小学五年级解方程计算步骤

合集下载

五年级数学《解方程》方法与技巧

五年级数学《解方程》方法与技巧

五年级数学《解方程》方法与技巧
在小学数学中方程可能是很多同学的一个难点,那么解方程有哪些技巧和方法呢,今天老师就来给大家做一个总结,供大家参考。

首先我们要知道方程的意义是,表示相等关系的式子叫等式,含有未知数的等式叫做方程。

由此可见方程必须具备两个条件:一是等式;二是等式中必须含有未知数。

一、利用等式的性质解方程
因为方程是等式,所以等式具有的性质方程都具有。

1、方程的左右两边同时加上或减去同一个数,方程的解不变。

2、方程的左右两边同时乘同一个不为0的数,方程的解不变。

3、方程的左右两边同时除以同一个不为0的数,方程的解不变。

二、两步、三步运算的方程的解法
两步、三步运算的方程,可根据等式的性质进行运算,先把原方程转化为一步求解的方程,在求出方程的解。

三、根据加减乘除法各部分之间的关系解方程
1、根据加法中各部分之间的关系解方程。

2、根据减法中各部分之间的关系解方程
在减法中,被减速=差+减数。

3、根据乘法中各部分之间的关系解方程
在乘法中,一个因数=积/另一个因数
例如:列出方程,并求出方程的解。

4、根据除法中各部分之间的关系解方程。

解完方程后,需要通过检验,验证求出的解是否成立。

这就要先把所求出的未知数的值代入原方程,看方程左边的得数和右边的得数是否相等。

若得数相等,所求的值就是原方程的解,若得数不相等,就不是原方程的解。

以上几种方法就是小学数学中常用的方法和技巧,希望同学们多多练习,熟练掌握。

小学五年级解方程技巧

小学五年级解方程技巧

小学五年级解方程技巧
一、理解意义
1.什么是方程?
含有未知数的等式叫做方程。

方程必须具备两个条件:一是等式;二是等式中必须含有未知数。

2.什么是等式?
等式:表示相等关系的式子。

二、解方程技巧
(一)技巧一:
1.技巧:利用等式的性质来解方程。

2.方法:
(1)方程的左右两边同时加上或减去同一个数,方程的解不变。

(2)方程的左右两边同时乘同一个不为0的数,方程的解不变。

(3)方程的左右两边同时除以同一个不为0的数,方程的解不变。

3.示例:
(二)技巧二:
1.技巧:两步、三步运算的方程的解法
2.方法:可根据等式的性质进行运算,先把原方程转化为一步求解的方程,在求出方程的解。

3.示例:
5x-412=22.5(先计算412,形成了5x-48=22.5,再运用两边同时加上48.来解答。


(三)技巧三:
1.技巧:根据加减乘除法各部分之间的关系解方程。

2.方法:
(1)在减法中,被减数=差+减数;减数=被减数-差。

(2)在乘法中,一个因数=积除以另一个因数。

(3)在除法中,被除数=商乘以除数;除数=被除数除以商。

3.示例:
三、解方程计算题。

小学五年级解方程计算步骤

小学五年级解方程计算步骤

小学五年级解方程计算步骤小学阶段解方程计算题一般有以下几个步骤,大家要认真把这几个步骤记住,看到相关题型就按照下面的方法去做就可以了。

一.移项所谓移项就是把一个数从等号的一边移到等号的另一边去。

注意,加减法移项和乘除法要把这个数原来前移项不一样,移项规则:当把一个数从等号的一边移到另一边去的时候,当把一个数从等号的一边移到另一边去的时候,要把这个数原来前面的运算符号改成和它相反的运算符号,比如“+”变成“-”,或是“×”变成“÷”请看例题:加减法移项:x + 4 = 9 x-8=19 x=9-4 x=19+8 x=5 x=27 乘除法移项:3x=27 x÷6=8  x=27÷3 x=8×6 x=9 x=48 1.常规题目,第一步,把所有跟未知数不能直接运算的数字,转移到与未知数相反的等号那一边。

比如:3x - 4 = 8 5x + 9 = 24 3x=8+4 5x=24 - 9 3x=12 5x=15 x=4 x=3 2.第二种情况请记住,当未知数前面出现“-”或是“÷”的时候,要把这两个符号变成“+”或是“×”,具体如何改变请看下面例题:20 – 3x=2 20=2 + 3x -----(注意:也就是前面提过的移项问题,改变符号在方程里面就是移项) 20-2=3x 18=3x x=6 36÷4x = 3 36=3×4x ----(注意:也就是前面提过的移项问题,改变符号在方程里面就是移项注意:也就是前面提过的移项问题,改变符号在方程里面就是移项) 36=12x x=3 3.未知数在小括号里面的情况,注意,这种情况要分两种,第一种是根据乘法分配律先把小括号去掉小括号去掉例如:3(3x+4) = 57  9x + 12=57  9x=57-12  9x=45  x=5 第二种情况就是,要看括号前面的那个数跟等号后面的那个数是否倍数关系,如果是倍数关系,可以互相除一下,当然,用这一种方法的前提就是等号另一边的数只有一个数字,如果有多个,则先要计算成一个。

人教版小学五年级数学(上册)解方程的方法与技巧

人教版小学五年级数学(上册)解方程的方法与技巧

人教版小学五年级数学(上册)解方程的方法与技巧小学数学解方程的方法与技巧理论依据:1、等式的性质等式的性质1:等式两边加上或减去同一个数,左右两边仍然相等。

移项时运算符号要改变。

即:加一个数移到另一边变为减一个数;减一个数移到另一边变为加一个数;乘一个数移到另一边变为除以一个数;除以一个数移到另一边变为乘一个数。

等式的性质2:等式两边乘同一个数,或除以同一个不为零的数,左右两边仍然相等。

2、加减乘除法各部分间的关系加法:加数 + 加数 = 和;一个加数 = 和 - 另一个加数。

减法:被减数 - 减数 = 差;被减数 = 减数 + 差;减数 =被减数 - 差。

乘法:因数 ×因数 = 积;一个因数 = 积 ÷另一个因数。

除法:被除数 ÷除数 = 商;被除数 = 除数 ×商;除数 =被除数 ÷商。

3、移项的方法移项的基本类型:X + A = B;X - A = B;A - X = B;X = B - A;X = B + A;A -B = X;X × A = B;X ÷ A = B;A ÷ X = B;X = B ÷ A;X = B × A;A ÷ B = X;X = A ÷ B。

基础演练:利用加、减、乘、除运算数量关系解方程1)7X = 49两数相乘得到积,反过来说,其中一个数就等于积除以另一个数。

那么X做为其中的一个数,就等于积49除以另一个数7.即:7 X = 49;X = 49 ÷ 7;X = 7.练:1.5.55÷X=1.11,解得X=5.2.3.2÷X=0.8,解得X=4.3.438÷X=2,解得X=219.4.63÷X=7,解得X=9.综合训练:1.XXX,解得X=165.3.2.X +193 =978,解得X=785.3.X÷2.7=7,解得X=18.9.4.X÷22.2=2,解得X=44.4.原文已经没有格式错误和明显有问题的段落了,只需要对每段话进行小幅度改写即可。

小学五年级数学解方程的方法与技巧

小学五年级数学解方程的方法与技巧

小学五年级数学解方程的方法与技巧
在小学数学中方程可能是很多同学的一个难点,那么解方程有哪些技巧和方法呢,今天我们就来给大家做一个总结,供大家参考。

首先我们要知道方程的意义是,表示相等关系的式子叫等式,含有未知数的等式叫做方程。

由此可见方程必须具备两个条件:一是等式;二是等式中必须含有未知数。

一、利用等式的性质解方程。

因为方程是等式,所以等式具有的性质方程都具有。

1、方程的左右两边同时加上或减去同一个数,方程的解不变。

2、方程的左右两边同时乘同一个不为0的数,方程的解不变。

3、方程的左右两边同时除以同一个不为0的数,方程的解不变。

二、两步、三步运算的方程的解法
两步、三步运算的方程,可根据等式的性质进行运算,先把原方程转化为一步求解的方程,在求出方程的解。

三、根据加减乘除法各部分之间的关系解方程。

1、根据加法中各部分之间的关系解方程。

2、根据减法中各部分之间的关系解方程
在减法中,被减速=差+减数。

3、根据乘法中各部分之间的关系解方程
在乘法中,一个因数=积/另一个因数
例如:列出方程,并求出方程的解。

4、根据除法中各部分之间的关系解方程。

解完方程后,需要通过检验,验证求出的解是否成立。

这就要先把所求出的未知数的值代入原方程,看方程左边的得数和右边的得数是否相等。

若得数相等,所求的值就是原方程的解,若得数不相等,就不是原方程的解。

以上几种方法就是小学数学中常用的方法和技巧,希望同学们多多练习,熟练掌握。

五年级解方程式练习题的口诀

五年级解方程式练习题的口诀

五年级解方程式练习题的口诀解方程的口诀是帮助学生们快速解决解方程式练习题的一种工具。

下面是适用于五年级学生的解方程式练习题的口诀。

一、口诀概述解方程步骤具有一定的固定性,通过记忆和运用相应的口诀,可以帮助学生们更加迅速地解答问题。

下面是适用于五年级学生的解方程的口诀。

口诀:等式两边加减,去括号找x,常数化为x后,变号律无疑;乘除根号等,左右两边闭嘴,去系数得解,解试回等式。

解不出应提问,寻求老师解答。

二、口诀详解1. 等式两边加减:根据题目中给出的等式,把等式两边进行加减运算,目的是将方程简化。

2. 去括号找x:如果题目中有括号,先将括号内的表达式进行运算,再找出含有未知数x的项。

3. 常数化为x后,变号律无疑:将含有常数的项移动到方程的另一边,并根据变号律进行变号操作,确保x的系数为正数。

4. 乘除根号等,左右两边闭嘴:如果方程中有乘、除或根号等运算符,先将这些项移动到方程另一边,并保持等号两边闭嘴,不要进行进一步计算。

5. 去系数得解:将方程中的系数全部消除,得到x的值。

6. 解试回等式:将得到的x的值代入原方程,验证是否满足等式关系。

7. 解不出应提问,寻求老师解答:如果在应用口诀的过程中无法解出方程,应及时向老师寻求帮助,寻找解答。

三、实例演示现通过一个实例来演示使用口诀解决解方程式练习题。

题目:4x + 7 = 31解题步骤:1. 等式两边加减:4x = 31 - 72. 常数化为x后,变号律无疑:4x = 243. 去系数得解:x = 24 ÷ 44. 解试回等式:4 × (24 ÷ 4) + 7 = 31 (左右两边相等)最终解得方程的解为 x = 6。

通过口诀的应用,可以帮助学生们快速且准确地解决解方程式练习题。

但在解题过程中,同学们也要注意审题,将口诀与实际问题相结合,才能获得正确的解答。

如果在应用口诀的过程中遇到困难或无法解决的问题,应当及时向老师寻求帮助。

五年级数学解方程方法

五年级数学解方程方法

解方程是数学中的一种重要方法,它可以帮助我们求出未知数的值。

在五年级的数学课程中,我们主要学习一元一次方程的解法。

下面是五年级数学解方程方法的详细说明。

一、方程的基本概念1.方程:是由等号连接的含有未知数的式子,如:2x+3=7、(2x+3是方程的左边,7是方程的右边,等号将左边和右边连接在一起。

)2.未知数:在方程中没有具体的数值,需要我们求解的数,通常用字母表示,如:x。

3.解:使方程成立的未知数的取值,如:当x=2时,2x+3=7成立,这时x=2就是方程的解。

二、一元一次方程的解法1.收集同类项:将方程中的同类项进行合并,如:2x+3+4x-5=9,可以合并为6x-2=92.移项:将方程中的含有未知数的项移动到一边,将常数项移动到另一边,如:将6x-2=9变形为6x=9+23.合并同类项:将移项后的式子再次合并同类项,如:将6x=9+2合并为6x=114.求解未知数:将方程中的未知数的系数化为1,如:将6x=11化为x=11÷65.检验解的正确性:将求得的未知数代入原方程进行验证,如:将x=11÷6代入2x+3+4x-5=9,计算左边等于右边,验证解的正确性。

三、实例演练例如,解方程2x+3=71.收集同类项:方程中的同类项为2x和3,将其合并为2x+32.移项:将3移到等号右边,得2x=7-33.合并同类项:合并后的式子为2x=44.求解未知数:将2x化为x,得x=4÷2,即x=25.验证解的正确性:将x=2代入原方程2x+3=7,计算左边等于右边,验证解的正确性。

四、解方程的注意事项1.方程两边同时加上或减去相同的数,方程仍然成立。

2.方程两边同时乘以或除以非零数,方程仍然成立。

3.通过移项可以改变方程的形式,但解的值不变。

4.解方程的最后一步是验证解的正确性,以确保解是正确的。

五、数学解方程的应用1.数学解方程在代数中有广泛的应用,例如在计算中可以根据已知条件求解未知数的值。

解方程公式五年级

解方程公式五年级

解方程公式五年级一、解一元一次方程在五年级学习解一元一次方程时,我们主要解决以下类型的方程:1.x + a = b2.x - a = b3. a + x = b4. a - x = b其中,a、b为给定的具体数字。

二、解方程的步骤解一元一次方程的具体步骤如下:1.根据题目确定变量:首先,根据题目的描述,确定方程中的变量,通常我们用字母x表示。

2.确定方程形式:根据题目中的关系,将方程写成标准形式,即将常数项移到方程的另一边。

3.进行变量的运算:根据方程形式,进行变量的运算,使得方程的解可以被求得。

4.验证解的正确性:将求得的解代入原方程,验证等式两边是否相等。

如果相等,则解正确;如果不相等,则需要重新计算。

三、解方程实例例1题目:求解方程 2x + 3 = 9解析:首先,我们确定方程中的变量为x。

然后,将方程写成标准形式:2x = 9 - 3。

接下来,进行变量的运算:2x = 6。

最后,将已知数代入方程,求得x的值:x = 3。

以解正确。

例2题目:求解方程 x - 4 = 7解析:首先,确定方程中的变量为x。

然后,将方程写成标准形式:x = 7 + 4。

接下来,进行变量的运算:x = 11。

最后,将已知数代入方程,求得x的值:x = 11。

验证解的正确性:将x = 11代入原方程,得到11 - 4 = 7,等式两边相等,所以解正确。

例3题目:求解方程 9 + x = 16解析:首先,确定方程中的变量为x。

然后,将方程写成标准形式:x = 16 - 9。

接下来,进行变量的运算:x = 7。

最后,将已知数代入方程,求得x的值:x = 7。

验证解的正确性:将x = 7代入原方程,得到9 + 7 = 16,等式两边相等,所以解正确。

例4题目:求解方程 5 - x = 3解析:首先,确定方程中的变量为x。

然后,将方程写成标准形式:x = 5 - 3。

接下来,进行变量的运算:x = 2。

最后,将已知数代入方程,求得x的值:x = 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学五年级解方程计算步骤
小学阶段解方程计算题一般有以下几个步骤,大家要认真把这几个步骤记住,看到相关题型就按照下面的方法去做就可以了。

一.移项
所谓移项就是把一个数从等号的一边移到另一边去。

注意,加减法移项和乘除法移项不一样。

移项规则:当把一个数从等号的一边移到另一边去的时候,要把这个数原来前面的运算符号改成和它相反的运算符号,比如“+”变成“-”,或是“×”变成“÷”
请看例题:
加减法移项:
x + 4 = 9 x-8=19
x=9-4 x=19+8
x=5 x=27
乘除法移项:
3x=27 x÷6=8
x=27÷3 x=8×6
x=9 x=48
1.常规题目,第一步,把所有跟未知数不能直接运算的数字,转移到与未知数相反的等号
那一边。

比如:
3x - 4 = 8 5x + 9 = 24
3x=8+4 5x=24 - 9
3x=12 5x=15
x=4 x=3
2.第二种情况请记住,当未知数前面出现“-”或是“÷”的时候,要把这两个符号变成
“+”或是“×”,具体如何改变请看下面例题:
20 – 3x=2
20=2 + 3x -----(注意:也就是前面提过的移项问题,改变符号在方程里面就是移项)
20-2=3x
18=3x
x=6
36÷4x = 3
36=3×4x ----(注意:也就是前面提过的移项问题,改变符号在方程里面就是移项)
36=12x
1 / 2
x=3
3.未知数在小括号里面的情况,注意,这种情况要分两种,第一种是根据乘法分配律先把
小括号去掉
例如:3(3x+4) = 57
9x + 12=57
9x=57-12
9x=45
x=5
第二种情况就是,要看括号前面的那个数跟等号后面的那个数是否倍数关系,如果是倍数关系,可以互相除一下,当然,用这一种方法的前提就是等号另一边的数只有一个数字,如果有多个,则先要计算成一个。

例如:
3(3x+4) = 57 2(4x - 6) = 30+9-3
3x+4 = 57÷3 2(4x-6) = 36
3x+4 = 19 4x – 6=36÷2
3x = 19-4 4x-6=18
3x = 15 4x=18+6
x = 5 4x=24
x=6
4.第四种情况就是未知数在等号的两边都有,这种情况就是要把未知数都移项到一边,把
其它的数字移项到另一边,具体规则,如果两个未知数前面的运算符号不一样,要把未知数前面是“-”的移到“+”这一边来,如果两个未知数前面的运算符号一样,则要把小一点的未知数移到大一点的未知数那一边去。

例如:
3x +12 = 48 – 6x 3x + 48 = 8 + 5x
3x + 6x = 48-12 48-8 = 5x – 3x
9x = 36 40 = 2x
x = 4 x = 20
---精心整理,希望对您有所帮助。

相关文档
最新文档