自控原理习题答案
自动控制原理习题与答案解析

⾃动控制原理习题与答案解析精⼼整理课程名称: ⾃动控制理论(A/B卷闭卷)⼀、填空题(每空 1 分,共15分)1、反馈控制⼜称偏差控制,其控制作⽤是通过给定值与反馈量的差值进⾏的。
2、复合控制有两种基本形式:即按输⼊的前馈复合控制和按扰动的前馈复合控制。
为8、PI控制器的输⼊-输出关系的时域表达式是,其相应的传递函数为,由于积分环节的引⼊,可以改善系统的性能。
⼆、选择题(每题 2 分,共20分)1、采⽤负反馈形式连接后,则 ( )A 、⼀定能使闭环系统稳定;B 、系统动态性能⼀定会提⾼;C 、⼀定能使⼲扰引起的误差逐渐减⼩,最后完全消除;D 、需要调整系统的结构参数,才能改善系统性能。
2、下列哪种措施对提⾼系统的稳定性没有效果 ( )。
A 、增加开环极点;B 、在积分环节外加单位负反馈;C 、增加开环零点;D 、引⼊串联超前校正装置。
3、系统特征⽅程为 0632)(23=+++=s s s s D ,则系统 ( ) A 、稳定; B 、单位阶跃响应曲线为单调指数上升; C 、临界稳定; D 、右半平⾯闭环极点数2=Z 。
4、系统在2)(t t r =作⽤下的稳态误差∞=ss e ,说明 ( ) A 、型别2C 、输⼊幅值过⼤;D 、闭环传递函数中有⼀个积分环节。
5、对于以下情况应绘制0°根轨迹的是( )A 、主反馈⼝符号为“-” ;B 、除r K 外的其他参数变化时;C 、⾮单位反馈系统;D 、根轨迹⽅程(标准形式)为1)()(+=s H s G 。
6、开环频域性能指标中的相⾓裕度γ对应时域性能指标( ) 。
A 、超调%σB 、稳态误差ss eC 、调整时间s tD 、峰值时间p t 7 系统①系统②系统③图2A 、系统①B 、系统②C 、系统③D 、都不稳定8、若某最⼩相位系统的相⾓裕度0γ>o,则下列说法正确的是 ( )。
A 、不稳定;B 、只有当幅值裕度1g k >时才稳定;C 、稳定;D 、不能判⽤相⾓裕度判断系统的稳定性。
自动控制原理习题及解答

对于本例,系统的稳态误差为
本题给定的开环传递函数中只含一个积分环节,即系统为1型系统,所以
系统的稳态误差为
解毕。
例3-21控制系统的结构图如图3-37所示。假设输入信号为r(t)=at( 为任意常数)。
解劳斯表为
1 18
8 16
由于特征方程式中所有系数均为正值,且劳斯行列表左端第一列的所有项均具有正号,满足系统稳定的充分和必要条件,所以系统是稳定的。解毕。
例3-17已知系统特征方程为
试判断系统稳定性。
解本例是应用劳斯判据判断系统稳定性的一种特殊情况。如果在劳斯行列表中某一行的第一列项等于零,但其余各项不等于零或没有,这时可用一个很小的正数ε来代替为零的一项,从而可使劳斯行列表继续算下去。
(3)写中间变量关系式
式中,α为空气阻力系数 为运动线速度。
(4)消中间变量得运动方程式
(2-1)
此方程为二阶非线性齐次方程。
(5)线性化
由前可知,在=0的附近,非线性函数sin≈,故代入式(2-1)可得线性化方程为
例2-3已知机械旋转系统如图2-3所示,试列出系统运动方程。
图2-3机械旋转系统
解:(1)设输入量作用力矩Mf,输出为旋转角速度。
运动方程可直接用复阻抗写出:
整理成因果关系:
图2-15电气系统结构图
画结构图如图2-15所示:
求传递函数为:
对上述两个系统传递函数,结构图进行比较后可以看出。两个系统是相似的。机一电系统之间相似量的对应关系见表2-1。
表2-1相似量
机械系统
xi
x0
自动控制原理+第五版课后习题答案 胡寿松 免费在线阅读

2-20 与 2-18 同
C(S)二 G4 N(S)~1 + G2G4+G3G4
■ 2Ua) C⑻- GjG^+G^d + G,!!, ) 丄R(s) - 1 + G1H1+ G3H2 +G1G2G3H1H2 +G1HiG3H2 E(s)__(1 + G3H2)_G4G3H2H!_
R(s) ~ /+GZH; +G3H2
l)
s
3-11劳斯表变号两次, 有两个特征根在s右半平面, 系统不稳定。
3-12(1) 有一对纯虚根: s1>2 = ±j2 系统不稳定。 (2) s12=±jVI s34=±l s5 =1 s6 =-5 系统小稳定。 (3) 有一对纯虚根:sh2 =±j75系统不稳定。
3-13 0 < k < 1.7
s
6-3 取 k = 20 < = 8 gJ«)= 1^0 045 验算得: <=: 7.93,/ = 62.1°
36
(36-co2) + jl3
5-3 ess (t) = 0.632sm(t + 48.4°)- 0.79cos(2t 一 26.57°)
或: css(t) = 0.447sin(t + 3.4°)-0.707cos(2t一
90°) 5-4
0.653 wn =1.848
ess(t) = r(t) — css(t)
ch - ehgf+afch
C(s) _ bcde + ade + (a + bc)(l + eg) Rj (s) 1 + cf + eg + bcdeh + cefg + adeh
自控练习题答案

自控练习题答案一、选择题1. D2. A3. C4. B5. D6. A7. C8. B9. A 10. D二、填空题1. 自律2. 集中注意力3. 目标4. 执行力5. 推迟满足感6. 时间管理7. 自我约束8. 内在动机9. 意志力 10. 时间三、判断题1. 正确2. 错误3. 正确4. 错误5. 错误6. 正确7. 正确8. 错误9. 正确10. 错误四、简答题1. 什么是自控力?自控力是指个体自觉且有效地控制自己的想法、情绪和行为,以实现长远目标,并抵制诱惑和延迟满足的能力。
2. 自控力为什么重要?自控力是个人成功和幸福的关键因素之一。
它能帮助我们更好地管理时间、保持健康的生活方式、建立良好的人际关系、克服困难和挫折,以及实现个人目标。
3. 自控力如何培养?- 树立明确的目标:明确自己想要实现的目标,并将其分解为小步骤,有计划地逐步实现。
- 锻炼意志力:通过日常生活中的小练习,如控制睡眠时间、克制购物欲望等,逐渐增强意志力。
- 建立良好习惯:通过坚持良好的习惯,如定期锻炼、读书学习等,养成自律的生活方式。
- 寻找内在动机:激发内在动机,找到自己行动的内在意义和价值,这将有助于提高自控力。
- 与他人互助:与身边有自控力的人交流和分享经验,互相鼓励和监督,相互促进自控力的提高。
4. 如何处理自控力不足的情况?- 分析原因:找到自己自控力不足的原因,是因为外界诱惑太多还是自我约束能力不足等。
- 制定策略:根据不同的原因,制定对应的应对策略,如减少外界诱惑、进行时间管理等。
- 寻求支持:向身边的人求助,如朋友、家人或专业人士,获得支持、鼓励和指导。
- 培养耐心:自控力的培养是一个长期的过程,需要耐心和坚持,不要因一时的失败而灰心。
五、综合题自控力对个人发展的影响自控力对个人的发展具有重要的影响。
首先,自控力能帮助人们更好地管理时间,合理分配精力和资源,提高工作效率和学习成绩。
其次,自控力有助于保持健康的生活方式,如健康饮食、规律作息和适量运动,从而增强身体素质和提升生活质量。
(完整版)自动控制原理课后习题及答案

第一章 绪论1-1 试比较开环控制系统和闭环控制系统的优缺点.解答:1开环系统(1) 优点:结构简单,成本低,工作稳定。
用于系统输入信号及扰动作用能预先知道时,可得到满意的效果。
(2) 缺点:不能自动调节被控量的偏差。
因此系统元器件参数变化,外来未知扰动存在时,控制精度差。
2 闭环系统⑴优点:不管由于干扰或由于系统本身结构参数变化所引起的被控量偏离给定值,都会产生控制作用去清除此偏差,所以控制精度较高。
它是一种按偏差调节的控制系统。
在实际中应用广泛。
⑵缺点:主要缺点是被控量可能出现波动,严重时系统无法工作。
1-2 什么叫反馈?为什么闭环控制系统常采用负反馈?试举例说明之。
解答:将系统输出信号引回输入端并对系统产生控制作用的控制方式叫反馈。
闭环控制系统常采用负反馈。
由1-1中的描述的闭环系统的优点所证明。
例如,一个温度控制系统通过热电阻(或热电偶)检测出当前炉子的温度,再与温度值相比较,去控制加热系统,以达到设定值。
1-3 试判断下列微分方程所描述的系统属于何种类型(线性,非线性,定常,时变)?(1)22()()()234()56()d y t dy t du t y t u t dt dt dt ++=+(2)()2()y t u t =+(3)()()2()4()dy t du t ty t u t dt dt +=+ (4)()2()()sin dy t y t u t tdt ω+=(5)22()()()2()3()d y t dy t y t y t u t dt dt ++= (6)2()()2()dy t y t u t dt +=(7)()()2()35()du t y t u t u t dt dt =++⎰解答: (1)线性定常 (2)非线性定常 (3)线性时变 (4)线性时变 (5)非线性定常 (6)非线性定常 (7)线性定常1-4 如图1-4是水位自动控制系统的示意图,图中Q1,Q2分别为进水流量和出水流量。
自动控制原理习题及解答

自动控制原理习题及其解答第一章(略) 第二章例2-1 弹簧,阻尼器串并联系统如图2-1示,系统为无质量模型,试建立系统的运动方程。
解:(1) 设输入为y r ,输出为y 0。
弹簧与阻尼器并联平行移动。
(2) 列写原始方程式,由于无质量按受力平衡方程,各处任何时刻,均满足∑=0F ,则对于A 点有其中,F f 为阻尼摩擦力,F K 1,F K 2为弹性恢复力。
(3) 写中间变量关系式 (4) 消中间变量得 (5) 化标准形 其中:215K K T +=为时间常数,单位[秒]。
211K K K K +=为传递函数,无量纲。
例2-2 已知单摆系统的运动如图2-2示。
(1) 写出运动方程式 (2) 求取线性化方程解:(1)设输入外作用力为零,输出为摆角? ,摆球质量为m 。
(2)由牛顿定律写原始方程。
其中,l 为摆长,l ? 为运动弧长,h 为空气阻力。
(3)写中间变量关系式 式中,α为空气阻力系数dtd lθ为运动线速度。
(4)消中间变量得运动方程式0s i n 22=++θθθmg dt d al dtd ml (2-1) 此方程为二阶非线性齐次方程。
(5)线性化由前可知,在? =0的附近,非线性函数sin ? ≈? ,故代入式(2-1)可得线性化方程为例2-3 已知机械旋转系统如图2-3所示,试列出系统运动方程。
解:(1)设输入量作用力矩M f ,输出为旋转角速度? 。
(2)列写运动方程式 式中, f ?为阻尼力矩,其大小与转速成正比。
(3)整理成标准形为 此为一阶线性微分方程,若输出变量改为?,则由于代入方程得二阶线性微分方程式例2-4 设有一个倒立摆安装在马达传动车上。
如图2-4所示。
图2-2 单摆运动图2-3 机械旋转系统倒立摆是不稳定的,如果没有适当的控制力作用在它上面,它将随时可能向任何方向倾倒,这里只考虑二维问题,即认为倒立摆只在图2-65所示平面内运动。
控制力u 作用于小车上。
自动控制原理完整版课后习题答案

1 请解释下列名字术语:自动控制系统、受控对象、扰动、给定值、参考输入、反馈。
解:自动控制系统:能够实现自动控制任务的系统,由控制装置与被控对象组成;受控对象:要求实现自动控制的机器、设备或生产过程扰动:扰动是一种对系统的输出产生不利影响的信号。
如果扰动产生在系统内部称为内扰;扰动产生在系统外部,则称为外扰。
外扰是系统的输入量。
给定值:受控对象的物理量在控制系统中应保持的期望值参考输入即为给定值。
反馈:将系统的输出量馈送到参考输入端,并与参考输入进行比较的过程。
2 请说明自动控制系统的基本组成部分。
解:作为一个完整的控制系统,应该由如下几个部分组成:①被控对象:所谓被控对象就是整个控制系统的控制对象;②执行部件:根据所接收到的相关信号,使得被控对象产生相应的动作;常用的执行元件有阀、电动机、液压马达等。
③给定元件:给定元件的职能就是给出与期望的被控量相对应的系统输入量(即参考量);④比较元件:把测量元件检测到的被控量的实际值与给定元件给出的参考值进行比较,求出它们之间的偏差。
常用的比较元件有差动放大器、机械差动装置和电桥等。
⑤测量反馈元件:该元部件的职能就是测量被控制的物理量,如果这个物理量是非电量,一般需要将其转换成为电量。
常用的测量元部件有测速发电机、热电偶、各种传感器等;⑥放大元件:将比较元件给出的偏差进行放大,用来推动执行元件去控制被控对象。
如电压偏差信号,可用电子管、晶体管、集成电路、晶闸管等组成的电压放大器和功率放大级加以放大。
⑦校正元件:亦称补偿元件,它是结构或参数便于调整的元件,用串联或反馈的方式连接在系统中,用以改善系统的性能。
常用的校正元件有电阻、电容组成的无源或有源网络,它们与原系统串联或与原系统构成一个内反馈系统。
3 请说出什么是反馈控制系统,开环控制系统和闭环控制系统各有什么优缺点?解:反馈控制系统即闭环控制系统,在一个控制系统,将系统的输出量通过某测量机构对其进行实时测量,并将该测量值与输入量进行比较,形成一个反馈通道,从而形成一个封闭的控制系统;开环系统优点:结构简单,缺点:控制的精度较差;闭环控制系统优点:控制精度高,缺点:结构复杂、设计分析麻烦,制造成本高。
自控控制原理习题_王建辉_第6章答案

看到别人设定的下载币5块钱一个,太黑了。
为了方便各位友友都有享受文档的权利,果断现在下来再共享第六章控制系统的校正及综合6-1什么是系统的校正?系统的校正有哪些方法?6-2试说明超前网络和之后网络的频率特性,它们各自有哪些特点?6-3试说明频率法超前校正和滞后校正的使用条件。
6-4相位滞后网络的相位角滞后的,为什么可以用来改善系统的相位裕度?6-5反馈校正所依据的基本原理是什么?6-6试说明系统局部反馈对系统产生哪些主要影响。
6-7在校正网络中,为何很少使用纯微分环节?6-8试说明复合校正中补偿的基本原理是什么?6-9选择填空。
在用频率法设计校正装置时,采用串联超前网络是利用它的(),采用串联滞后校正网络利用它的()。
A 相位超前特性B 相位滞后特性C 低频衰减特性D 高频衰减特性6-10 选择填空。
闭环控制系统因为有了负反馈,能有效抑制()中参数变化对系统性能的影响。
A 正向通道 B反向通道 C 前馈通道6-11 设一单位反馈系统其开环传递函数为W(s)=若使系统的稳态速度误差系数,相位裕度不小于,增益裕量不小于10dB,试确定系统的串联校正装置。
解:→所以其对数频率特性如下:其相频特性:相位裕度不满足要求设校正后系统为二阶最佳,则校正后相位裕度为,增益裕量为无穷大。
校正后系统对数频率特性如下:校正后系统传递函数为因为所以串联校正装置为超前校正。
6-12设一单位反馈系统,其开环传递函数为W(s)=试求系统的稳态加速度误差系数和相位裕度不小于35的串联校正装置。
解:所以其对数频率特性如下:其相频特性:相位裕度不满足要求,并且系统不稳定。
设校正后系统对数频率特性如上(红线所示):则校正后系统传递函数为因为在时(见红线部分),,则→选取,则校正后系统传递函数为其相频特性:相位裕度满足要求。
校正后的对数频率曲线如下:因为所以校正装置为滞后-超前校正。
6-13设一单位反馈系统,其开环传递函数为W(s)=要求校正后的开环频率特性曲线与M=4dB的等M圆相切,切点频率w=3,并且在高频段w>200具有锐截止-3特性,试确定校正装置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《自动控制原理》习题答案普通高等教育“十一五”国家级规划教材全国高等专科教育自动化类专业规划教材《自动控制原理》习题答案主编:陈铁牛机械工业出版社第一章习题答案1-11-21-3闭环控制系统主要由被控对象,给定装置,比较、放大装置,执行装置,测量和变送装置,校正装置等组成。
被控对象:指要进行控制的设备和过程。
给定装置:设定与被控量相对应给定量的装置。
比较、放大装置:对给定量与测量值进行运算,并将偏差量进行放大的装置。
执行装置:直接作用于控制对象的传动装置和调节机构。
测量和变送装置:检测被控量并进行转换用以和给定量比较的装置。
校正装置:用以改善原系统控制性能的装置。
题1-4 答:(图略)题1-5 答:该系统是随动系统。
(图略) 题1-6 答:(图略)第二章习题答案题2-1 解:(1)F(s)=12s 1+-Ts T(2)F(s)=0.5)421(2+-s s(3)F(s)=428+⋅s e s sπ(4)F(s)=25)1(12+++s s(5)F(s)=32412ss s ++ 题2-2 解:(1) f(t)=1+cost+5sint (2) f(t)=e -4t(cost-4sint) (3) f(t)=t t t te e e 101091811811----- (4) f(t)= -t t tte e e ----+-3118195214 (5) f(t)= -t te e t 4181312123--+++ 题2-3 解:a)dtduu C R dt du R R c c r 22111=++)( b)r c c u CR dt du R R u C R dt du R R 1r 12112111+=++)( c) r rr c c c u dtdu C R C R dtu d C C R R u dtdu C R C R C R dtu d C C R R +++=++++)()(1211222121122111222121题2-4 解:a) G(s)=1)(212++s T T sT (T 1=R 1C, T 2=R 2C )b) G(s)=1)(1212+++s T T s T (T 1=R 1C, T 2=R 2C )c) G(s)= 1)(1)(32122131221+++++++s T T T s T T s T T s T T (T 1=R 1C 1, T 2=R 1C 2, T 3=R 2C 1, T 4=R 2C 2 )题2-5 解:(图略) 题2-6 解:33)(+=Φs s 题2-7 解:a) ksf ms s +-=Φ21)(b) )()()(1))(1)(()(21221s G s G s G s G s G s +++=Φc) )()(1)())()(()(31321s G s G s G s G s G s ++=Φd) )()()()(1))()()(323121s G s G s G s G s G s G s -+-=Φe) G(s)=[G 1(s)- G 2(s)]G 3(s)f) )()()()()()()()()()(1)()()()()(43213243214321s G s G s G s G s G s G s G s G s G s G s G s G s G s G s +-++=Φg) )()()()()()()()(1)()()()(43213212321s G s G s G s G s G s G s G s G s G s G s G s -+-=Φ题2-8 解:102310)1()()(k k s s T Ts k k s R s C ⋅++++⋅=1023101)1()()(k k s s T Ts k k s N s C ⋅++++⋅=1023102)1()()(k k s s T Ts s T k k s N s C ⋅++++⋅⋅⋅= 题2-9 解:)()()()(1)()()(4321111s G s G s G s G s G s R s C +=)()()()(1)()()(4321222s G s G s G s G s G s R s C +=)()()()(1)()()()()(432142121s G s G s G s G s G s G s G s R s C +=)()()()(1)()()(4321412s G s G s G s G s G s R s C += 题2-10 解:(1)3212321)()(k k k s k k k s R s C +=3212032143)()()(k k k s s G k k k s k k s N s C +⋅+= (2) 2140)(k k sk s G ⋅-= 题2-11 解:122212211111)()1()()(z z s T s T T C s T T s T k k s s m m d e L ⋅++⋅+++⋅=ΘΘ (T 1=R 1C, T 2=R 2C, T d =L a /R a , T m =GD 2R a /375C e C m )第三章 习题答案3-1. s T 15=(取5%误差带) 3-2. 1.0=H K K=2 3-3.当系统参数为:2.0=ξ,15-=s n ω时,指标计算为:%7.52%222.0114.32.01===-⨯---e eξξπσs t ns 352.033=⨯==ξωs t n p 641.02.01514.3122=-⨯=-=ξωπ当系统参数为:0.1=ξ,15-=s n ω时,系统为临界阻尼状态,系统无超调,此时有:st ns 95.057.10.145.67.145.6=-⨯=-=ωξ3-4.当110-=s K 时,代入上式得:110-=s n ω,5.0=ξ,此时的性能指标为:%3.16%225.0114.35.01===-⨯---e eξξπσs t ns 6.0105.033=⨯==ξωs t n p 36.05.011014.3122=-⨯=-=ξωπ当120-=s K 时,代入上式得:11.14-=s n ω,35.0=ξ,此时的性能指标为:%5.30%2235.0114.335.01===-⨯---e eξξπσs t ns 6.01.1435.033=⨯==ξω由本题计算的结果可知:当系统的开环放大倍数增大时,其阻尼比减小,系统相对稳定性变差,系统峰值时间变短,超调量增大,响应变快,但由于振荡加剧,调节时间不一定短,本题中的调节时间一样大。
3-5. )3.24(1129)(+=s s s G3-6.3=K ,47.0=f K 3-7.1)系统稳定。
2)系统稳定。
3)系统不稳定。
4)系统不稳定,且有两个不稳定的根。
3-8.系统的闭环传递函数为:60070600)601101(12)]([)(2++=+-+==Φs s s s t k L s 将系统传递函数与二阶系统标准式:2222nn ns s ωξωω++比较可知: 15.24600-==s n ω; 43.1600270=⨯=ξ3-9.1)系统稳定的K 值为:0>K 2)系统稳定的条件为:30<<K 3)系统稳定的条件为:2000<<K3-10.(1)系统稳定域为:22)1)(11(0++<<n nK (2)当n=1时,系统稳定范围是:80<<K当n=0.5时,系统稳定范围是:25.110<<K 当n=0.1时,系统稳定范围是:21.1220<<K当n=0.01时,系统稳定范围是:0201.102020<<K 当n=0时,系统稳定范围是:∞<<K 0(3) 在系统时间常数相距越远时,稳定的K 值范围越大。
3-11.(1)a) 当)(1)(t t r =,)(1)(t t n =时,则误差为:11110K K e e e ssn ssr ss -=-+=+= b) 当t t r =)(,t t n =)(时,则误差为: ∞=+=ssn ssr ss e e e (2)a) 当)(1)(t t r =,)(1)(t t n =时,则误差为:0011=++=pss K eb) 当t t r =)(,t t n =)(时,则误差为: 11)(lim K s sE e s ss -==→ 3-12.1)当12=K 时,系统相当于0型。
2)当要求系统具有1型精度时,应有: 02>K3-13.ss s s s s s s s E 1.020********)1()(22⨯++-⨯+++=1.0)(lim 0-==→s sE e s ss3-14.1) 当:21)(s s R =时,0)(lim 0==→s sE e s ss2) 当:31)(s s R =时,020)(lim a a s sE e s ss==→ 3-15.证明:系统的误差为:)()()()()()()()(111111111110s R a s a s a s b a s b a s s R a s a s a s b s b s b s b s R s C s R s E nn n n m n m n nn n n n mm m m ++⋅⋅⋅++-+-+⋅⋅⋅+=++⋅⋅⋅++++⋅⋅⋅++-=-=--------由于系统稳定,可用终值定理求稳态误差。
1) 当系统为阶跃输入时:sRs R =)(,则稳态误差为: s Ra s a s a sb a s b a s s s sE e nn n n m n m n n s s ss ⋅++⋅⋅⋅++-+-+⋅⋅⋅+==----→→1111100)()(lim )(lim ,可见稳态误差等于零的条件是:n m a b =2) 当系统为斜坡输入时:2)(s vs R =,则稳态误差为: s va s a s a sb a s b a s b a s sva s a s a sb a s b a s b a s s s sE e nn n n m n m n m n n s n n n n m n n n n n n s s ss ⋅++⋅⋅⋅++-+-+-+⋅⋅⋅+=⋅++⋅⋅⋅++-+-+-+⋅⋅⋅+==------→------→→11111212021111122200)()()(lim)()()(lim )(lim可见稳态误差为零的条件是:n m a b =;11--=n m a b3-16.应选取传函为:sbas s G +=)(的形式,在选择参数使系统稳定的条件下,当:s R s R =)(,sN s N =)(时求得系统的稳态误差为:0)(lim 0==→s sE e s ss3-17.系统的误差为:)()()(11)()()(11)()()()(s N s H s G s R s H s G s C s H s R s E +-+=-=可见干扰作用下的误差的大小与输入作用下的误差有相同的形式,为干扰值的)()(11s H s G +倍。