糖代谢

合集下载

医学基础知识:生物化学之糖代谢的知识

医学基础知识:生物化学之糖代谢的知识

医学基础知识:生物化学之糖代谢的知识今天今天来给大家梳理一下关于糖代谢的知识,具体内容如下:糖的分解代谢(一)糖酵解葡萄糖在无氧情况下经过三个阶段生成乳酸。

(糖酵解的产物是乳酸)1.三个阶段、三个关键酶:①第一阶段:葡萄糖生成2分子磷酸甘油醛;关键酶:己糖激酶、6磷酸果糖激酶。

②第二阶段:磷酸甘油醛生成丙酮酸;③第三阶段:丙酮酸生成乳酸;关键酶:丙酮酸激酶。

(第一阶段:葡萄糖在己糖激酶作用下生成6磷酸葡萄糖;6磷酸葡萄糖在6磷酸果糖激酶的帮助下生成1,6二磷酸果糖;1,6二磷酸果糖再裂解成2分子磷酸甘油醛。

)2.糖酵解的3个关键酶(限速酶):己糖激酶、6磷酸果糖激酶、丙酮酸激酶。

记忆:(六斤冰糖):6磷酸果糖激酶、己糖激酶、丙酮酸激酶。

3.糖酵解的作用:提供能量。

(二)糖的有氧氧化1.三个阶段:①第一阶段:葡萄糖生成丙酮酸;②第二阶段:丙酮酸进入线粒体生成乙酰辅酶A;③第三阶段:乙酰辅酶A进入三羧酸循环生成二氧化碳。

2. 三羧酸循环四步脱氢、三个关键酶、二步脱羧、一次底物磷酸化。

三羧酸循环的原料:乙酰CoA;第一步:乙酰CoA生成柠檬酸;关键酶是柠檬酸合酶;第二步:柠檬酸调整姿态,变为异柠檬酸;第三步:异柠檬酸生成-酮戊二酸;关键酶是异柠檬酸脱氢酶。

(第一次脱氢;受体是NAD)第四步:-酮戊二酸在-酮戊二酸脱氢酶的帮助下生成琥珀酰CoA;关键酶是-酮戊二酸脱氢酶。

(第二次脱氢;受体是NAD)第五步:琥珀酰CoA在某些激酶的帮助下生成琥珀酸和GTP。

(这是唯一一次底物水平磷酸化)第六步:琥珀酸在琥珀酸脱氢酶的帮助下生成延胡索酸;关键酶是琥珀色酸脱氢酶(第三次脱氢;受体是FAD)第七步:延胡索酸加水生成苹果酸。

第八步:苹果酸在苹果酸脱氢酶的帮助下生成草酰乙酸(第四次脱氢;受体是NAD)总结:三羧酸循环发生在线粒体;三羧酸循环的底物:乙酰辅酶A;三羧酸循环发生了4次脱氢;生成3个NAD、1个FAD;三羧酸循环发生2次脱羧,生成2分子CO2;三羧酸循环发生1次底物磷酸化;一个NAD可以生成2.5个ATP;一个FAD可以生成1.5个ATP;一轮三羧酸循环总共生成10个ATP;(3个NAD、1个FAD + 唯一一次底物磷酸化时生成的1个ATP)三羧酸循环通过脱氢反应生成9个ATP;三羧酸循环底物磷酸化生成1个ATP;一分子乙酰辅酶A进入三羧酸循环最终生成10个ATP;一分子葡萄糖糖酵解生成2个ATP;一分子葡萄糖彻底氧化后生成30或32个ATP;一分子丙酮酸彻底氧化后生成12.5个ATP。

生物化学 糖代谢

生物化学 糖代谢
2*3
6 ATP
第三阶段:三羧酸循环
2*异柠檬酸→2*α -酮戊二酸 2*α -酮戊二酸 →2*琥珀酰CoA
辅酶
NAD+ NAD+ FAD
ATP
2*3 2*3
2*琥珀酰CoA →2*琥珀酸
2*琥珀酸→2*延胡索酸
2*1
2*2
2*苹果酸→2*草酰乙酸
NAD+
2*3
24ATP
总ATP数: 第一阶段——6或8 第二阶段——6 第三阶段——24 36 或 38ATP
活性受NADP+/NADPH比值的调节,NADPH能强烈
抑制6-磷酸葡萄糖脱氢酶。磷酸戊糖途径的流
量取决于机体对NADPH的需求。
• 概念:有氧,葡萄糖(糖原) → CO2 + H2O • 反应部位:细胞液、线粒体 cytoplasm mitochondria
+ ATP
有氧氧化的概况
有氧氧化的反应过程
• 第一阶段:葡萄糖→ →丙酮酸(胞液) • 第二阶段:丙酮酸→ →乙酰CoA (线粒体) • 第三阶段:乙酰CoA → →CO2 + H2O + ATP (三羧酸循环)(线粒体)

植物和某些藻类能够利用太阳能,将二氧化碳和水合成
糖类化合物,即光合作用。光合作用将太阳能转变成化 学能(主要是糖类化合物),是自然界规模最大的一种 能量转换过程。
一、多糖和低聚糖的酶促降解
1.概述 多糖和低聚糖只有分解成小分子后才 能被吸收利用,生产中常称为糖化。 2. 淀粉
3.淀粉水解 淀粉 糊精
7.无氧发酵 (Fermentation)

⑴乙醇发酵
COOH C CH3
CO2

生物化学6.0糖代谢

生物化学6.0糖代谢

(2)麦芽糖的水解
麦芽糖是还原性糖,由水解方式。 麦芽糖酶:(麦芽糖+H2O)生成 2 (葡萄 糖)
(3)乳糖的水解
β-半乳糖苷酶:(乳糖+ H2O)生成(葡萄 糖+半乳糖)
专题:糖酵解途径
糖酵解(glycolysis)是通过一系列酶促反应 将葡萄糖降解成丙酮酸,并伴有能量释放的过程。 糖酵解途径涉及10个酶催化反应,途径中的酶都 位于细胞质中,一分子葡萄糖通过该途径被转换 成两分子丙酮酸。为纪念在研究糖酵解途径方面 有突出贡献的三位生物化学家Embden, Meyerhof 和Parnas, 又把糖酵解途径称为EmbdenMeyerhof-Parnas途径(EMP途径)。糖酵解普遍 存在于动物、植物、微生物的所有细胞中,是在 细胞质中进行的。虽然糖酵解的部分反应可以在 质体或叶绿体中进行,但不能完成全过程。
糖类是指多羟基醛或酮及其衍生物。糖 类在生物体的生理功能主要有: ① 氧化供能:糖类占人体全部供能量的 70%。 ② 作为结构成分:作为生物膜、神经组 织等的组分。 ③ 作为其他重要生物大分子的碳架来源: 如:核苷酸、氨基酸等。 ④ 与细胞识别和细胞信息传递有关 ⑤ 具有保护和润滑作用
糖是含有多羟基的醛类或酮类化合物:: 1、单糖(如葡萄糖、果糖、甘露糖)
淀粉 、糖原的分子结构
专题:多糖降解
(1)淀粉
参与淀粉水解的酶:
1、α-淀粉酶,淀粉内切酶,随机切断α-1,4糖 苷键; 2、β-淀粉酶,淀粉外切酶,随机切断α-1,4糖 苷键; 注: α-淀粉酶在种子里只有在萌发时才被诱导合 成,且耐热(70℃,15分钟)不耐酸(低于 PH3.3); β-淀粉酶耐酸(PH3.3)不耐热。
三、糖酵解的生理意义
1.糖酵解普遍存在于生物体中,是有氧呼吸和无 氧呼吸途径的共同部分。 2.糖酵解的产物丙酮酸的化学性质十分活跃,可 以通过各种代谢途径,生成不同的物质 3.通过糖酵解,生物体可获得生命活动所需的部 分能量。对于厌氧生物来说,糖酵解是糖分解 和获取能量的主要方式。 4. 糖酵解途径中,除了由己糖激酶、磷酸果糖激 酶、丙酮酸激酶等所催化的反应以外,多数反 应均可逆转,这就为糖异生作用提供了基本途 径。

生物化学第八章糖代谢

生物化学第八章糖代谢

§2 糖的分解代谢
主要有以下途径: (一)糖的无氧酵解 (二)糖的有氧氧化 (三)乙醛酸循环 (四)戊糖磷酸途径
途径具体过程
提示
反应实质 个酶作用 进程变化 学习途径时要重点注意噢!
温馨提示
加油!!!
• 酵解过程要学好
• 首条途径很重要 • 总结经验找规律 • 后边学习基础牢
• 举一反三相比较 • 触类旁通有参照 • 事半功倍学的巧 • 一路轻松兴趣高
甘油酸-3-磷酸
磷酸甘油8反酸应变图位酶
甘油酸-2-磷酸
9、2-磷酸甘油酸脱水烯醇化
甘油酸-2-磷酸
烯醇化9反酶应图
磷酸烯醇式丙酮酸
9、2-磷酸甘油酸的脱水生成磷酸烯醇式丙 酮酸
烯醇化酶(enolase) 这一步反应也可看作分子内氧化还原反应,分子 内能量重新分布,又一次产生了高能磷酯键。
反应可以被氟离子抑制,取代天然情况下酶分 子上镁离子的位置,使酶失活。
细胞核
内质网 溶酶体
细胞膜
动物细胞
植物细胞
细胞壁 叶绿体
有色体 白色体 液体 晶体
葡萄糖的主要代谢途径
糖异生
葡萄糖
6-磷酸葡萄糖 (有氧或无氧)
(无氧) 丙酮酸
糖酵解
(有氧)
乳酸 乙醇
乙酰 CoA
磷酸戊糖 途径
三羧酸 循环
第八章:糖代谢
§1 多糖和底聚糖的酶促降解 §2 糖的分解代谢 §3 糖的合成代谢
⑹氧化脱氢,产生 NADH+H+ (磷酸化,使用无机磷酸)
甘油醛-3-磷酸
无机磷酸
甘油醛-3-磷酸 脱氢酶
1,3-二磷酸甘油酸
产生 的 NADH+H+ 的氢,条件不同, H的去向不同,走进的途径不同。

生物化学第五章糖代谢

生物化学第五章糖代谢

生物化学第五章糖代谢第五章糖代谢一、糖类的生理功用:①氧化供能:糖类是人体最主要的供能物质,占全部供能物质供能量的70%;与供能有关的糖类主要是葡萄糖和糖原,前者为运输和供能形式,后者为贮存形式。

②作为结构成分:糖类可与脂类形成糖脂,或与蛋白质形成糖蛋白,糖脂和糖蛋白均可参与构成生物膜、神经组织等。

③作为核酸类化合物的成分:核糖和脱氧核糖参与构成核苷酸,DNA,RNA等。

④转变为其他物质:糖类可经代谢而转变为脂肪或氨基酸等化合物。

二、糖的无氧酵解:糖的无氧酵解是指葡萄糖在无氧条件下分解生成乳酸并释放出能量的过程。

其全部反应过程在胞液中进行,代谢的终产物为乳酸,一分子葡萄糖经无氧酵解可净生成两分子ATP。

糖的无氧酵解代谢过程可分为四个阶段:1. 活化(己糖磷酸酯的生成):葡萄糖经磷酸化和异构反应生成1,6-双磷酸果糖(FBP),即葡萄糖→6-磷酸葡萄糖→6-磷酸果糖→1,6-双磷酸果糖(F-1,6-BP)。

这一阶段需消耗两分子ATP,己糖激酶(肝中为葡萄糖激酶)和6-磷酸果糖激酶-1是关键酶。

2. 裂解(磷酸丙糖的生成):一分子F-1,6-BP裂解为两分子3-磷酸甘油醛,包括两步反应:F-1,6-BP→磷酸二羟丙酮+ 3-磷酸甘油醛和磷酸二羟丙酮→3-磷酸甘油醛。

3. 放能(丙酮酸的生成):3-磷酸甘油醛经脱氢、磷酸化、脱水及放能等反应生成丙酮酸,包括五步反应:3-磷酸甘油醛→1,3-二磷酸甘油酸→3-磷酸甘油酸→2-磷酸甘油酸→磷酸烯醇式丙酮酸→丙酮酸。

此阶段有两次底物水平磷酸化的放能反应,共可生成2×2=4分子ATP。

丙酮酸激酶为关键酶。

4.还原(乳酸的生成):利用丙酮酸接受酵解代谢过程中产生的NADH,使NADH重新氧化为NAD+。

即丙酮酸→乳酸。

三、糖无氧酵解的调节:主要是对三个关键酶,即己糖激酶(葡萄糖激酶)、6-磷酸果糖激酶-1、丙酮酸激酶进行调节。

己糖激酶的变构抑制剂是G-6-P;肝中的葡萄糖激酶是调节肝细胞对葡萄糖吸收的主要因素,受长链脂酰CoA的反馈抑制;6-磷酸果糖激酶-1是调节糖酵解代谢途径流量的主要因素,受ATP和柠檬酸的变构抑制,AMP、ADP、1,6-双磷酸果糖和2,6-双磷酸果糖的变构激活;丙酮酸激酶受1,6-双磷酸果糖的变构激活,受ATP的变构抑制,肝中还受到丙氨酸的变构抑制。

糖代谢名词解释

糖代谢名词解释

糖代谢名词解释糖代谢是指机体对糖类物质进行摄取、利用和合成的过程。

糖是人体生理活动中的重要能源来源,它在体内主要通过糖代谢途径进行利用。

糖代谢主要包括糖的摄取和吸收、糖的氧化解磷酸化和糖原合成与分解三个过程。

糖的摄取和吸收是指从食物中吸收糖分子进入血液。

人们摄入食物中的碳水化合物,如蔗糖、淀粉等,经过消化吸收后转化为葡萄糖等单糖,通过肠道上皮细胞的吸收膜转运至血液中,进而被输送至全身各细胞。

糖的氧化解磷酸化是糖在细胞内被氧化分解生成能量的过程。

葡萄糖进入细胞后,通过一系列酶的作用,经过糖酵解和三羧酸循环,最终生成能量丰富的分子三磷酸腺苷(ATP),供细胞进行生物化学反应和各种生理功能的维持和驱动。

糖原合成与分解是机体对糖分子进行储存和利用的过程。

葡萄糖在细胞内可以被合成为糖原,以储存形式保存在肝脏和肌肉中,当身体需要能量时,糖原可以被分解为葡萄糖,以供细胞能量代谢的需要。

这种合成和分解的平衡可以调节血液中葡萄糖水平的稳定,维持机体正常的能量代谢。

糖代谢也与一系列重要的调节机制相关。

胰岛素和胰高血糖素是两种重要的调节激素,胰岛素能够促进葡萄糖的摄取和利用,并促使葡萄糖合成为糖原进行储存;胰高血糖素则能够抑制胰岛素的分泌,促进葡萄糖的释放和糖原的分解。

这些调节机制能够在合适的时机调控机体内葡萄糖的利用和储存,维持血糖平衡。

糖代谢异常与一系列疾病的发生和发展密切相关。

例如,糖尿病是一种由于胰岛素分泌缺陷或细胞对胰岛素抵抗等原因导致血糖水平升高的疾病,使得糖的代谢发生紊乱;糖酵解途径的异常也与肿瘤、心血管疾病等多种疾病的发生有关。

总之,糖代谢是机体中对糖类物质进行摄取、利用和合成的过程,其正常进行对于维持机体能量代谢的稳定和健康具有重要作用。

通过深入了解糖代谢的相关过程和机制,可以对糖相关疾病的预防和治疗提供理论基础。

第六章糖代谢

第六章糖代谢

磷酸烯醇式丙酮酸
ADP
ATP
丙酮酸
主要是从丙酮酸生成葡萄糖的具体 反应过程。
糖异生与糖酵解的多数反应是共有 的、可逆的;
糖酵解中有3个不可逆反应,在糖异 生中须由另外的反应和酶代替。
5
(一)丙酮酸转变成磷酸烯醇式丙酮酸
丙酮酸
生物素
丙酮酸羧化酶
CO2 ATP
(线粒体)
ADP+Pi
草酰乙酸
磷酸烯醇式丙酮酸
第六章 糖代谢
Metabolism of Carbohydrates
内容提纲
概述 糖的分解代谢
糖的无氧氧化 糖的有氧氧化 磷酸戊糖途径
糖原的合成与分解 糖异生作用 血糖及其调节
2
第六节 糖异生
Gluconeogenesis
糖异生途径 糖异生的调节 生理意义
3
概念 糖异生(gluconeogenesis)是指从非糖化合
果糖二磷酸酶-1 Pi
1,6-二磷酸果糖 6-磷酸果糖
向反应,这种互变
ADP 6-磷酸果糖激酶-1 ATP
循环称之为底物循
ADP+Pi
GTP 磷酸烯醇式丙
丙酮酸羧化酶
环(substratecycle)。 CO2+ATP
草酰乙酸
酮酸羧激酶 GDP+Pi
丙酮酸
PEP +CO2
ATP 丙酮酸激酶 ADP
14
18


质 激


胰高血糖素 —
激素对糖异生和糖酵解的调节作用
19
三、糖异生的生理意义
(一)饥饿情况下维持血糖浓度恒定(最主要功 能) (二)补充或恢复肝糖原储备

生物化学 糖代谢

生物化学 糖代谢

生物化学:糖代谢糖是生物体重要的能量来源之一,也是构成生物体大量重要物质的原始物质。

糖代谢是指生物体对糖类物质进行分解、转化、合成的过程。

糖代谢主要包括两大路径:糖酵解和糖异生。

本篇文档将从分解和合成两个角度,介绍生物体内糖的代谢。

糖的分解糖酵解(糖类物质的分解)糖酵解是指生物体内将葡萄糖和其他糖类物质分解成更小的化合物,同时释放出能量。

糖酵解途径包括糖原泛素、琥珀酸途径、戊糖途径、甲酸途径等。

其中主要以糖原泛素和琥珀酸途径为代表。

糖原泛素途径糖原泛素途径又称为糖酵解途径,是生物体内最常用的糖分解方式。

它可以将葡萄糖分解成丙酮酸或者丁酮酸,同时产生2个ATP和2个NADH。

糖原泛素途径一般分为两个阶段:糖分解阶段和草酸循环。

糖分解阶段在这个阶段,葡萄糖通过酸化和裂解反应,进入三磷酸葡萄糖分子中,并生成一个六碳分子葡萄糖酸,此过程中消耗1个ATP。

接着,葡萄糖酸分子被磷酸化,生成高能量化合物1,3-二磷酸甘油酸,同时产生2个ATP。

随后,1,3-二磷酸甘油酸分子的丙酮酸残基被脱除,生成丙酮酸或者丁酮酸。

草酸循环草酸循环是指将生成的丙酮酸和丁酮酸在线粒体内发生可逆反应,生成柠檬酸,随后通过草酸循环将柠檬酸氧化分解成二氧化碳、水和ATP。

草酸循环中的关键酶有乳酸脱氢酶、肌酸激酶等。

琥珀酸途径琥珀酸途径也被称为三羧酸循环,是生物体内另一种重要的糖分解途径,它可以将葡萄糖分解成二氧化碳和水,同时产生30多个ATP。

琥珀酸途径中,葡萄糖通过磷酸化,生成高能分子葡萄糖6-磷酸,随后被氧化酶和酶羧化酶双重氧化分解成二氧化碳和水。

琥珀酸途径的关键酶有异构酶、羧酸还原酶等。

糖异生(糖合成)糖异生是指非糖类物质(如丙酮酸、乳酸等)通过一系列合成反应,转化成糖类物质的过程。

糖异生是生物体内糖类物质的重要来源之一,对维持生命的各种生理过程具有重要意义。

糖异生途径包括丙酮酸途径、戊糖途径和甘油三磷酸途径等。

丙酮酸途径丙酮酸途径是指通过丙酮酸合成糖的途径,它可以将丙酮酸反应生成物乙酰辅酶A进一步转移,合成3磷酸甘油醛,随后通过糖醛酸-3-磷酸酰基转移酶反应,合成葡萄糖6磷酸。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

糖代谢五、名词解释题1. glycolysis 5. Pasteur effect2. glycolytic pathway 6. pentose phosphate pathway (PPP )3. tricarboxylic acid cycle (TAC )7. glyCOgu4. citric acid cycle 8. glycogenesis9. gluconeoguesis 17. 糖有氧氧化10. substrate cycle 18. 糖异生途径11. lactric acid cycle 19. 糖原累积症12. blood sugar 20. 活性葡萄糖13. 三碳途径21. Cori 循环14. 肝糖原分解22 蚕豆病15. 级联放大系统23 高血糖16. Krebs 循环24 低血糖六、问答题1. 简述糖酵解的生理意义。

2. 糖的有氧氧化包括哪几个阶段?3. 述乳酸氧化供能的主要反应及其酶c4. 试述三羧酸循环的要点及生理意义5. 试列表比较糖酵解与有氧氧化进行的部位、反应条件、关键酶、产物、能量生成及生理意义。

6. 试述磷酸戊糖途径的生理意义。

7. 机体通过哪些因素调节糖的氧化途径与糖异生途径?8. 试述丙氨酸异生为葡萄糖的主要反应过程及其酶。

9. 试述乳酸异生为葡萄糖的主要反应过程及其酶。

10. 简述糖异生的生理意义。

11. 糖异生过程是否为糖酵解的逆反应?为什么?12. 简述乳酸循环形成的原因及其生理意义。

13. 简述肝糖原合成代谢的直接途径与间接途径。

14. 机体如何调节糖原的合成与分解使其有条不紊地进行?15. 神经冲动如何加速肌糖原的分解?16. 简述血糖的来源和去路。

17. 概述肾上腺素对血糖水平调节的分子机理。

18. 简述6- 磷酸葡萄糖的代谢途径及其在糖代谢中的重要作用。

19. 简述草酰乙酸在糖代谢中的重要作用。

20. 在糖代谢过程中生成的丙酮酸可进人哪些代谢途径?21. 概述B 族维生素在糖代谢中的重要作用。

22. 在百米短跑时,肌肉收缩产生大量的乳酸,试述该乳酸的主要代谢去向。

23. 试述肝脏在糖代谢中的重要作用。

24. 试述从营养物质的角度,解释为什么减肥者要减少糖类物质的摄入量?(写出有关的代谢途径及其细胞定位、主要反应、关键酶)1. glycolysis 糖酵解在缺氧情况下,葡萄糖分解为乳酸,产生少量ATP 的过程称为糖酵解。

2. glycolytic pathway 酵解途径葡萄糖分解为丙酮酸的过程称为酵解途径。

3. tricarboxylic acid cycle (TAC )三羧酸循环由乙酸CoA 与草酸乙酸缩合成柠檬酸开始,经反复脱氢、脱羧再生成草酸乙酸的循环反应过程称为三羧酸循环。

4. citric aidcy cycle 柠檬酸循环即为三羧酸循环(见上述)。

5. Pasteur effect 巴斯德效应糖有氧氧化抑制糖酵解的现象称为Pasteur effect6. pentose phosphate Pathway (PPP )磷酸戊糖途径(或称磷酸戊糖旁路)6- 磷酸葡萄糖经氧化反应及一系列基团转移反应,生成NADPH 、CO 2 、核糖及6- 磷酸果糖和3- 磷酸甘油醛而进人酵解途径。

7. glycogen 糖原动物体内糖的储存形式,是可以迅速动用的葡萄糖储备。

8. glycogenesis 糖原合成由葡萄糖合成糖原的过程称为糖原合成。

9. gluconeosnesis 糖异生由非糖化合物转变为葡萄糖或糖原的过程称为糖异生。

10. substrate cycle 底物循环在代谢过程中由催化单向反应的酶催化两种底物互变的循环称为底物循环。

11. lactic acid cycle 乳酸循环在肌肉中葡萄糖经糖酵解生成乳酸,乳酸经血液运到肝脏,肝脏将乳酸异生成葡萄糖。

葡萄糖释人血液后又被肌肉摄取,这种代谢循环途径称为乳酸循环。

12. blood sugar 血糖血液中的葡萄糖称为血糖。

其正常水平为3.89 ~6.11mmol/L (70 ~110mg/dl )。

13. 三碳途径葡萄糖先分解成丙酮酸、乳酸等三碳化合物,再运至肝脏异生成糖原的过程称为三碳途径或间接途径。

14. 肝糖原分解肝糖原分解为葡萄糖的过程。

15. 级联放大系统经一系列酶促反应将激素信号放大的连锁反应称为级联放大系统。

16. krebs 循环即为三羧酸循环(见上述)。

17. 糖有氧氧化台阶葡萄糖在有氧条件下氧化生成CO 2 和H 2 O 的反应过程。

18. 糖异生途径从而酮酸生成葡萄糖的具体反应过程称为糖异生途径。

19. 糖原累积症由于先天性缺乏与糖原代谢有关的酶类,使体内有大量糖原堆积的遗传性代谢病。

20. 活性葡萄糖在葡萄糖合成糖原的过程中,UDPG 中的葡萄糖基。

21. Cori 循环即为乳酸循环(见上述)。

22. 蚕豆病由于缺乏6- 磷酸葡萄糖脱氢酶,不能经磷酸戊糖途径得到充足的NADPH +H+ ,使谷胱甘肽保持于还原状态,常在进食蚕豆后诱发溶血性黄疽称为蚕豆病。

23. 高血糖空腹血糖浓度高于7.22mmol /L (130mg %)称为高血糖。

24. 低血糖空腹血糖浓度低于3.89 mmol /L (70mg %)称为低血糖。

六、问答题1. (1 )迅速供能。

(2) 某些组织细胞依赖糖酵解供能,如成熟红细胞等。

2. 糖的有氧氧化包括三个阶段,(1) 第一阶段为精酵解途径:在胞浆内葡萄糖分解为丙酮酸。

( 2 )第二阶段为丙酮酸进人线粒体氧化脱羧成乙酸CoA. (3 )乙酰CoA 进人三羧酸循环和氧化磷酸化。

3. (1) 乳酸经LDH 催化生成丙酮酸和NADH +H+(2) 丙酮酸进入线粒体经丙酮酸脱氢酶系催化生成乙酰COA 、NADH +H+ 和CO 2 。

(3) 乙酰COA 进人三羧酸循环经4 次脱氢生成NADH +H+ 和FADH 2 、2 次脱羧生成CO 2 。

上述脱下的氢经呼吸链生成ATP 和H 2 O 。

4. 三羧酸循环的要点:( 1 )TAC 中有 4 次脱氢、 2 次脱羧及 1 次底物水平磷酸化。

( 2 )TAC 中有 3 个不可逆反应、3 个关键酶(异柠檬酸脱氢酶、α- 酮戊二酸脱氢酶系、柠檬酸合酶)。

( 3 )TAC 的中间产物包括草酸乙酸在内起着催化剂的作用。

草酰乙酸的回补反应是丙酮酸的直接羧化或者经苹果酸生成。

三羧酸循环的生理意义:( 1 )TAC 是三大营养素彻底氧化的最终代谢通路。

( 2 )TAC 是三大营养素代谢联系的枢纽。

( 3 )TAC 为其他合成代谢提供小分子前体。

( 4 )TAC 为氧化磷酸化提供还原当量。

5糖酵解糖有氧氧化反应条件供氧不足有氧情况进行部位胞液胞液和线粒体关键酶己糖激酶(或葡萄糖激酶)、磷酸果糖激酶-1 、丙酮酸激酶有左列 3 个酶及丙酮酸脱氢酶系、异柠檬酸脱氢酶、α- 酮戊二酸脱氢酶系、柠檬酸合酶产物乳酸、ATPH 2 O ,CO 2 ,ATP能量1mol 葡萄糖净得2mol ATP1mol 葡萄糖净得36 或38molATP生理意义迅速供能;某些组织信赖糖酵解供能是机体获取能量主要方式6. (1) 提供5- 磷酸核糖,是合成核苷酸的原料。

(2) 提供NADPH ;后者参与合成代谢(作为供氢体)、生物转化反应以及维持谷眈甘肽的还原性。

7. 糖的氧化途径与糖异生具有协调作用,若一条代谢途径活跃时,另一条代谢途径必然减弱,这样才能有效地进行糖氧化或糖异生。

这种协调作用依赖于别构效应物对两条途径中的关键酶的相反作用以及激素的凋节。

(1) 别构效应物的调节作用:①ATP 及柠檬酸抑制6- 磷酸果糖激酶-l ;而激活果糖双磷酸酶-1 。

②ATP 抑制丙团酸激酶;而激活丙酮酸羧化酶。

③AMP 及2,6- 双磷酸果糖抑制果糖双磷酸酶-1 ;而激活6- 磷酸果糖激酶-1 。

④乙酰CoA 抑制丙酮酸脱氢酶系;而激活丙团酸羧化酶。

(2) 激素调节:主要取决于胰岛素和胰高血糖素。

胰岛素能增强参与糖氧化的酶活性,如己糖激酶、6- 磷酸果糖激酶-l 、丙酮酸激酶、丙酮酸脱氢酶系等;同时抑制糖异生关键酶的活性。

胰高血糖素能抑制 2 ,6- 双磷酸果糖的生成和丙酮酸激酶的活性,则抑制糖氧化而促进糖异生。

8. (1) 丙氨酸经GPT 催化生成丙酮酸。

(2) 丙酮酸在线粒体内经丙酮酸羧化酶催化生成草酸乙酸,后者经苹果酸脱氢酶催化生成苹果酸出线粒体,在胞中经苹果酸脱氢酶催化生成草酰乙酸,后者在磷酸烯醇式丙酮酸羧激酶作用下生成磷酸烯醇式丙团酸。

( 3 )磷酸烯醇式丙酮酸循糖酵解途径至1,6 双磷酸果糖。

( 4 )l,6- 双磷酸果糖经果糖双磷酸酶-l 催化生成6- 磷酸果糖,再异构为6- 磷酸葡萄糖。

( 5 )6- 磷酸葡萄糖在葡萄糖-6- 磷酸酶作用下生成葡萄糖。

9. (1) 乳酸经LDH 催化生成丙酮酸。

(2) 丙酮酸在线粒体内经丙酮酸造化酶催化生成草酸乙酸,后者经AST 催化生成天冬氨酸出线粒体,在胞液中经AST 催化生成草酰二酸,后者在磷酸烯醇式丙酮酸羧激酶作用下生成磷酸烯醇式丙酮酸。

( 3 )磷酸烯醇式丙酮酸循糖酵解途径至1,6- 双磷酸果糖。

( 4 )l,6- 双磷酸果糖经果糖双磷酸酶-1 催化生成6- 磷酸果糖,再异构为6- 磷酸葡萄糖。

( 5 )6- 磷酸葡萄糖在葡萄糖-6- 磷酸酶作用下生成葡萄糖。

10. (l) 空腹或饥饿时利用非糖化合物异生成葡萄糖,以维持血糖水平恒定。

(2) 糖异生是肝脏补充或恢复糖原储备的重要途径。

11. 糖异生过程不是糖酵解的逆过程,因为糖酵解中己糖激酶、6 一磷酸果糖激酶一1 、丙酮酸激酶催化的反应是不可逆的,所以非糖物质必须依赖葡萄糖一 6 一磷酸酶、果糖双磷酸酶一l 、丙酮酸羧化酶和磷酸烯醇式丙酮酸羧激酶的催化才能异生为糖,亦即酶促反应需要绕过三个能障以及线粒体膜的膜障。

12. 乳酸循环的形成是由于肝脏和肌肉组织中酶的特点所致。

肝内糖异生很活跃,又有葡萄糖一6 磷酸酶可水解6 磷酸葡萄糖,释出葡萄糖。

肌肉组织中除糖异生的活性很低外,又没有葡萄糖一 6 一磷酸酶;肌肉组织内生成的乳酸既不能异生成糖,更不能释放出葡萄糖。

乳酸循环的生理意义在于避免损失乳酸(能源物质)以及防止因乳酸堆积 5 ;起酸中毒。

13. 肝糖原合成时由葡萄糖经UDpe 合成糖原的过程称为直接途径。

由葡萄糖先分解成二碳化合物如乳酸、丙酮酸,再运至肝脏异生成糖原的过程称为三碳途径或间接途径。

14. 糖原的合成与分解是通过两条不同的代谢途径,这样有利于进行精细调节。

糖原的合成与分解的关键酶分别是糖原合酶与磷酸化酶。

机体的调节方式是通过同一信号使一个酶呈活性状态,另一个酶则呈非活性状态,可以避免由于糖原分解、合成两个途径同时进行造成ATP 的浪费。

相关文档
最新文档