后,产⽣延迟、斜率变缓、振铃、顶降脉冲电流的分解脉冲电流的分解脉冲电流由基波电流及各⾼次谐波电流组成占空⽐越⼩,基波分量越⼩,⾼次谐波分量越⼤,因此线径的选择(穿透深度*2)不能只考虑基波电流的频率输出功率与频率的关系(EE25 单端变换器为例)理论上,对于指定的磁芯,在相同的磁密下,输出功率与频率呈正⽐,但实际上并⾮如此,原因有:1,频率升⾼,穿透深度下降,需要⽤较⼩的线径,窗⼝利⽤率下降,且绕组层厚与穿透深度的⽐值增⼤,交流电阻⼤增,有效输出功率下降;2,频率增加,绝缘材料的耐压下降,为保证同样的绝缘强度,需要加⼤绝缘层厚度,进⼀步降低窗⼝利⽤率;3,频率到达某⼀程度后,磁芯损耗⼤增,需要适当降底磁通密度(具体请参考磁损表)LLC 变压器LLC 电路结构LLC 集成磁件漏感由原边与副边之间的档墙宽度、磁芯的磁导率、以及中柱长度与窗⼝⾼度的⽐值决定红⾊:初级绕组黄⾊:次级绕组⼩漏感的 LLC 集成磁件个别应⽤中,需要⽤到较⼩的漏感,挡墙的宽度较⼩,安全间距可利⽤下⾯的结构来满⾜。
开关电源原理与设计 连载28 整流输出推挽式变压器开关电源

开关电源原理与设计连载28 整流输出推挽式变压器开关电源陶显芳整流输出推挽式变压器开关电源,由于两个开关管轮流交替工作,相当于两个开关电源同时输出功率,其输出功率约等于单一开关电源输出功率的两倍。
因此,推挽式变压器开关电源输出功率很大,工作效率很高,经桥式整流或全波整流后,仅需要很小的滤波电感和电容,其输出电压纹波就可以达到非常小。
图1-30是桥式整流输出推挽式变压器开关电源工作原理图,除了整流滤波电路以外,其余部分电路的工作原理基本与图1-27相同。
桥式整流电路由D1、D2、D3、D4组成,C为储能滤波电容,R为负载电阻,Uo为直流输出电压,Io为流过负载电阻的电流。
图1-31是全波整流输出的推挽式变压器开关电源工作原理图,同样,除了整流滤波电路以外,其余部分电路的工作原理基本与图1-27和图1-30相同。
但开关变压器的次级需要多一个绕组,两个绕组N31、N32轮流输出电压;全波整流电路由D1、D2组成,C为储能滤波电容,R为负载电阻,Uo为直流输出电压,Io 为流过负载电阻的电流。
图1-30与图1-31比较,桥式整流输出的推挽式变压器开关电源比全波整流输出的推挽式变压器开关电源多用两个整流二极管,但全波整流输出的开关变压器又比桥式整流输出的开关变压器多一组次级线圈。
因此,图1-30桥式整流输出推挽式变压器开关电源比较适用于输出电流相对较小的情况;而图1-31全波整流输出推挽式变压器开关电源比较适用于输出电流相对较大的情况。
因为,大电流整流二极管成本高,而且损耗功率也比较大。
下面我们来详细分析图1-30桥式整流输出推挽式变压器开关电源和图1-31全波整流输出推挽式变压器开关电源的工作原理。
由于图1-30桥式整流输出推挽式变压器开关电源或图1-31全波整流输出推挽式变压器开关电源的电压输出电路中都接有储能滤波电容,储能滤波电容会对输入脉动电压起到平滑的作用,因此,图1-30和图1-31中输出电压Uo都不会出现很高幅度的电压反冲,其输出电压的峰值Up基本上就可以认为是半波平均值Upa。
推挽式开关电源的优点和缺点

1推挽式开关电源输出电流瞬态响应速度很高,电压输出特性很好。推挽式开关电源是所有开关电源中电压利用率最高的开关电源。
由于推挽式开关电源中的两个控制开关轮流交替工作,其输出电压波形非常对称,并且开关电源在整个周期之内都向负载提供功率的输出,因此,其输出电流瞬态响应速度很高,电压输出特性很好。推挽式开关电源是所有开关电源中电压利用率最高的开关电源。它在输入电压很低的情况下,仍然能维持很大的输出功率,所以推挽式开关电源被广泛的应用于低输入电压的DC/AC逆变器,活DC/DC转换器电路中。
6 全桥式变压器开关电源的缺点主要是功率损耗比较较大,因此,全桥式变压器开关电源不适宜用于工作电压较低的场合,否则工作效率会很低。另外,全桥式变压器开关电源中的4个开关器件连接没有公共地,与驱动信号连接比较麻烦。
7 全桥式开关电源的缺点是会出现半导通区,损耗大。
全桥式开关电源最大的缺点是,当两组控制开关K1、K4和K2、K3处于交替转换工作状态的时候,4个开关器件会同时出现一个很短时间的半导通区域,即两组控制开关同时处于接通状态。这是因为开关器件在开始导通的时候,相当于对电容充电,它从截止状态到完全导通状态需要一个过渡过程;而开关器件从导通状态转换到截止状态的时候,相当于对电容放电,它从导通状态到完全截止状态也需要一个过渡过程。
4 半桥式开关电源的缺点是会出现半导通区,损耗大。
半桥式开关电源最大的缺点是,当两个控制开关K1和K2处于交替转换工作状态的时候,两个开关器件会同时出现一个很短时间的半导通区域,即两个控制开关同时处于接通状态。这是因为开关器件在开始导通的时候,相当于对电容充电,它从截止状态到完全导通状态需要一个过渡过程;而开关器件从导通状态转换到截止状态的时候,相当于对电容放电,它从导通状态到完全截止状态也需要一个过渡过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
讨论几种推挽输出变压器的优缺点
讨论三种结构输出变压器的优缺点,第一种就是国外广为流行的不分段绕法,第二种就是国内流行的初级分两段的绕法,第三种就是麦景图式电路的输出变压器。
下面付上几种结构的变压器示意图。
第一种:
第二种,国内用得比较多的绕法,我把它划分成两个类型,初级偶数分层和初级奇数分层,这两种结构的变压器有较大的差异,分开比较好一点。
而麦景图式的输出变压器可以为上图的任何结构,只不过初级改双线并绕,我没有拆过麦景图的输出变压器,据网上资料介绍,为6初夹次5结构,没有分段,麦景图电路的指标主要是靠电路保证的,以前的帖子颇多,我就不重复了,这里只讨论不同结构的输出牛对性能的影响(我习惯笔记式发帖,如果有不连贯请大家原谅)
我曾经做过数次实验,一般推挽电路当改变末级管的工作状态,分别工作在甲类或乙类,就会发现,频响曲线和谐振频率在改变,而唯独只有麦景图电路不变,如果只是管子的原因是不会有这么大的变化,谐振频率下降30%。
造成这么大的变化一定是与谐振有关的漏感或分布电容发生了变化,知道了线包结构与漏感的关系就可以分析出原因。
这个是本人总结出的线包结构与漏感之间的关系,MM2就是建立在这个关系的基础上。
知道了这个关系,就可以解释谐振频率变化的原因。
这个是麦景图MC275输出牛的详细绕制方法,希望对MM版有用
推挽牛最主要的是两臂的漏感和电感的平衡,至于两臂的直流电阻不完全平衡没有多大的关系,因为电子管不可能永远都配对的,所以老外大多数都采用第一种绕法,
当推挽从甲类改成乙类后,推挽的两臂轮流工作,另一个臂闲置,第一种绕法就变
成下图:
第二种绕法变成了这样,初级为奇数绕法如果最外和最底层为中间的匝数的1/2,可以减少漏感,初级为偶数的绕法可以为等于或为1/2。
但相对于第一种绕法漏感还是要大。
而麦景图电路,不管是在甲类还是在乙类,两臂都同时工作,这个是由其电路特性决定的。
我一直对麦景图电路着迷,麦景图电路因为变压器的原因造成的相移很少,其原因来自两个方面,1:该电路对变压器的要求本来就不高(原因以前的帖子有过讨论)。
2:输出变压器本身的原因,我没有测试过原装麦景图输出变压器,但我制作的麦景
图输出变压器一般可以把漏感做到0.55mH。
分布电容为1200pf,猛一看好像分布电容高了,但麦景图的电路由于其结构的特殊性,p-p之间的电压差是普通电路的一般,即分布电容对高频的衰减只有一般电路的1/4,一般的推挽变压器要做到300pf的分布电容还是很困难的。