操作系统第二次实验first-fit, next-fit

合集下载

操作系统实验二实验报告

操作系统实验二实验报告

操作系统实验二实验报告一、实验目的本次操作系统实验二的主要目的是深入理解和掌握进程管理的相关概念和技术,包括进程的创建、执行、同步和通信。

通过实际编程和实验操作,提高对操作系统原理的认识,培养解决实际问题的能力。

二、实验环境本次实验使用的操作系统为 Windows 10,编程环境为 Visual Studio 2019。

三、实验内容及步骤(一)进程创建实验1、首先,创建一个新的 C++项目。

2、在项目中,使用 Windows API 函数`CreateProcess`来创建一个新的进程。

3、为新进程指定可执行文件的路径、命令行参数、进程属性等。

4、编写代码来等待新进程的结束,并获取其退出代码。

(二)进程同步实验1、设计一个生产者消费者问题的模型。

2、使用信号量来实现生产者和消费者进程之间的同步。

3、生产者进程不断生成数据并放入共享缓冲区,当缓冲区已满时等待。

4、消费者进程从共享缓冲区中取出数据进行处理,当缓冲区为空时等待。

(三)进程通信实验1、选择使用管道来实现进程之间的通信。

2、创建一个匿名管道,父进程和子进程分别读写管道的两端。

3、父进程向管道写入数据,子进程从管道读取数据并进行处理。

四、实验结果及分析(一)进程创建实验结果成功创建了新的进程,并能够获取到其退出代码。

通过观察进程的创建和执行过程,加深了对进程概念的理解。

(二)进程同步实验结果通过使用信号量,生产者和消费者进程能够正确地进行同步,避免了缓冲区的溢出和数据的丢失。

分析结果表明,信号量机制有效地解决了进程之间的资源竞争和协调问题。

(三)进程通信实验结果通过管道实现了父进程和子进程之间的数据通信。

数据能够准确地在进程之间传递,验证了管道通信的有效性。

五、遇到的问题及解决方法(一)在进程创建实验中,遇到了参数设置不正确导致进程创建失败的问题。

通过仔细查阅文档和调试,最终正确设置了参数,成功创建了进程。

(二)在进程同步实验中,出现了信号量使用不当导致死锁的情况。

虚拟机内存管理:分配与回收策略

虚拟机内存管理:分配与回收策略

虚拟机内存管理:分配与回收策略虚拟机内存管理是操作系统中的一个重要领域。

在计算机系统中,内存是一项有限的资源,而操作系统需要合理地分配和回收内存,以满足不同应用程序的需求。

本文将探讨虚拟机内存管理中的分配与回收策略。

一、内存分配策略在虚拟机中,内存的分配通常是在进程创建时进行的。

操作系统需要将一块连续的内存空间分配给该进程,并且记录该进程的内存边界。

常见的内存分配策略有以下几种。

首次适应算法(First Fit):该算法将内存空间划分为若干块,从头开始查找第一个足够大的空闲块来进行分配。

这种算法的优点是简单高效,但容易造成内存碎片。

最佳适应算法(Best Fit):该算法从所有空闲块中找到最小的适配块进行分配。

相比首次适应算法,最佳适应算法能更好地利用内存空间,减少碎片的产生,但分配效率较低。

循环首次适应算法(Next Fit):该算法与首次适应算法类似,但是从上一次分配位置开始循环查找。

这样可以减少搜索的时间,提高分配效率。

内存分配时还需要考虑其他因素,如内存的对齐方式和分页机制。

对齐方式可以提高访问速度,而分页机制可以更好地管理内存空间。

二、内存回收策略内存回收是指在程序执行过程中,当某些进程不再使用内存时,将其释放给操作系统重新分配。

常见的内存回收策略有以下几种。

引用计数法:该方法记录每个对象被引用的次数,当引用次数为0时,即可将该对象回收。

但是引用计数法无法解决循环引用的问题,容易造成内存泄漏。

标记-清除算法:该算法通过标记未被引用的内存块,然后清除这些块来回收内存。

这个算法可以解决循环引用的问题,但会产生内存碎片。

分代回收算法:该算法将内存分为多个代,根据对象的存活时间将其分配到不同的代中。

年轻代的回收频率较高,老年代的回收频率较低。

这样可以更有效地进行内存回收。

写时复制(Copy-on-write):该技术将内存分为读写两个副本,在写操作时才会进行复制。

这样可以减少内存拷贝的开销,提高性能。

操作系统lab2实验报告

操作系统lab2实验报告

操作系统lab2实验报告实验目的:本实验的目的是通过设计和实现一个简单的操作系统内核,加深对操作系统基本概念和原理的理解。

具体实验内容包括进程管理、内存管理和文件系统的设计与实现。

实验环境:1.操作系统:Linux2.编程语言:C语言一、实验背景1.1 操作系统简介操作系统是计算机系统中的一个重要组成部分,负责管理和控制计算机的各种资源,提供用户和应用程序的接口,以及协调和调度各种任务的执行。

1.2 实验目标本实验的主要目标是设计和实现一个简单的操作系统内核,包括进程管理、内存管理和文件系统等功能。

二、实验内容2.1 进程管理①进程创建描述进程创建的过程和相关数据结构,包括创建新进程的系统调用、进程控制块等。

②进程调度描述进程调度的算法和实现方式,包括进程调度队列、调度算法等。

③进程同步与通信描述进程同步和通信的机制和方法,包括信号量、互斥锁、条件变量等。

2.2 内存管理①内存分配描述内存分配的算法和实现方式,包括连续内存分配、非连续内存分配等。

②页面置换描述页面置换的算法和实现方式,包括最优页面置换算法、先进先出页面置换算法等。

2.3 文件系统①文件操作描述文件操作的系统调用和相关数据结构,包括文件打开、读写、关闭等。

②文件系统结构描述文件系统的组织结构和实现方式,包括超级块、索引节点、块位图等。

三、实验步骤3.1 环境搭建搭建实验环境,包括安装Linux操作系统、编译器等。

3.2 进程管理实现根据设计要求,实现进程创建、调度、同步与通信等功能。

3.3 内存管理实现根据设计要求,实现内存分配、页面置换等功能。

3.4 文件系统实现根据设计要求,实现文件操作和文件系统结构。

3.5 测试与调试编写测试用例,对实现的操作系统内核进行测试和调试,并记录实验结果。

四、实验结果分析分析测试结果,评估实验过程中遇到的问题和解决方法,总结操作系统内核的性能和功能特点。

五、实验总结对实验过程中的收获和经验进行总结,提出改进和优化的建议。

南京邮电大学-操作系统实验报告

南京邮电大学-操作系统实验报告

课内实验报告课程名:操作系统任课教师:沈超专业:信息管理与信息系统学号:姓名:二○一六至二○一七年度第一学期南京邮电大学经济与管理学院Process[numberschedul].order=tempcounter;}程序结果截图:二、银行家算法(网上借鉴)银行家算法,当进程提出资源申请时,系统首先检查该进程对资源的申请量是否超过其最大需求量及系统现有的资源能否满足进程需要。

若超过,则报错,若不能满足,则让该进程等待;否则进一步检查把资源分给该进程后系统能否出于安全状态,若安全,则分配,否则置该进程为等待资源状态。

算法实现过程:设进程i 提出请求REQUEST [j] ,则银行家算法按如下规则进行判断。

(1) 如果REQUEST [i] [j]<= NEED[i][j] ,则转(2) ;否则,出错。

(2) 如果REQUEST [i] [j]<= A V AILABLE[i][j] ,则转(3) ;否则,出错。

(3) 系统试探分配资源,修改相关数据:A V AILABLE[j]-=REQUEST[i][j];ALLOCATION[i][j]+=REQUEST[i][j];NEED[i][j]-=REQUEST[i][j];(4) 系统执行安全性检查,如安全,则分配成立;否则试探险性分配作废,系统恢复原状,进程等待。

Check()关键代码:{int k, f, no=0;int work[M],a[M];char finish[M];anquan=1;for(i=0;i<n; i++) finish[i]='F';for(j=0;j<m; j++) work[j]=available[j]; k=n;do{ for (i=0;i<n; i++){if (finish[i]=='F'){ f=1;for (j=0;j<m; j++)if (need[i][j]>work[j]) printf("处于安全状态.");printf("安全序列号:");for (i=0;i<n;i++) printf ("%d ",a[i]); printf("\n");printf("进程");printf(" ");printf(" Max ");rintf(" ");rintf("allocation");printf(" ");printf("need");printf(" ");f=0;if (f==1)//找到还没完成的且需求数小于可提供进程继续运行的{ finish[i]='T';a[no++]=i;//记录安全序列号for (j=0;j<m; j++)work[j]=work[j]+allocation[i][j];//释放该进程已分配的资源available[j] =work[j];}}}k--; }while(k>0);f=1;for (i=0;i<n; i++)//判断有没有进程没完成{ if (finish[i]=='F'){f=0;break; }} if (f==0) {printf("不安全状态!\n");anquan=0;} else {printf("available");printf("\n");for (i=0;i<n; i++){ printf("%2d",i);printf(" ");for(j=0;j<m; j++)printf("%2d",max[i][j]);printf(" ");for(j=0;j<m; j++)printf("%2d",allocation[i][j]);printf(" ");for(j=0;j<m; j++)printf("%2d",need[i][j]);printf(" ");for(j=0;j<m; j++){if(i>0)break;printf("%2d",available[j]);}printf("\n");}}}程序结果截图:三、实验总结:这次上机模拟了进程调度过程和解决了死锁问题,让我对短作业优先调度算法和银行家算法有了比在课堂上更深刻的认识。

操作系统的内存分配算法

操作系统的内存分配算法

操作系统的内存分配算法操作系统的内存管理是计算机系统中一个重要的组成部分。

内存分配算法决定了如何合理地利用系统的内存资源,以达到高效、安全、稳定的运行。

本文将介绍几种常见的内存分配算法,包括首次适应算法、循环首次适应算法、最佳适应算法以及快速适应算法。

首次适应算法(First Fit Algorithm)首次适应算法是一种简单而常见的内存分配算法。

它从内存空闲列表的头部开始寻找第一个适合分配的内存块。

当找到满足要求的内存块后,将该块划分为两部分,一部分用于分配给请求的程序,另一部分保留为剩余空闲块。

这种算法的优点是分配速度较快,缺点是可能会导致内存碎片的产生。

循环首次适应算法(Next Fit Algorithm)循环首次适应算法是首次适应算法的一种改进版本。

与首次适应算法不同的是,循环首次适应算法从上一次分配的位置开始搜索空闲块,直到找到一个满足要求的内存块为止。

这样可以避免每次都从头开始搜索,提高了查找的效率。

同样,这种算法也可能导致内存碎片的产生。

最佳适应算法(Best Fit Algorithm)最佳适应算法是为了解决内存碎片问题而提出的一种分配算法。

该算法会在内存空闲列表中查找最小且能满足要求的空闲块,并将该块分配给请求的程序。

这样可以尽量充分利用内存资源,减少内存碎片的产生。

但是,最佳适应算法的缺点是分配速度相对较慢,因为需要遍历整个内存空闲列表。

快速适应算法(Quick Fit Algorithm)快速适应算法是一种综合了首次适应算法和最佳适应算法的策略。

它将内存空闲列表分成了多个不同大小的链表,每个链表分别存储相应大小的空闲块。

当有程序请求内存时,快速适应算法会直接从对应大小的链表中查找可用的空闲块进行分配,以提高分配的速度。

这个算法在时间效率和空间效率上都较为出色,但是需要付出额外的存储开销。

总结不同的内存分配算法各有优缺点,选择合适的算法取决于具体的应用场景和系统需求。

首次适应算法和循环首次适应算法适用于内存分配需求频繁变化的场景。

实现内存分配实验报告(3篇)

实现内存分配实验报告(3篇)

第1篇一、实验目的1. 理解操作系统内存分配的基本原理和常用算法。

2. 掌握动态分区分配方式中的数据结构和分配算法。

3. 通过编写程序,实现内存分配和回收功能。

二、实验环境1. 操作系统:Linux2. 编程语言:C语言3. 开发工具:GCC编译器三、实验原理1. 内存分配的基本原理操作系统内存分配是指操作系统根据程序运行需要,将物理内存分配给程序使用的过程。

内存分配算法主要包括以下几种:(1)首次适应算法(First Fit):从内存空间首部开始查找,找到第一个满足条件的空闲区域进行分配。

(2)最佳适应算法(Best Fit):在所有满足条件的空闲区域中,选择最小的空闲区域进行分配。

(3)最坏适应算法(Worst Fit):在所有满足条件的空闲区域中,选择最大的空闲区域进行分配。

2. 动态分区分配方式动态分区分配方式是指操作系统在程序运行过程中,根据需要动态地分配和回收内存空间。

动态分区分配方式包括以下几种:(1)固定分区分配:将内存划分为若干个固定大小的分区,程序运行时按需分配分区。

(2)可变分区分配:根据程序大小动态分配分区,分区大小可变。

(3)分页分配:将内存划分为若干个固定大小的页,程序运行时按需分配页。

四、实验内容1. 实现首次适应算法(1)创建空闲分区链表,记录空闲分区信息,包括分区起始地址、分区大小等。

(2)编写分配函数,实现首次适应算法,根据程序大小查找空闲分区,分配内存。

(3)编写回收函数,回收程序所占用的内存空间,更新空闲分区链表。

2. 实现最佳适应算法(1)创建空闲分区链表,记录空闲分区信息。

(2)编写分配函数,实现最佳适应算法,根据程序大小查找最佳空闲分区,分配内存。

(3)编写回收函数,回收程序所占用的内存空间,更新空闲分区链表。

3. 实验结果分析(1)通过实验,验证首次适应算法和最佳适应算法的正确性。

(2)对比两种算法在内存分配效率、外部碎片等方面的差异。

五、实验步骤1. 创建一个动态内存分配模拟程序,包括空闲分区链表、分配函数和回收函数。

连续分配存储管理方式

连续分配存储管理方式

连续分配存储管理方式什么是连续分配存储管理方式连续分配存储管理方式指的是将内存空间划分为一系列连续的块,并按照一定的规则将这些块分配给进程使用。

这种存储管理方式广泛应用于操作系统中的进程管理和文件系统管理等领域。

连续分配存储管理的常见算法1. 首次适应算法(First Fit)首次适应算法是按照内存空间的地址顺序,从低地址到高地址依次查找可用的空闲块,并将进程分配到第一个满足大小要求的空闲块中。

该算法简单直接,但容易产生碎片。

2. 最佳适应算法(Best Fit)最佳适应算法是在所有可用的空闲块中选择最小且能满足进程大小要求的空闲块进行分配。

该算法能够充分利用内存空间,但是搜索过程较为复杂,效率较低。

3. 最坏适应算法(Worst Fit)最坏适应算法是在所有可用的空闲块中选择最大的空闲块进行分配,这样可以最大程度地保留大块空闲空间。

但是这种策略可能导致产生更多的碎片。

4. 快速适应算法(Next Fit)快速适应算法是首次适应算法的改进版本,在分配空闲块时,从上次分配的位置开始搜索。

这样可以避免每次都从头开始搜索,提高了搜索的效率。

连续分配存储管理的优点和缺点优点1.实现简单:连续分配存储管理算法相对而言比较简单,易于实现和理解。

2.内存利用率高:连续分配存储管理可以充分利用内存空间,减少空闲空间的浪费。

3.顺序访问性好:由于连续分配存储管理方式将内存空间划分为连续的块,所以对于顺序访问的进程来说,访问效率较高。

缺点1.碎片问题:连续分配存储管理容易产生内部碎片和外部碎片。

内部碎片是指分配给进程的内存块比进程所需的内存块大,造成内存空间浪费。

外部碎片是指内存空闲块的分布不连续,无法满足大块连续内存需求,导致内存的浪费。

2.分配效率低:由于需要搜索可用的空闲块,连续分配存储管理的分配效率相对较低。

3.控制粒度难以调整:连续分配存储管理方式中,分配块的大小通常是固定的,难以根据进程的需要进行灵活调整。

操作系统Lab2实验报告

操作系统Lab2实验报告

深入学习 操作系统的原理和实 现细节,包括进程通 信、死锁处理、虚拟 化技术等。
实践应用
希望将所学的操作系 统知识应用到实际项 目中,提高自己的实 践能力。
持续学习
随着技术的不断发展 ,操作系统也在不断 更新和进步,需要保 持持续学习的态度。
探索新领域
对于新兴的操作系统 领域,如云操作系统 、物联网操作系统等 ,也希望有所涉猎和 探索。
学生将了解操作系统内核的组成和功能,以及操作系统如何通过内核 实现各种基本功能。
学生将通过实验深入了解操作系统的内部实现细节,提高自己对操作 系统设计和实现的认知水平。
02
实验内容
进程管理实验
总结词
理解进程状态及其转换、进程控制块PCB的组成、进程调度算法。
详细描述
通过实验,我们深入了解了进程的概念、状态及其转换。进程控制块PCB的组成,包括进程标 识符、进程状态、优先级、CPU寄存器内容等信息。此外,我们还学习了进程调度算法,如先 来先服务、最短作业优先、优先级调度等,并进行了模拟实验。
THANKS
感谢观看
操作系统Lab2实验 报告
汇报人:
202X-01-08
目录
• 实验目的 • 实验内容 • 实验结果与分析 • 问题与改进建议 • 总结与展望
01
实验目的
理解操作系统的基本概念
01
掌握核心概念
02
操作系统是计算机系统的核心软件,负责管理计算机硬件和软件资源 ,为用户提供便利的操作界面和高效的服务。
03
操作系统具有并发性、虚拟性、异步性和随机性的特点,这些特点决 定了操作系统在计算机系统中的重要地位和作用。
04
操作系统的基本功能包括进程管理、内存管理、文件管理和设备管理 ,这些功能是操作系统实现其核心目标的基础。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
}
}
int array_release(int *p,int m)
{
for(int n=0;n<m;n++)
{
*p=0;
p++;
}
return 0;
}
int main()
{
int i=0;
for(;i<99;i++)
{
array[i]=0;
}
int m_array[20];
int *pp[20];
int t=0,tt=0;
首次适应策略的思路是,分配时在空闲块列表中搜索,找到第一个能够满足请求的块即停止搜索,然后把搜索到的块分割,一部分返回给请求者,另一部分仍然作为空闲块留在空闲列表的原来位置。首次适应策略的问题在于,链表头部区域的块倾向于被首先分割,经过一段时间后,空闲链表头部可能堆积大量小的空闲块,这会导致搜索时间的增加,因为当请求一个头部区域的小块无法满足的块时,需要顺次检查这些小块。
array_release(pp[tt], m_array[tt]);
printf("\n释放后®\n");
for(intk=0;k<99;k++)
{
printf("%d",array[k]);
}
}
else
{
printf("error\n");
}
}
return0;
}
运行截图如下:
(1)首先分配4块内存,内存大小由rand()随机数决定
while(count<n&&k<99 )//
{
if(*p==0)
{
count++;
p++;
}
elseif(*p==1)
{
count=0;
p++;
}
k++;
}
if(k==99)//
{
returnNULL;
}
else{
p=p-n;
int*point;
point=p;
for(inta=0;a<n;a++)
if(choice==1)
{
count++;
number++;
int r=0;
do{
r=rand();
}while(r>=15 || r<=2);
m_array[number]=r;
printf("\n第%d块内存的大小为%d \n",number,r);
pp[number]=array_request(m_array[number]);
代码如下:
#include <stdio.h>
#include <stdlib.h>
#include <windows.h>
int array[99];
int *array_request(int n)
{
int count=0;
int *p=&array[0];
int *l=&array[99];
while(count<n && p!=l)
number++;
intr=0;
do
{
r=rand();
}while(r>=25||r<=2);
m_array[number]=r;
pp[number]=0;
printf("%d\n",number,r);
pp[number]=array_request(m_array[number]);
if(pp[number]==NULL)
#include<stdio.h>
#include<stdlib.h>
#include<windows.h>
intarray[999];
int*p=&array[0];
intcountt=0;
int*array_request(intn)
{
intcount=0;
int*l=&array[999];
int*t=&array[0];
{
intsuiji2=0;
do
{
suiji2=rand();
}while(suiji2>count||pp[suiji2]==NULL);
array_release(pp[suiji2], m_array[suiji2]);
count--;
}
}
}
return0;
}
试验截图如下:
Next_fit内存利用率实验程序:
{
printf("\n请输入要释放的内存块号数1-%d \n",number);
count--;
scanf("%d",&tt);
array_release(pp[tt],m_array[tt]);
printf("\ห้องสมุดไป่ตู้释放后\n");
for(int k=0;k<99;k++)
{
if(k%10==0)
printf(“\n”);
intk=0;
while(count<n&&k<999 )
{
if(p==l)
{
p=t;
count=0;
}
else
{
if(*p==0)
{
count++;
p++;
}
elseif(*p==1)
{
count=0;
countt++;
p++;
}
}
k++;
}
if(k==999)
{
returnNULL;
for(inta=0;a<n;a++)
{
*p=1;
p++;
}
returnpoint;
}
}
intarray_release(int*p,intm)
{
for(intn=0;n<m;n++)
{
*p=0;
p++;
}
*p=NULL;
return0;
}
intmain()
{
for(intc=0;c<999;c++)//
提高搜索效率。
代码如下:
#include<stdio.h>
#include<stdlib.h>
#include<windows.h>
intarray[99];
int*p=&array[0];
int*array_request(intn)
{
intcount=0;
int*l=&array[99];
intk=0;
m_array[number]=r;
pp[number]=array_request(m_array[number]);
if(pp[number]==NULL)
{
printf("first_fit\n");
for(intn=0;n<999;n++)
{
printf("%d",array[n]);
}
doublea=0;
{
array[c]=0;
}
intm_array[999];
int*pp[999];
intnumber=0,count=0;
for(intc=0;c<999;c++)
{
m_array[c]=0;
pp[c]=0;
}
while(1)
{
if(count==0)
{
intr=0;
do
{
r=rand();
}while(r>=15||r<=2);
int*l=&array[999];
while(count<n&& p!=l )
{
if(*p==0)
{
count++;
p++;
}
else
{
count=0;
p++;
countt++;
}
}
if(count<n && p==l>
{
returnNULL;
}
else
{
p=p-n;
int*point;
point=p;
已分配过的内存置为1
未占用的内存置为0
4块内存的大小分别为8,12,3,9
(2)释放第2,3块内存,以使内存分裂成块
(3)继续写入内存,按照next fit的原理,靠前的内存块不做变化,继续分配较后的内存块
一直分配到内存近满
(3)继续分配内存块 ,指针绕道内存头部继续分配
(4)当所剩任何一个数据块都不够容纳数据时,报溢出错误,不够的数据块不再分配
if(pp[number]==NULL)
{
printf("溢出\n");
return 0;
}
else
相关文档
最新文档