2017九年级数学上册 24.1.1 圆习题 (新版)新人教版

合集下载

新人教版九年级数学上册《第24章圆》测试(含答案)

新人教版九年级数学上册《第24章圆》测试(含答案)

新人教版九年级数学上册《第24章圆》一、选择题1.下列说法正确的是()A.三点确定一个圆B.一个三角形只有一个外接圆C.和半径垂直的直线是圆的切线D.三角形的内心到三角形三个顶点距离相等2.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于()A.42°B.28°C.21°D.20°3.已知如图,AB是⊙O的直径,弦CD⊥AB于E,CD=6,AE=1,则⊙O的直径为()A.6 B.8 C.10 D.124.如图,DC是以AB为直径的半圆上的弦,DM⊥CD交AB于点M,CN⊥CD交AB于点N.AB=10,CD=6.则四边形DMNC的面积()A.等于24 B.最小为24 C.等于48 D.最大为485.如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为点P,则OP的长为()A.3 B.2.5 C.4 D.3.56.如图表示一圆柱形输水管的横截面,阴影部分为有水部分,如果输水管的半径为5cm,水面宽AB为8cm,则水的最大深度CD为()A.4cm B.3cm C.2cm D.1cm7.图中的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A点到B点,甲虫沿ADA1、A1EA2、A2FA3、A3GB路线爬行,乙虫沿ACB路线爬行,则下列结论正确的是()A.甲先到B点B.乙先到B点C.甲、乙同时到B D.无法确定8.在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为()A.40cm B.60cm C.80cm D.100cm9.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,若BC=CD=DA=4cm,则⊙O的周长为()A.5πcm B.6πcm C.9πcm D.8πcm10.如图,AB是⊙O的弦,点C在圆上,已知∠OBA=40°,则∠C=()A.40°B.50°C.60°D.80°二、填空题11.如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD=.12.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是.13.如图,已知∠BOA=30°,M为OB边上一点,以M为圆心、2cm为半径作⊙M.点M在射线OB上运动,当OM=5cm时,⊙M与直线OA的位置关系是.14.如图,正方形ABCD内接于⊙O,其边长为4,则⊙O的内接正三角形EFG 的边长为.15.已知扇形的半径为6cm,圆心角的度数为120°,则此扇形的弧长为cm.16.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为.三、解答题17.圆锥底面圆的半径为3m,其侧面展开图是半圆,求圆锥母线长.18.在一个底面直径为5cm,高为18cm的圆柱形瓶内装满水,再将瓶内的水倒入一个底面直径是6cm,高是10cm的圆柱形玻璃杯中,能否完全装下?若未能装满,求杯内水面离杯口的距离.19.(8分)如图,AB和CD分别是⊙O上的两条弦,过点O分别作ON⊥CD于点N,OM⊥AB于点M,若ON=AB,证明:OM=CD.20.如图为桥洞的形状,其正视图是由和矩形ABCD构成.O点为所在⊙O 的圆心,点O又恰好在AB为水面处.若桥洞跨度CD为8米,拱高(OE⊥弦CD 于点F )EF为2米.求所在⊙O的半径DO.21.△ABC是⊙O的内接三角形,BC=.如图,若AC是⊙O的直径,∠BAC=60°,延长BA到点D,使得DA=BA,过点D作直线l⊥BD,垂足为点D,请将图形补充完整,判断直线l和⊙O的位置关系并说明理由.22.如图直角坐标系中,已知A(﹣8,0),B(0,6),点M在线段AB上.(1)如图1,如果点M是线段AB的中点,且⊙M的半径为4,试判断直线OB 与⊙M的位置关系,并说明理由;(2)如图2,⊙M与x轴、y轴都相切,切点分别是点E、F,试求出点M的坐标.23.已知等边三角形ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连接GD,(1)求证:DF与⊙O的位置关系并证明;(2)求FG的长.24.如图,等边△ABC的边长为2,E是边BC上的动点,EF∥AC交边AB于点F,在边AC上取一点P,使PE=EB,连接FP.(1)请直接写出图中与线段EF相等的两条线段;(不再另外添加辅助线)(2)探究:当点E在什么位置时,四边形EFPC是平行四边形?并判断四边形EFPC是什么特殊的平行四边形,请说明理由;(3)在(2)的条件下,以点E为圆心,r为半径作圆,根据⊙E与平行四边形EFPC四条边交点的总个数,求相应的r的取值范围.新人教版九年级数学上册《第24章圆》一、选择题1.B;2.B;3.C;4.A;5.C;6.C;7.C;8.A;9.D;10.B;二、填空题11.80°;12.3<r<5;13.相离;14.2;15.4π;16.;三、解答题17.圆锥底面圆的半径为3m,其侧面展开图是半圆,求圆锥母线长.解:设母线长为x,根据题意得2πx÷2=2π×3,解得x=6.故圆锥的母线长为6m.18.在一个底面直径为5cm,高为18cm的圆柱形瓶内装满水,再将瓶内的水倒入一个底面直径是6cm,高是10cm的圆柱形玻璃杯中,能否完全装下?若未能装满,求杯内水面离杯口的距离.解:设将瓶内的水倒入一个底面直径是6cm,高是10cm的圆柱形玻璃杯中时,水面高为xcm,根据题意得π•()2•x=π•()2•18,解得x=12.5,∵12.5>10,∴不能完全装下.19.如图,AB和CD分别是⊙O上的两条弦,过点O分别作ON⊥CD于点N,OM⊥AB于点M,若ON=AB,证明:OM=CD.证明:设圆的半径是r,ON=x,则AB=2x,在直角△CON中,CN==,∵ON⊥CD,∴CD=2CN=2,∵OM⊥AB,∴AM=AB=x,在△AOM中,OM==,∴OM=CD.20.如图为桥洞的形状,其正视图是由和矩形ABCD构成.O点为所在⊙O 的圆心,点O又恰好在AB为水面处.若桥洞跨度CD为8米,拱高(OE⊥弦CD 于点F )EF为2米.求所在⊙O的半径DO.解:∵OE⊥弦CD于点F,CD为8米,EF为2米,∴EO垂直平分CD,DF=4m,FO=DO﹣2,在Rt△DFO中,DO2=FO2+DF2,则DO2=(DO﹣2)2+42,解得:DO=5;答:所在⊙O的半径DO为5m.21.△ABC是⊙O的内接三角形,BC=.如图,若AC是⊙O的直径,∠BAC=60°,延长BA到点D,使得DA=BA,过点D作直线l⊥BD,垂足为点D,请将图形补充完整,判断直线l和⊙O的位置关系并说明理由.解:图形如图所示,直线l与⊙O相切.理由:作OF⊥l于F,CE⊥l于E,∵AC是直径,∴∠ABC=90°,∵l⊥BD,∴∠BDE=90°,∵OF⊥l,CE⊥l,∴AD∥OF∥CE,∵AO=OC,∴DF=FE,∴OF=(AD+CE),设AD=a,则AB=2AD=2a,∵∠ABC=∠BDE=∠CED=90°,∴四边形BDEC是矩形,∴CE=BD=3a,∴OF=2a,∵在Rt△ABC中,∠ABC=90°,∠ACB=30°,AB=2a,∴AC=4a,∴OF=OA=2a,∴直线l是⊙O切线.22.如图直角坐标系中,已知A(﹣8,0),B(0,6),点M在线段AB上.(1)如图1,如果点M是线段AB的中点,且⊙M的半径为4,试判断直线OB 与⊙M的位置关系,并说明理由;(2)如图2,⊙M与x轴、y轴都相切,切点分别是点E、F,试求出点M的坐标.解:(1)直线OB与⊙M相切,理由:设线段OB的中点为D,连结MD,如图1,∵点M是线段AB的中点,所以MD∥AO,MD=4.∴∠AOB=∠MDB=90°,∴MD⊥OB,点D在⊙M上,又∵点D在直线OB上,∴直线OB与⊙M相切;,(2)解:连接ME,MF,如图2,∵A(﹣8,0),B(0,6),∴设直线AB的解析式是y=kx+b,∴,解得:k=,b=6,即直线AB的函数关系式是y=x+6,∵⊙M与x轴、y轴都相切,∴点M到x轴、y轴的距离都相等,即ME=MF,设M(a,﹣a)(﹣8<a<0),把x=a,y=﹣a代入y=x+6,得﹣a=a+6,得a=﹣,∴点M的坐标为(﹣,).23.已知等边三角形ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连接GD,(1)求证:DF与⊙O的位置关系并证明;(2)求FG的长.(1)证明:连接OD,∵以等边三角形ABC的边AB为直径的半圆与BC边交于点D,∴∠B=∠C=∠ODB=60°,∴OD∥AC,∵DF⊥AC,∴∠CFD=∠ODF=90°,即OD⊥DF,∵OD是以边AB为直径的半圆的半径,∴DF是圆O的切线;(2)∵OB=OD=AB=6,且∠B=60°,∴BD=OB=OD=6,∴CD=BC﹣BD=AB﹣BD=12﹣6=6,∵在Rt△CFD中,∠C=60°,∴∠CDF=30°,∴CF=CD=×6=3,∴AF=AC﹣CF=12﹣3=9,∵FG⊥AB,∴∠FGA=90°,∵∠FAG=60°,∴FG=AFsin60°=.24.如图,等边△ABC的边长为2,E是边BC上的动点,EF∥AC交边AB于点F,在边AC上取一点P,使PE=EB,连接FP.(1)请直接写出图中与线段EF相等的两条线段;(不再另外添加辅助线)(2)探究:当点E在什么位置时,四边形EFPC是平行四边形?并判断四边形EFPC是什么特殊的平行四边形,请说明理由;(3)在(2)的条件下,以点E为圆心,r为半径作圆,根据⊙E与平行四边形EFPC四条边交点的总个数,求相应的r的取值范围.解:(1)如图,∵△ABC是等边三角形,∴∠B=∠A=∠C=60°.又∵EF∥AC,∴∠BFE=∠A=60°,∠BEF=∠C=60°,∴△BFE是等边三角形,PE=EB,∴EF=BE=PE=BF;(2)当点E是BC的中点时,四边形是菱形;∵E是BC的中点,∴EC=BE,∵PE=BE,∴PE=EC,∵∠C=60°,∴△PEC是等边三角形,∴PC=EC=PE,∵EF=BE,∴EF=PC,又∵EF∥CP,∴四边形EFPC是平行四边形,∵EC=PC=EF,∴平行四边形EFPC是菱形;(3)如图所示:当点E是BC的中点时,EC=1,则NE=ECcos30°=,当0<r<时,有两个交点;当r=时,有四个交点;当<r<1时,有六个交点;当r=1时,有三个交点;当r>1时,有0个交点.。

人教版数学九年级上册 24.1 圆的有关性质 同步训练习题(含答案)

人教版数学九年级上册 24.1 圆的有关性质 同步训练习题(含答案)

人教版九年级上册24.1 圆的有关性质同步训练一、选择题1. 下列四个命题:①直径所对的圆周角是直角;②圆既是轴对称图形,又是中心对称图形;③在同圆中,相等的圆周角所对的弦相等;④三点确定一个圆.其中正确命题的个数为 ()A.1B.2C.3D.42. 如图,四边形ABCD是半圆的内接四边形,AB是直径,=.若∠C=110°,则∠ABC的度数等于()A.55°B.60°C.65°D.70°3. 如图,AB是⊙O的直径,CD是⊙O的弦,∠ABD=59°,则∠C等于()A.29°B.31°C.59°D.62°4. 如图所示,⊙O的半径为13,弦AB的长度是24,ON⊥AB,垂足为N,则ON=()A. 5B. 7C. 9D. 115. 如图,在⊙O中,点A,O,D以及点B,O,C分别在一条直线上,则图中的弦有()A .2条B .3条C .4条D .5条6. 如图,在⊙O 中,AB ︵=CD ︵,∠1=45°,则∠2等于( )A .60°B .30°C .45°D .40°7. 2019·梧州如图,在半径为13的⊙O 中,弦AB 与CD 交于点E ,∠DEB =75°,AB =6,AE =1,则CD 的长是( )A .2 6B .2 10C .2 11D .4 38. 2019·武汉京山期中在圆柱形油槽内装有一些油,油槽直径MN 为10分米.截面如图,油面宽AB 为6分米,如果再注入一些油后,油面宽变为8分米,则油面AB 上升( )A .1分米B .4分米C .3分米D .1分米或7分米9. 2019·天水如图,四边形ABCD 是菱形,⊙O 经过点A ,C ,D ,与BC 相交于点E ,连接AC ,AE .若∠D =80°,则∠EAC 的度数为( )A .20°B .25°C .30°D .35°10. 如图,量角器的零刻度线与三角尺ABC的斜边AB重合,其中量角器的零刻度线的端点N与点A重合,射线CP从CA处出发按顺时针方向以每秒2度的速度旋转,CP与量角器的半圆弧交于点E,第24秒时,点E在量角器上对应的读数是()A.48°B.64°C.96°D.132°二、填空题11. 如图所示,AB是☉O的直径,弦CD⊥AB于H,∠A=30°,CD=2,则☉O 的半径是.12. 如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB=________.13. 如图,一下水管道横截面为圆形,直径为100 cm,下雨前水面宽为60 cm,一场大雨过后,水面宽为80 cm,则水位上升了cm.14. 如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,则BE=________.15. 如图,已知等腰三角形ABC 中,∠ACB =120°且AC =BC =4,在平面内任作∠APB =60°,则BP 的最大值为________.16. 如图所示,动点C 在⊙O 的弦AB 上运动,AB =23,连接OC ,过点C 作CD ⊥OC 交⊙O 于点D ,则CD 的最大值为________.17. 2018·曲靖如图,四边形ABCD 内接于⊙O ,E 为BC 延长线上一点,若∠A =n °,则∠DCE =________°.18. 只用圆规测量∠XOY 的度数,方法是:以顶点O 为圆心任意画一个圆,与角的两边分别交于点A ,B(如图),在这个圆上顺次截取AB ︵=BC ︵=CD ︵=DE ︵=EF ︵=…,这样绕着圆一周一周地截下去,直到绕第n 周时,终于使第m(m >n)次截得的弧的末端恰好与点A 重合,那么∠XOY 的度数等于________.三、解答题19. 如图,在⊙O中,AB=DE,BC=EF.求证:AC=DF.20. 如图,两个正方形彼此相邻且内接于半圆.若小正方形的面积为16 cm2,求该半圆的半径.21. 如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D 为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E.射线AO与射线EB交于点F,与⊙O交于点G.设∠GAB=α,∠ACB=β,∠EAG+∠EBA=γ.(1)点点同学通过画图和测量得到以下近似数据α30°40°50°60°β120°130°140°150°γ150°140°130°120°猜想:β关于α(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.22. 如图,四边形OBCD中的三个顶点在⊙O上,A是优弧BAD上的一个动点(不与点B,D重合).(1)当圆心O在∠BAD的内部时,若∠BOD=120°,则∠OBA+∠ODA=________°.(2)若四边形OBCD为平行四边形.①当圆心O在∠BAD的内部时,求∠OBA+∠ODA的度数;②当圆心O在∠BAD的外部时,请画出图形并直接写出∠OBA与∠ODA的数量关系.人教版九年级上册24.1 圆的有关性质同步训练-答案一、选择题1. 【答案】C2. 【答案】A∵=,∴∠CAB=∠DAB=35°.∵AB是直径,∴∠ACB=90°,∴∠ABC=90°-∠CAB=55°,故选A.3. 【答案】B4. 【答案】A5. 【答案】B6. 【答案】C7. 【答案】C8. 【答案】D9. 【答案】C10. 【答案】C二、填空题11. 【答案】2∴∠A=∠ACO=30°,∴∠COH=60°.∵OB⊥CD,CD=2,∴CH=,∴OH=1,∴OC=2.12. 【答案】50°13. 【答案】10或70由垂径定理得:BC=AB=30 cm.在Rt△OBC中,OC==40(cm).当水位上升到圆心以下且水面宽80 cm时,圆心到水面距离==30(cm),水面上升的高度为:40-30=10(cm).当水位上升到圆心以上且水面宽80 cm时,水面上升的高度为:40+30=70(cm).综上可得,水面上升的高度为10 cm或70 cm.故答案为10或70.14. 【答案】 4-715. 【答案】816. 【答案】317. 【答案】n18. 【答案】⎝ ⎛⎭⎪⎫360n m ° 三、解答题19. 【答案】证明:∵AB =DE ,BC =EF , ∴AB ︵=DE ︵,BC ︵=EF ︵, ∴AB ︵+BC ︵=DE ︵+EF ︵, ∴AC ︵=DF ︵,∴AC =DF .20. 【答案】解:如图,连接OA ,OB .根据正方形的面积公式可得小正方形的边长为4 cm. 设大正方形的边长为x cm ,则OD =12x cm.根据勾股定理,得OA 2=OD 2+AD 2,OB 2=OC 2+BC 2. 又∵OA =OB ,∴(12x )2+x 2=(12x +4)2+42,解得x 1=8,x 2=-4(不符合题意,舍去), ∴大正方形的边长为8 cm ,OD =4 cm , ∴OA 2=OD 2+AD 2=42+82=80, ∴OA =80=4 5(cm).故该半圆的半径为4 5 cm.21. 【答案】【思维教练】(1)观察表格可猜想β=90°+α,γ=180°-α.连接BG,由直径所对的圆周角为90°和圆内接四边形的对角和为180°即可得出β=90°+α;由题干条件易知△EBD≌△EGD,∠EBC=∠ECB,再由三角形的外角和定理和β=90°+α,利用角度之间的转化即可得出结论;(2)由(1)的结论可以得出α=∠BAG=45°,β=∠ACB=135°,∴∠ECB=45°,∠CEB=90°,△ECD、△BEC、△ABG 都是等腰直角三角形,由CD的长,可得出BE和CE的长,再由题干条件△ABE 的面积是△ABC的面积的4倍可得出AC的长,利用勾股定理在△ABE中求出AB的长,再利用勾股定理在△ABG求出AG的长,即可求出半径长.①(1)①β=90°+α,γ=180°-α证明:如解图①,连接BG,∵AG是⊙O的直径,∴∠ABG=90°,∴α+∠BGA=90°,(1分)又∵四边形ACBG内接于⊙O,∴β+∠BGA=180°,∴β-α=90°,即β=90°+α;(3分)②∵D是BC的中点,且DE⊥BC,∴△EBD≌△ECD,∴∠EBC=∠ECB,∵∠EAG+∠EBA=γ,∴∠EAB+α+∠EBC+∠CBA=γ,∵∠EAB+∠CBA=∠ECB,∴2∠ECB+α=γ,(4分)∴2(180°-β )+α=γ,由①β=90°+α代入后化简得,γ=180°-α;(6分)(2)如解图②,连接BG,②∵γ=135°,γ=180°-α,∴α=45°,β=135°,∴∠AGB=∠ECB=45°,(8分)∴△ECD和△ABG都是等腰直角三角形,又∵△ABE的面积是△ABC的面积的4倍,∴AE=4AC,∴EC=3AC,(9分)∵CD=3,∴CE=32,AC=2,∴AE=42,(10分)∵∠BEA=90°,∴由勾股定理得,AB=BE2+AE2=(32)2+(42)2=50=52,(11分)∴AG=2AB=2×52=10,∴r=5.(12分)22. 【答案】52解:(1)60(2)①如图(a).∵四边形OBCD为平行四边形,∴∠BOD=∠BCD,∠OBC=∠ODC.又∵∠BAD+∠BCD=180°,∠BAD=12∠BOD,∴12∠BOD+∠BOD=180°,解得∠BOD=120°,∴∠BAD=12∠BOD=12×120°=60°,∠OBC=∠ODC=180°-∠BOD=180°-120°=60°.又∵∠ABC+∠ADC=180°,∴∠OBA+∠ODA=∠ABC+∠ADC-(∠OBC+∠ODC)=180°-(60°+60°)=60°.word 版 初中数学11 /11②如图(b)所示,连接AO .∵OA =OB ,∴∠OBA =∠OAB .∵OA =OD ,∴∠OAD =∠ODA .∵∠OAB =∠OAD +∠BAD , ∴∠OBA =∠ODA +∠BAD =∠ODA +60°.如图(c),同理可得∠ODA =∠OBA +60°.。

人教版九年级数学上册第24章圆单元测试题含答案[1]

人教版九年级数学上册第24章圆单元测试题含答案[1]

人教版九年级数学上册第24章圆单元测试题含答案(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教版九年级数学上册第24章圆单元测试题含答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教版九年级数学上册第24章圆单元测试题含答案(word版可编辑修改)的全部内容。

人教版九年级数学上册第24章圆单元测试题(含答案)一.选择题(共10小题)1.下列说法,正确的是()A.弦是直径B.弧是半圆C.半圆是弧D.过圆心的线段是直径2.如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC=()A.3cm B.4cm C. 5cm D.6cm(2题图)(3题图)(4题图) (5题图)(8题图)3.一个隧道的横截面如图所示,它的形状是以点O为圆心,5为半径的圆的一部分,M是⊙O 中弦CD的中点,EM经过圆心O交⊙O于点E.若CD=6,则隧道的高(ME的长)为() A.4 B. 6 C.8 D.94.如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO的度数是() A.51°B.56°C.68°D.78°5.如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为() A.25°B.50°C.60°D.30°6.⊙O的半径为5cm,点A到圆心O的距离OA=3cm,则点A与圆O的位置关系为( ) A.点A在圆上B.点A在圆内C.点A在圆外D.无法确定7.已知⊙O的直径是10,圆心O到直线l的距离是5,则直线l和⊙O的位置关系是() A.相离B.相交C.相切D.外切8.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A.2,B.2,πC.,D.2,9.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长() A.2πB.π C.D.10.如图,直径AB为12的半圆,绕A点逆时针旋转60°,此时点B旋转到点B′,则图中阴影部分的面积是()A.12πB.24πC.6πD.36π二.填空题(共10小题)11.如图,AB是⊙O的直径,CD为⊙O的一条弦,CD⊥AB于点E,已知CD=4,AE=1,则⊙O的半径为.(9题图) (10题图)(11题图) (12题图)12.如图,在△ABC中,∠C=90°,∠A=25°,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E,则的度数为.13.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为的中点.若∠A=40°,则∠B=度.(13题图) (14题图) (15题图) (17题图)14.如图所示,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P 沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为.15.如图,点O是正五边形ABCDE的中心,则∠BAO的度数为.16.已知一条圆弧所在圆半径为9,弧长为π,则这条弧所对的圆心角是.17.如图,在边长为4的正方形ABCD中,先以点A为圆心,AD的长为半径画弧,再以AB边的中点为圆心,AB长的一半为半径画弧,则两弧之间的阴影部分面积是(结果保留π).18.已知圆锥的底面圆半径为3,母线长为5,则圆锥的全面积是.19.如果圆柱的母线长为5cm,底面半径为2cm,那么这个圆柱的侧面积是.20.半径为R的圆中,有一弦恰好等于半径,则弦所对的圆心角为.三.解答题(共5小题)21.如图,已知圆O的直径AB垂直于弦CD于点E,连接CO并延长交AD于点F,且CF⊥AD.(1)请证明:E是OB的中点;(2)若AB=8,求CD的长.22.已知:如图,C,D是以AB为直径的⊙O上的两点,且OD∥BC.求证:AD=DC.23.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O 的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22。

九年级数学上册24.1.1圆习题课件新版新人教版

九年级数学上册24.1.1圆习题课件新版新人教版

6.已知⊙O中最长的弦为16 cm,则⊙O的半径为______8__cm.
7.如图,△ABC和△ABD都为直角三角形,且∠C=∠D=90°.求证: A,B,C,D四点在同一个圆上.
取AB的中点O,连接OC,OD,图略.∵△ABC和 △ABD都为直角三角形,且∠C=∠D=90°,∴DO, CO分别为Rt△ABD和Rt△ABC斜边上的中线,∴OA =OB=OC=OD,∴A,B,C,D四点在同一个圆 上.
3.如图,点A,O,D以及点B,O,C分别在一条直线上,则圆中 弦的条数是( B )
A.2 B.3 C.4 D.5
4.已知A,B是半径为5 cm的⊙O上两个不同的点,则弦AB的取值范
围是( D) A.AB>0 B.0<AB<5 cm
C.0<AB<10 cm D.0<AB≤10 cm 5 . 如 _ , 弦 有 _A__B_,__B_C_ , 劣 弧 有 __A︵_C__,__B︵_C_,__B_︵_D_,__C_︵D__,__A︵_D_____,优弧有__,___,___,___,_______.
易错点:对圆的有关概念理解不准确致误 12.下列命题中,正确的个数是( A) ①直径是弦,弦是直径;②弦是圆上的两点间的部分;③半圆是弧, 但弧不一定是半圆;④等于半径两倍的线段是直径. A.1 B.2 C.3 D.4
13 . 如 图 , AB 是 ⊙ O 的 直 径 , 点 C , D 在 ⊙ O 上 , ∠ BOC = 110° , AD∥OC,则∠AOD等于( D ) A.70° B.60° C.50° D.40°
14.在半径为1的⊙O中,弦AB长 ,2 则∠AOB的度数为( C) A.45° B.60° C.90° D.120° 15.下列四边形:①平行四边形;②菱形;③矩形;④正方形.其中 四个顶点一定能在同一个圆上的有( B) A.1个 B.2个 C.3个 D.4个

人教版数学九年级上册24.1《圆的有关性质》训练题

人教版数学九年级上册24.1《圆的有关性质》训练题

24.1 圆的有关性质1.如图,如果AB为⊙O的直径,弦CD⊥AB,垂足为E,那么下列结论中,•错误的是().B.BC BD= C.∠BAC=∠BAD A.CE=DED.AC>AD2.如图,⊙O的直径为10,圆心O到弦AB的距离OM的长为3,则弦AB的长是() A.4 B.6 C.7 D.83.如图,在⊙O中,P是弦AB的中点,CD是过点P的直径,•则下列结论中不正确的是()A.AB⊥CD B.∠AOB=4∠ACD C.AD BD= D.PO=PD4.下列命题中,真命题的个数为()①顶点在圆周上的角是圆周角;②圆周角的度数等于圆心角度数的一半;③900的圆周角所对的弦是直径;④直径所对的角是直角;⑤圆周角相等,则它们所对的弧也相等;⑥同弧或等弧所对的圆周角相等.A. 1 个B. 2 个C. 3 个D. 4 个5.如果两个圆心角相等,那么()A.这两个圆心角所对的弦相等 B.这两个圆心角所对的弧相等C.这两个圆心角所对的弦的弦心距相等 D.以上说法都不对6.在同圆中,圆心角∠AOB=2∠COD,则两条弧AB与CD关系是()A.AB=2CDB.AB>CDC.AB<2CDD.不能确定7.如图,⊙O中,如果AB=2AC,那么()A.AB=AC B.AB=AC C.AB<2AC D.AB>2AC 8.如图,A, B, C, D 是同一个圆上的顺次四点,则图中相等的圆周角共有()A.2对B.4 对C.8 对D.16对9.如图,MN是半圆O的直径,K是MN延长线上一点,直线KP交半圆于点Q,P.若∠K=200,∠PMQ =400,则∠MQP等于()A. 300B. 350C. 400 D . 50010.如图,△ABC是⊙O的内接三角形,且AB≠AC,∠ABC 和∠ACB的平分线分别交⊙O于点D, E,且BD=CE,则∠A 是( )A.300B.450C.600D.90011.如图,⊙O的直径为10cm,弦AB为8cm,P是弦AB上一点,若OP的长为整数, 则满足条件的点P有( )A.2个B.3个C.4个D.5个12.如图,AB为⊙O直径,E是BC中点,OE交BC于点D,BD=3,AB=10,则AC=_____.13.P为⊙O内一点,OP=3cm,⊙O半径为5cm,则经过P点的最短弦长为________;•最长弦长为_______.14.如图,⊙O的直径为10,弦AB=8,P是弦AB上的一个动点,那么OP长的取值范围是_____.7题8题1题2题3题9题10题11题12题15.如图,A, B, C, D 是⊙O 上的点,已知∠1=∠2,则与AD 相等的弧是 ,与BCD 相等的弧是 ,于是AD= , BD= .16.如图,以ABCD 的顶点A 为圆心,AB 为半径作圆,分别交BC 、AD 于E 、F ,若∠D=50°,求BE 的度数和EF 的度数.17.如图, AB 是⊙O 的直径,C, D 是AB 上的点,且AC=BD; P ,Q 是⊙O 上在AB 同侧的两点,且AP BQ =, 延长PC, QD 分别交⊙O 于点M, N .求证:AM BN =.18.如图,Rt △ABC 中,∠C =900,AC =3,BC =4,以点C 为圆心,CA 为半径的圆与AB 、BC 分别交于点D 、E , 求AB 、AD 的长。

第一学期 初三数学 人教版九年级上册(新)第24章 圆 综合练习题 学生版

第一学期 初三数学 人教版九年级上册(新)第24章 圆 综合练习题 学生版

北京市丰台区-第一学期 初三数学第24章 圆 综合练习题一、与圆有关的中档题:与圆有关的证明(证切线为主)和计算(线段长、面积、三角函数值、最值等)1. 如图,BD 为⊙O 的直径,AC 为弦,AB AC =,AD 交BC 于E ,2AE =,4ED =.(1)求证:ABE ADB △∽△,并求AB 的长; (2)延长DB 到F ,使BF BO =,连接FA ,判断直线FA 与⊙O 的位置关系,并说明理由.2. 已知:如图,以等边三角形ABC 一边AB 为直径的⊙O 与边AC 、BC 分别交于点D 、E ,过点D 作DF ⊥BC ,垂足为F .(1)求证:DF 为⊙O 的切线;(2)若等边三角形ABC 的边长为4,求DF 的长; (3)求图中阴影部分的面积.3、如图,已知圆O 的直径AB 垂直于弦CD 于点E ,连接CO 并延长交AD 于点F ,且CF AD ⊥.(1)请证明:E 是OB 的中点; (2)若8AB =,求CD 的长.4.如图,AB 是⊙O 的直径,点C 在⊙O 上,∠BAC = 60︒,P 是OB 上一点,过P 作AB 的垂线与AC 的延长线交于点Q ,连结OC ,过点C 作OC CD ⊥交PQ 于点D . (1)求证:△CDQ 是等腰三角形;(2)如果△CDQ ≌△COB ,求BP :PO 的值.OF A BC DEF EDCBO AA DO G5. 已知:如图, BD 是半圆O 的直径,A 是BD 延长线上的一点,BC ⊥AE ,交AE 的延长线于点C , 交半圆O 于点E ,且E 为DF 的中点. (1)求证:AC 是半圆O 的切线;(2)若662AD AE ==,,求BC 的长.6.如图,内接于⊙O ,过点的直线交⊙O 于点,交的延长线于点,且AB 2=AP ·AD(1)求证:;(2)如果,⊙O 的半径为1,且P 为弧AC 的中点,求AD 的长.7.如图,在△ABC 中,∠C =90°, AD 是∠BAC 的平分线,O 是AB 上一点, 以OA 为半径的⊙O 经过点D .(1)求证: BC 是⊙O 切线;(2)若BD =5, DC =3, 求AC 的长.8.如图,AB 是⊙O 的直径,CD 是⊙O 的一条弦,且CD⊙AB 于E ,连结AC 、OC 、BC.(1)求证:⊙ACO=⊙BCD ;(2)若BE=2,CD=8,求AB 和AC 的长.9.如图,已知BC 为⊙O 的直径,点A 、F 在⊙O 上,BC AD ⊥,垂足为D ,BF 交AD于E ,且BE AE =. (1)求证:AF AB =; (2)如果53sin =∠FBC ,54=AB ,求AD 的长.10.如图,已知直径与等边ABC ∆的高相等的圆O 分别与边AB 、BC 相切于点D 、E ,边AC 过圆心O 与圆O 相交于点F 、G 。

人教版九年级数学上册第24章圆专题复习练习题(含答案)

人教版九年级数学上册第24章圆专题复习练习题专题1与圆的基本性质有关的辅助线作法1 .如图,点A, B, C, D分别是。

上的四点,/ BAC= 50° , BD是直径,则/ DBC的度数是(A)A. 40° B , 50° C , 20° D , 35°6.如图,点B, C, D在。

0上,若/ BCD= 130° ,则/ BOD勺度数是(D)A. 50° B . 60° C . 80° D . 1002.如图,4ABC内接于。

O, /CAB= 30° , / CBA= 45° , CD!AB于点D.若。

的半径为2, 则CD的长为2.3.如图,在。

中,/ OAB= 20° ,则/ C的度数为110°4.如图,在。

中,AB为直径,/ ACB的平分线交。

于点D, AB= 6,则BD= 3^2.7.如图,已知A, B, C, D是。

上的四个点,O O的直径AB= 2y3.若/ ACD= 120° ,则线段AD的长为3.8.如图,O A过点Q C, D,点C的坐标为(,3, 0),点B是x轴下方。

A上的一点,连接BQ BD,已知/ OBD= 30° ,则。

A的半径等于1.9.如图,A, B, C, D是。

上的四个点,版箕.若/人。

氏58° ,则/ D= 2910如图,O。

的弦AB= 8, N是AB的中点,AN= 2木,则。

的半径为5.11.如图,在。

中,半彳空QAL QB C, D为A的三等分点. 弦AB分别交QC QD于点E, F,下列结论:①/AQC= 30° ;②C『DF;③/ AEQ= 105 ;④AE= CD= FB.其中正确的有①②③④.专题2教材P90习题T14的变式与应用1.如图,A P, B, C是。

O上的四个点,/ APC= /CPB= 60° .判断△ ABC的形状,并证明你的结论.解:△ ABC为等边三角形.证明:・. / APC= / ABG / CPB= Z BAC又・. / APC= / CPB= 60° ,・ ./ ABC= / BAC= 60° .,/ACB= 60° .「.△ABE 等边三角形.【问题延伸1】求证:PA+ PB= PC.证明:在PC上截取PAAP,连接AD,如图.・. / APC= 60° ,AD= AP= PD, / AD之60° , Z ADG= 120°・. /APB= Z APO Z BPG= 120° ,・./ ADG= / APB./ ABP= / AGD在△ APB和△ ADG中,/ APB= / ADGAP= AD,・.△ APB^ △ ADG(AAS).BP= GD.又「PD= AP, PA+ PB= PD+ GD= PG.【问题延伸2] 若BG= 2淄,点P是AB±-动点(异于点A, B),求PA+ PB的最大值.解:由上题知PA+ PB= PG,要使PA+ PB最大,则PG为直径,作直径BG 连接GG.,/G= / BAG= 60°,/ BGG= 90° . 1•• BC= 2小,BG= 4.即PA+ PB的最大值为4.2.如图,A, P, B, G是半径为8的。

人教版数学九年级上册第24章圆同步训练题(含答案)

人教版九年级数学上册第24章圆训练题(精练)一、单选题(本大题10题,每小题3分,共30分)1.已知⊙O中最长的弦为8cm,则⊙O的半径为()cm.A.2B.4C.8D.162.(本题3分)如图,AB是⊙O的直径,BC是⊙O的弦,已知∠AOC=80°,则∠ABC的度数为()A.20°B.30°C.40°D.50°3.如图,AB是⊙O的直径,点C在⊙O上,∠ABC⊙30°⊙AC⊙4,则⊙O的半径为()A.4B.8C.D.4.如图,AB为⊙O的直径,点C为⊙O上的一点,过点C作⊙O的切线,交直径AB的延长线于点D;若∠A=23°,则∠D的度数是()A.23°B.44°C.46°D.57°5.如图,正三角形ABC的边长为4cm,D,E,F分别为BC,AC,AB的中点,以A,B,C三点为圆心,2cm 为半径作圆.则图中阴影部分面积为( )A .(π)cm 2B .(π)cm 2C .(2π)cm 2D .(2π-)cm 26.如图物体由两个圆锥组成,其主视图中,90,105A ABC ︒︒∠=∠=.若上面圆锥的侧面积为1,则下面圆锥的侧面积为( )A .2BC .32 D7如图,在一个圆内有AB 、CD 、EF ,若AB +CD =EF ,则AB +CD 与EF 的大小关系是( )A .AB +CD =EFB .AB +CD <EFC .AB +CD ≤EF D .AB +CD >EF8.如图,一把直尺,60︒的直角三角板和光盘如图摆放,A 为60︒角与直尺交点,3AB =,则光盘的直径是( )A .3B .C .6D .9.如图,在ABC 的外接圆上,,,AB BC CA 所对的圆心角的度数比为12:13:11.在BC 上取一点D ,过D 分别作直线,AC AB 的平行线,交BC 于,EF 两点,则EDF ∠的度数为( )A .55°B .60°C .65°D .70°10.如图,在Rt ABC 中,90,30∠=︒∠=︒C A ,在AC 边上取点O 为圆心画圆,使O 经过,A B 两点,下列结论:①2AO CO =;②AO BC =;③以O 圆心,OC 为半径的圆与AB 相切;④延长BC 交O 于点D ,则,,A B D 是O 的三等分点.其中正确结论的序号是( )A .①②③④B .①②③C .②③④D .①③④二、填空题(本大题7题,每小题4分,共28分)11.(本题4分)若四边形ABCD 是⊙O 的内接四边形,∠A=120°,则∠C 的度数是___.12.(本题4分)如图,四边形ABCD 内接于⊙O ,∠C =130°,则∠BOD 的度数是______.13.(本题4分)如图,四边形ABCD 是菱形,∠B =60°,AB =1,扇形AEF 的半径为1,圆心角为60°,则图中阴影部分的面积是______.14.(本题4分)如图,扇形AOB 中,10,36OA AOB =∠=︒.若将此扇形绕点B 顺时针旋转,得一新扇形A OB '',其中A 点在O B '上,则点O 的运动路径长为_______cm .(结果保留π)15.(本题4分)如图,在Rt⊙ABC 中,⊙ACB=90°⊙AC=6⊙BC=8,点D 是AB 的中点,以CD 为直径作⊙O⊙⊙O分别与AC⊙BC交于点E⊙F,过点F作⊙O的切线FG,交AB于点G,则FG的长为_____⊙16.(本题4分)《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:弧田面积12=(弦×矢+矢2).孤田是由圆弧和其所对的弦围成(如图中的阴影部分),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,运用垂径定理(当半径OC⊥弦AB时,OC 平分AB)可以求解.现已知弦8AB=米,半径等于5米的弧田,按照上述公式计算出弧田的面积为_____平方米.17.(本题4分)如图,在△ABC中,AB=AC,以AC为直径的⊙O与边 BC 相交于点E,过点E作EF⊥AB于点F,延长FE、AC相交于点D,若CD=4,AF=6,则BF 的长为_____.三、解答题(本大题7题,18-23每小题7分,24题20分,共62分)18.如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD⊥CE 于点D,AC 平分∠DAB.(1)求证:直线CE 是⊙O 的切线;(2)若AB=10,CD=4,求BC 的长.19.如图,⊙O的直径AB为10cm,弦BC=8cm,∠ACB的平分线交⊙O于点D⊙连接AD,BD⊙求四边形ABCD的面积.20.如图,在△ABC中,AB⊙AC⊙∠BAC⊙54°,以AB为直径的⊙O分别交AC⊙BC于点D⊙E,过点B作直线BF,交AC的延长线于点F⊙⊙1)求证:BE⊙CE⊙⊙2)若AB⊙6,求弧DE的长;⊙3)当∠F的度数是多少时,BF与⊙O相切,证明你的结论.21.如图,在圆O 中,弦AB =8,点C 在圆O 上(C 与A ,B 不重合),连接CA 、CB ,过点O 分别作OD ⊥AC ,OE ⊥BC ,垂足分别是点D 、E(1)求线段DE 的长;(2)点O 到AB 的距离为3,求圆O 的半径.22.如图1,AB 为半圆的直径,点O 为圆心,AF 为半圆的切线,过半圆上的点C 作//CD AB 交AF 于点D ,连接BC .(1)连接DO ,若//BC OD ,求证:CD 是半圆的切线;(2)如图2,当线段CD 与半圆交于点E 时,连接AE ,AC ,判断AED ∠和ACD ∠的数量关系,并证明你的结论.23.如图,已知AB是⊙P的直径,点C在⊙P上,D为⊙P外一点,且∠ADC=90°,直线CD为⊙P的切线.⑴试说明:2∠B+∠DAB=180°⑵若∠B=30°,AD=2,求⊙P的半径.24.若一个四边形的两条对角线互相垂直且相等,则称这个四边形为奇妙四边形.如图1,四边形ABCD 中,若AC=BD,AC⊥BD,则称四边形ABCD为奇妙四边形.根据奇妙四边形对角线互相垂直的特征可得奇妙四边形的一个重要性质:奇妙四边形的面积等于两条对角线乘积的一半.根据以上信息回答:(1)矩形奇妙四边形(填“是”或“不是”);(2)如图2,已知⊙O的内接四边形ABCD是奇妙四边形,若⊙O的半径为6,∠ BCD=60°.求奇妙四边形ABCD的面积;(3)如图3,已知⊙O的内接四边形ABCD是奇妙四边形作OM⊥BC于M.请猜测OM与AD的数量关系,并证明你的结论参考答案1.B【详解】⊙⊙O中最长的弦为8cm,即直径为8cm⊙⊙⊙O的半径为4cm⊙故选B.2.C【详解】∵AC AC,∴∠ABC=12∠AOC=12×80°=40°,故选C.3.A【详解】∵AB是直径,∴∠C=90°,∵∠ABC=30°,∴AB=2AC=8,∴OA=OB=4,故选A.4.B【详解】连接OC ,如图,∵CD 为⊙O 的切线,∴OC ⊥CD ,∴∠OCD=90°,∵∠COD=2∠A=46°,∴∠D=90°﹣46°=44°,故选B .5.C【详解】连接AD ,∵△ABC 是正三角形,∴AB=BC=AC=4,∠BAC=∠B=∠C=60°, ∵BD=CD ,∴AD ⊥BC ,∴=∴S 阴影=S △ABC -3S 扇形AEF =12×4×﹣26023360π⨯⨯﹣2π)cm 2, 故选C .6.D【详解】∵∠A=90°,AB=AD,∴△ABD为等腰直角三角形,∴∠ABD=45°,BD,∵∠ABC=105°,∴∠CBD=60°,而CB=CD,∴△CBD为等边三角形,∴BC=BD AB,∵上面圆锥与下面圆锥的底面相同,∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,×1.故选D.7.D【详解】如图,在弧EF上取一点M,使EM CD=,则FM AB=,所以AB=FM,CD=EM,在⊙MEF中,FM+EM>EF,所以AB+CD>EF,故选:D.8.D【详解】如图,设光盘圆心为O,连接OC⊙OA⊙OB⊙∵AC⊙AB都与圆O相切,∴AO平分∠BAC⊙OC⊥AC⊙OB⊥AB⊙∴∠CAO=∠BAO=60°⊙∴∠AOB=30°⊙在Rt△AOB中,AB=3cm⊙∠AOB=30°⊙∴OA=6cm⊙根据勾股定理得:=⊙则光盘的直径为⊙故选D.9.C【详解】解:,,AB BC CA 所对的圆心角的度数比为12:13:11,BC ∴所对的圆心角的度数为13360130,121311⨯︒=︒++ 65BAC ︒∴∠=//,//,AC ED AB DF,FED ACB EFD ABC ∴∠=∠∠=∠18018065EDF FED EFD ACB ABC BAC ∴∠=︒-∠-∠=︒-∠-∠=∠=︒.故选C .10.D【详解】①如图,连接OB ,则OA OB =.90,30C OAB ︒︒∠=∠=,30,60ABO OAB ABC ︒︒∴∠=∠=∠=,30,2CBO OB OC ︒∴∠=∴=.2AO CO ∴=,故①正确;②在Rt OCB △中,90,,C OB BC AO OB ︒∠=>=,AO BC ∴>,故②错误;③如图,过点O 作OE AB ⊥于点E ,90,30ACB ABO CBO ︒︒∠=∠=∠=,OC OE ∴=,∴以O 圆心,OC 为半径的圆与AB 相切,故③正确;④如图,延长BC ,交O 于点D ,连接AD .90,ACB DC BC ︒∠=∴=.AD AB ∴=,60ABC ︒∠=,ADB ∴是等边三角形.,AD AB BD AD AB BD ∴==∴==,,,A B D ∴是O 的三等分点,故④正确;故正确的有①③④.11.60°⊙【详解】∵四边形ABCD 是⊙O 的内接四边形,∴∠A+∠C=180°,∴∠C=180°﹣∠A=60°,故答案为60°.12.100°⊙【详解】∵四边形ABCD 是⊙O 的内接四边形,∴∠A+∠C=180°,∵∠C=130°,∴∠A=50°,∴∠BOD=2∠A=100°,故答案为100°.13.6π- 【详解】连接AC ,∵四边形ABCD 是菱形,∴∠B=∠D=60°,AB=AD=DC=BC=1,∴∠BCD=∠DAB=120°,∴∠1=∠2=60°,∴△ABC 、△ADC 都是等边三角形,∴AC=AD=1,∵AB=1,∴△ADC的高为2,AC=1, ∵扇形BEF 的半径为1,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AF 、DC 相交于HG ,设BC 、AE 相交于点G ,在△ADH 和△ACG 中,34160AD ACD ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△ADH ≌△ACG(ASA),∴四边形AGCH 的面积等于△ADC 的面积,∴图中阴影部分的面积是:S 扇形AEF ﹣S △ACD =2601113602π⨯⨯-⨯6π,故答案为64π-. 14.4π.【详解】解:根据题意,知OA=OB .又∠AOB=36°,∴∠OBA=72°.∴点O 旋转至O′点所经过的轨迹长度=7210180π︒⨯⨯︒=4πcm . 故答案是:4π.【点睛】本题考查了弧长的计算、旋转的性质.解答该题的关键是弄清楚点O 的运动轨迹是弧形,然后根据弧长的计算公式求解.15.125⊙ 【详解】如图,在Rt △ABC 中,根据勾股定理得,AB=10⊙∴点D是AB中点,∴CD=BD=12AB=5⊙连接DF⊙∵CD是⊙O的直径,∴∠CFD=90°⊙∴BF=CF=12BC=4⊙∴连接OF⊙∵OC=OD⊙CF=BF⊙∴OF∥AB⊙∴∠OFC=∠B⊙∵FG是⊙O的切线,∴∠OFG=90°⊙∴∠OFC+∠BFG=90°⊙∴∠BFG+∠B=90°⊙∴FG⊥AB⊙∴S△BDF=12DF×BF=12BD×FG⊙∴FG=3412==55 DF BFBD⨯⨯⊙故答案为125. 16.10 【详解】解:∵弦8AB =米,半径OC ⊥弦AB ,∴4=AD , ∴3OD ==,∴2OA OD -=,∴弧田面积12=(弦×矢+矢2)()21822102=⨯⨯+=, 故答案为1017.2【详解】连接AE,作CM⊥FD, ∵AB=AC,AE⊥BC, ∴BE=EC,AB∥CM, ∴CM=BF, ∴666sin ,sin 446410CM CM AF D D CD AD AC CM CM ∠==∠====++++ , ∴6410CM CM=+ , ∴CM=2或CM=-12(舍去),∴BF=2.18.【详解】(1)如图,连接OC∵AC平分∠DAB,∴∠DAC=∠CAB,∵OA=OC,∴∠OCA=∠CAB,∴∠OCA=∠DAC,∴AD∥CO,∵CD⊥AD,∴OC⊥CD,∵OC是⊙O直径且C在半径外端,∴CD为⊙O的切线;(2)∵AB是直径,∴∠ACB=90°,∵AD⊥CD,∴∠ADC=∠ACB=90°,∵∠DAC=∠CAB,∴△DAC∽△CAB,∴DC AC BC AB,∴BC•AC=DC•AB=4×10=40,∵BC 2+AC 2=100,∴(BC+AC)2=BC 2+AC 2+2BC •AC=180,(BC -AC)2= BC 2+AC 2-2BC •AC=20,∴AC ﹣BC ﹣∴19.S 四边形ADBC ⊙49⊙cm 2⊙⊙【详解】∵AB 为直径,∴∠ADB=90°,又∵CD 平分∠ACB ,即∠ACD=∠BCD ,∴AD BD =,∴AD=BD ,∵直角△ABD 中,AD=BD ,AD 2+BD 2=AB 2=102,则,则S △ABD =12AD•BD=12=25(cm 2),在直角△ABC 中,=6(cm),则S △ABC =12AC•BC=12×6×8=24(cm 2), 则S 四边形ADBC =S △ABD +S △ABC =25+24=49(cm 2).20.【详解】(1)连接AE,如图,∵AB为⊙O的直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE;(2)∵AB=AC,AE⊥BC,∴AE平分∠BAC,∴∠CAE=12∠BAC=12×54°=27°,∴∠DOE=2∠CAE=2×27°=54°,∴弧DE的长=5439 18010ππ⨯⨯=;(3)当∠F的度数是36°时,BF与⊙O相切,理由如下:∵∠BAC=54°,∴当∠F=36°时,∠ABF=90°,∴AB⊥BF,∴BF为⊙O的切线.21.⊙1⊙【详解】(1)∵OD经过圆心O,OD⊥AC,∴AD=DC,同理:CE=EB,∴DE是△ABC的中位线,∴DE=12 AB,∵AB=8,∴DE=4;(2)过点O作OH⊥AB,垂足为点H,则OH=3,连接OA,∵OH经过圆心O,∴AH=BH=12 AB,∵AB=8,∴AH=4,在Rt△AHO中,AH2+OH2=AO2,∴AO=5,即圆O的半径为5.22.【详解】(1)证明:连接OC ,AF 为半圆的切线,AB 为半圆的直径,AB AD ∴⊥,//CD AB ,//BC OD ,∴四边形BODC 是平行四边形,OB CD ∴=,OA OB =,CD OA ∴=,∴四边形ADCO 是平行四边形,//OC AD ∴,//CD BA ,CD AD ∴⊥,//OC AD ,OC CD ∴⊥,CD ∴是半圆的切线;(2)解:90AED ACD ∠+∠=︒,理由:如图2,连接BE ,AB 为半圆的直径,90AEB ∴∠=︒,90EBA BAE ∴∠+∠=︒,90DAE BAE ∠+∠=︒,ABE DAE ∴∠=∠,ACE ABE ∠=∠,ACE DAE ∴∠=∠,90ADE ∠=︒,90DAE AED AED ACD ∴∠+∠=∠+∠=︒. 23.【详解】解:⊙ 连接CP⊙PC =PB ,⊙⊙B =⊙PCB ,⊙⊙APC=⊙PCB+⊙B=2⊙B⊙CD是⊙OP的切线,⊙⊙DCP=90°⊙⊙ADC=90°,⊙⊙DAB+⊙APC=180°⊙2⊙B+⊙DAB=180°⊙ 连接AC⊙⊙B=30°,⊙⊙APC=60°,⊙PC=P A,⊙⊙ACP是等边三角形,⊙AC=P A,⊙ACP=60° ⊙⊙ACD=30°,⊙AC=2AD=4,⊙P A=4答:⊙P的半径为4.24.【详解】解:(1)矩形的对角线相等但不垂直,所以矩形不是奇妙四边形;故答案为不是;(2)连结OB、OD,作OH⊥BD于H,如图2,则BH=DH,∵∠BOD=2∠BCD=2×60°=120°,∴在等腰△OBD中,∠OBD=30°,在Rt △OBH 中,∵∠OBH=30°, ∴132126OH OB ==⨯=,∴BH ==∴2BD BH ==∵四边形ABCD 是奇妙四边形,∴AC BD ==AC BD ⊥∴112542ABCD BD A S C =⨯==四边形; (3)12OM AD =. 理由如下:连结OB 、OC 、OA 、OD ,作OE ⊥AD 于E ,如图3, ∵OE ⊥AD ,∴在等腰△AOD 中,12AE DE AD ==, 又∵22BOC BAC BOM ∠=∠=∠,∴∠BOM=∠BAC ,同理可得∠AOE=∠ABD ,∵BD ⊥AC ,∴∠BAC+∠ABD=90°,∴∠BOM+∠AOE=90°, ∵∠BOM+∠OBM=90°, ∴∠OBM=∠AOE , 在△BOM 和△OAE 中 90BMO OEA OBM AOEOB AO ⎧∠∠=⎪∠∠⎨⎪⎩=== ∴()BOM OAE AAS ≌, ∴OM=AE , ∴12OM AD =.1。

人教版九年级数学上册:24.1 圆(第一课时 )同步测试题及答案【新】

第二十四章圆24.1 圆(第一课时)知识点1、圆的定义:⑴形成性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转形成的图形叫做圆,固定的端点叫,线段OA叫做。

⑵描述性定义:圆是到定点的距离等于的点的集合【特别注意】:1、在一个圆中,圆心决定圆的,半径决定圆的。

2、直径是圆中的弦,弦不一定是直径。

2、弦与弧:弦:连接圆上任意两点的叫做弦。

弧:圆上任意两点间的叫做弧,弧可分为、、三类。

3、圆的对称性:⑴轴对称性:圆是轴对称图形,有条对称轴,的直线都是它的对称轴。

⑵中心对称性:圆是中心对称图形,对称中心是。

一、选择题1.下列命题正确的有()①弦是圆上任意两点之间的部分②半径是弦③直径是最长的弦④弧是半圆,半圆是弧A.1个B.2个C.3个D.4个2.如图所示,MN为⊙O的弦,∠N=52°,则∠MON的度数为()A.38°B.52°C.76°D.104°3.如图,已知CD为⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数是50°,则∠C 的度数是()A.25°B.40°C.30°D.50°4.一个点到圆上的最小距离是4cm,最大距离是9cm,则圆的半径是().A.2.5cm或6.5 cmB.2.5cmC.6.5cmD.5cm或13cm5.如图,已知在⊙O中,AB、CD为直径,则AD与BC的关系是().A.AD =BCB.AD ∥BCC.AD ∥BC 且AD =BCD.不能确定6.如图,已知AB 为⊙O 的直径,点C 在⊙O 上,∠C=15°,则∠BOC 的度数为( )A .15°B . 30°C . 45°D .60°二、填空题1.⊙O 的半径为2cm ,则它的弦长d cm 的取值范围是.2.⊙O 中若弦AB 等于⊙O 的半径,则△AOB 的形状是 .3.如图,已知AB 是⊙O 的直径,点C 在⊙O 上,点D 是BC 的中点,若AC =10cm ,则OD = cm.4.如图4,AB 是⊙O 的直径,CD 是⊙O 的弦,AB ,CD 的延长线交于E ,若AB=2DE , ∠E=18°,∠C=______,∠AOC=________;5. P 为⊙O 内一点,OP=3cm ,⊙O 半径为5cm ,则经过P 点的最长弦长为_______,最短弦长为________;三、解答题BDO CAABCOBCDO1.在Rt△ABC中,∠C=90°,BC=3cm,AC=4cm,D为AB的中点,E为AC的中点,以B为圆心,BC为半径作⊙B,A、C、D、E与⊙B的位置关系如何?A2、如图,M,N为线段AB上的两个三等分点,点A、B在⊙O上,求证:∠OMN=∠ONM。

部编数学九年级上册专题24.1圆【七大题型】(人教版)(解析版)含答案

专题24.1 圆【七大题型】【人教版】【题型1 圆的概念】 (1)【题型2 圆的有关概念】 (4)【题型3 确定圆的条件】 (6)【题型4 点与圆的位置关系】 (9)【题型5 圆中角度的计算】 (12)【题型6 圆中线段长度的计算】 (15)【题型7 圆相关概念的应用】 (18)定义②:圆可以看做是所有到定点O的距离等于定长r的点的集合.【题型1 圆的概念】【例1】(2022•金沙县一模)下列说法中,不正确的是( )A.圆既是轴对称图形又是中心对称图形B.圆有无数条对称轴C.圆的每一条直径都是它的对称轴D.圆的对称中心是它的圆心【分析】利用圆的对称性质逐一求解可得.【解答】解:A.圆既是轴对称图形又是中心对称图形,正确;B.圆有无数条对称轴,正确;C.圆的每一条直径所在直线都是它的对称轴,此选项错误;D.圆的对称中心是它的圆心,正确;故选:C.【变式1-1】(2022•武昌区校级期末)由所有到已知点O 的距离大于或等于2,并且小于或等于3的点组成的图形的面积为( )A .4πB .9πC .5πD .13π【分析】根据题意、利用圆的面积公式计算即可.【解答】解:由所有到已知点O 的距离大于或等于2,并且小于或等于3的点组成的图形的面积为以3为半径的圆与以2为半径的圆组成的圆环的面积,即π×32﹣π×22=5π,故选:C .【变式1-2】(2022•杭州模拟)现有两个圆,⊙O 1的半径等于篮球的半径,⊙O 2的半径等于一个乒乓球的半径,现将两个圆的周长都增加1米,则面积增加较多的圆是( )A .⊙O 1B .⊙O 2C .两圆增加的面积是相同的D .无法确定【分析】先由L =2πR 计算出两个圆半径的伸长量,然后再计算两个圆增加的面积,然后进行比较大小即可.【解答】解:设⊙O 1的半径等于R ,变大后的半径等于R ′;⊙O 2的半径等于r ,变大后的半径等于r ′,其中R >r .由题意得,2πR+1=2πR ′,2πr +1=2πr ′,解得R ′=R +12π,r ′=r +12π;所以R ′﹣R =12π,r ′﹣r =12π,所以,两圆的半径伸长是相同的,且两圆的半径都伸长12π.∴⊙O 1的面积=πR 2,变大后的面积=π(R +12π)2,面积增加了π(R +12π)2−πR 2=R +14π,⊙O 2的面积=πr 2,变大后的面积=π(r +12π)2,面积增加了π(r +12π)2−πr 2=r +14π,∵R >r ,∴R +14π>r +14π,∴⊙O 1的面积增加的多.故选:A .【变式1-3】(2022•浙江)如图,AB 是⊙O 的直径,把AB 分成几条相等的线段,以每条线段为直径分别画小圆,设AB =a ,那么⊙O 的周长l =πa .计算:(1)把AB 分成两条相等的线段,每个小圆的周长l 2=12πa =12l ;(2)把AB 分成三条相等的线段,每个小圆的周长l 3= 13l ;(3)把AB 分成四条相等的线段,每个小圆的周长l 4= 14l ;(4)把AB 分成n 条相等的线段,每个小圆的周长l n = 1n l .结论:把大圆的直径分成n 条相等的线段,以每条线段为直径分别画小圆,那么每个小圆周长是大圆周长的 1n .请仿照上面的探索方法和步骤,计算推导出每个小圆面积与大圆面积的关系.【分析】把大圆的直径分成n 条相等的线段,以每条线段为直径分别画小圆,那么每个小圆周长是l n =π(1n a )=1n l ,即每个小圆周长是大圆周长的1n ;根据圆的面积公式求得每个小圆的面积和大圆的面积后比较.【解答】解:(2)13l ;(3)14l ;(4)1n l ;1n ;每个小圆面积=π(12•1n a )2=14•πa 2n 2,而大圆的面积=π(12•a )2=14πa 2即每个小圆的面积是大圆的面积的1.n2【题型2 圆的有关概念】【例2】(2022•远安县期末)下列说法:①弦是直线;②圆的直径被该圆的圆心平分;③过圆内一点P的直径仅有一条;④弧是圆的一部分.其中正确的有( )A.1个B.2个C.3个D.4个【分析】根据弦,直径,弧的定义一一判断即可.【解答】解:①弦是直线,错误,弦是线段.②圆的直径被该圆的圆心平分,正确.③过圆内一点P的直径仅有一条,错误,点P是圆心时,直径有无数条.④弧是圆的一部分,正确.故选:B.【变式2-1】(2022图木舒克月考)有一个圆的半径为5,则该圆的弦长不可能是( )A.1B.4C.10D.11【分析】根据直径是圆中最长的弦,判断即可.【解答】解:∵一个圆的半径为5,∴圆中最长的弦是10,∴弦长不可能为11,故选:D.【变式2-2】(2022•嘉鱼县期末)如右图中有 1 条直径,有 4 条弦,以点A为端点的优弧有 2 条,有劣弧 2 条.【分析】根据直径、弦、优弧及劣弧的概念解答即可得.【解答】解:图中直径只有AB这1条,弦有AC、AB、CD、BC这4条,以点A为端点的优弧有ACD、ADC 这2条,劣弧有AC、AD这2条,故答案为:1、4、2、2.【变式2-3】(2022仪征市期末)如图,⊙O的半径为6,△OAB的面积为18,点P为弦AB上一动点,当OP长为整数时,P点有 4 个.【分析】解法一:过点P最长的弦是12,根据已知条件,△OAB的面积为18,可以求出AB<12,根据三角形面积可得OC=OP的长有两个整数:5,6,且OP=6是P在A或B点时,每一个值都有两个点P,所以一共有4个.解法二:根据面积可知,OA上的高为6,也就是说OA与OB互相垂直,然后算出OC长度即可.【解答】解:解法一:过O作OC⊥AB于C,则AC=BC,设OC=x,AC=y,∵AB是⊙O的一条弦,⊙O的半径为6,∴AB≤12,∵△OAB的面积为18,+y2=362y⋅x=18,则y=18x,∴x2+(18x)2=36,解得x=∴OC=4,∴4<OP≤6,∵点P为弦AB上一动点,当OP长为整数时,OP=5或6,P点有4个.解法二:设△AOB中OA边上的高为h,则12×OAℎ=18,即12×6ℎ=18,∴h=6,∵OB=6,∴OA⊥OB,即∠AOB=90°,∴AB=OC=同理得:点P为弦AB上一动点,当OP长为整数时,OP=5或6,P点有4个.故答案为:4.【题型3 确定圆的条件】【例3】(2022•绥中县一模)小明不慎把家里的圆形镜子打碎了,其中三块碎片如图所示,三块碎片中最有可能配到与原来一样大小的圆形镜子的碎片是( )A.①B.②C.③D.均不可能【分析】要确定圆的大小需知道其半径.根据垂径定理知第①块可确定半径的大小.【解答】解:第①块出现两条完整的弦,作出这两条弦的垂直平分线,两条垂直平分线的交点就是圆心,进而可得到半径的长.故选:A.【变式3-1】(2022春•射阳县校级期末)平面直角坐标系内的三个点A(1,0)、B(0,﹣3)、C(2,﹣3) 能 确定一个圆(填“能”或“不能”).【分析】根据三个点的坐标特征得到它们不共线,于是根据确定圆的条件可判断它们能确定一个圆.【解答】解:∵B(0,﹣3)、C(2,﹣3),∴BC∥x轴,而点A(1,0)在x轴上,∴点A、B、C不共线,∴三个点A(1,0)、B(0,﹣3)、C(2,﹣3)能确定一个圆.故答案为:能.【变式3-2】(2022•西城区期末)如图,在平面直角坐标系xOy中,点A,B,C的横、纵坐标都为整数,过这三个点作一条圆弧,则此圆弧的圆心坐标为 (2,1) .【分析】根据图形得出A、B、C的坐标,再连接AB,作线段AB和线段BC的垂直平分线MN、EF,两线交于Q,则Q是圆弧的圆心,最后求出点Q的坐标即可.【解答】解:从图形可知:A点的坐标是(0,2),B点的坐标是(1,3),C点的坐标是(3,3),连接AB,作线段AB和线段BC的垂直平分线MN、EF,两线交于Q,则Q是圆弧的圆心,如图,∴Q点的坐标是(2,1),故答案为:(2,1).【变式3-3】(2022•任城区校级月考)将图中的破轮子复原,已知弧上三点A,B,C.(1)画出该轮的圆心;(2)若△ABC是等腰三角形,底边BC=16cm,腰AB=10cm,求圆片的半径R.【分析】(1)根据垂径定理,分别作弦AB和AC的垂直平分线交点即为所求;(2)连接AO,OB,利用垂径定理和勾股定理可求出圆片的半径R.【解答】解:(1)如图所示:分别作弦AB和AC的垂直平分线交点O即为所求的圆心;(2)连接AO,OB,BC,BC交OA于D.∵BC=16cm,∴BD=8cm,∵AB=10cm,∴AD=6cm,设圆片的半径为R,在Rt△BOD中,OD=(R﹣6)cm,∴R2=82+(R﹣6)2,cm,解得:R=253cm.∴圆片的半径R为253【题型4 点与圆的位置关系】【例4】(2022秋•宜州区期末)如已知:如图,△ABC中,∠C=90°,AC=2cm,BC=4cm,CM是中线,以C长为半径画圆,则点A、B、M与⊙C的关系如何?【分析】点与圆的位置关系由三种情况:设点到圆心的距离为d,则当d=R时,点在圆上;当d>R时,点在圆外;当d<R时,点在圆内.【解答】解:根据勾股定理,有AB=cm);∵CA=2cm,∴点A在⊙O内,∵BC=4cm,∴点B在⊙C外;由中线定理得:CM=∴M点在⊙C上.【变式4-1】(2022春•龙湖区校级月考)⊙O的面积为25πcm2,⊙O所在的平面内有一点P,当PO =5cm 时,点P在⊙O上;当PO <5cm 时,点P在⊙O内;当PO >5cm 时,点P在⊙O外.【分析】根据圆的面积求出圆的半径,然后确定圆上点,圆内点以及圆外的到圆心的距离.【解答】解:因为圆的面积为25πcm2,所以圆的半径为5cm.当点P到圆心的距离等于5cm时,点P在⊙O上,此时OP=5cm.当点P到圆心的距离小于5cm时,点P在⊙O内,此时OP<5cm.当点P到圆心的距离大于5cm时,点P在⊙O外,此时OP>5cm.故答案分别是:PO=5cm,PO<5cm,PO>5cm.【变式4-2】(2022•广东模拟)如图,已知⊙A的半径为1,圆心的坐标为(4,3).点P(m,n)是⊙A 上的一个动点,则m2+n2的最大值为 36 .【分析】由于圆心A的坐标为(4,3),点P的坐标为(m,n),利用勾股定理可计算出OA=5,OP=这样把m2+n2理解为点P与原点的距离的平方,利用图形可得到当点P运动到射线OA上时,点P离圆点最远,即m2+n2有最大值,然后求出此时的PO长即可.【解答】解:作射线OA交⊙O于P′点,如图,∵圆心A的坐标为(4,3),点P的坐标为(m,n),∴OA5,OP=∴m2+n2是点P点圆点的距离的平方,∴当点P运动到P′处,点P离圆点最远,即m2+n2有最大值,此时OP=OA+AP′=5+1=6,则m2+n2=36.故答案为:36.【变式4-3】(2022秋•金牛区期末)如图.A(3,0).动点B到点M(3,4)的距离为1,连接BO,BO 的中点为C,则线段AC的最小值为 2 .【分析】先确定AC最小值时点B的位置:过B作BD∥AC交x轴于D,由图可知:当BD经过M时,线段BD的长最小,此时AC有最小值,根据勾股定理和三角形中位线定理可得AC的长.【解答】解:过B作BD∥AC交x轴于D,∵C是OB的中点,∴OA=AD,BD,∴AC=12∴当BD取最小值时,AC最小,由图可知:当BD经过M时,线段BD的长最小,此时AC有最小值,∵A(3,0),∴D(6,0),∵M(3,4),∴DM==5,∴BD=5﹣1=4,BD=2,即线段AC的最小值为2;∴AC=12故答案为:2.【题型5 圆中角度的计算】【例5】(2022•江宁区校级期中)如图,BD=OD,∠AOC=114°,求∠AOD的度数.【分析】设∠B=x,根据等腰三角形的性质,由BD=OD得∠DOB=∠B=x,再根据三角形外角性质得∠ADO=2x,则∠A=∠ADO=2x,然后根据三角形外角性质得2x+x=114°,解得x=38°,最后利用三角形内角和定理计算∠AOD的度数.【解答】解:设∠B=x,∵BD=OD,∴∠DOB=∠B=x,∴∠ADO=∠DOB+∠B=2x,∵OA=OD,∴∠A=∠ADO=2x,∵∠AOC=∠A+∠B,∴2x+x=114°,解得x=38°,∴∠AOD=180°﹣∠OAD﹣∠ADO=180°﹣4x=180°﹣4×38°=28°.【变式5-1】(2022•汉阳区校级月考)如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E.已知AB=2DE,∠AEC=25°,求∠AOC的度数.【分析】求∠AOC的度数,可以转化为求∠C与∠E的问题.【解答】解:连接OD,∵AB=2DE=2OD,∴OD=DE,又∵∠E=25°,∴∠DOE=∠E=25°,∴∠ODC=50°,同理∠C=∠ODC=50°∴∠AOC=∠E+∠OCE=75°.【变式5-2】(2022•金牛区期末)如图,AB为⊙O的直径,AD∥OC,∠AOD=84°,则∠BOC= 48° .【分析】根据半径相等和等腰三角形的性质得到∠D=∠A,利用三角形内角和定理可计算出∠A,然后根据平行线的性质即可得到∠BOC的度数.【解答】解:∵OD=OC,∴∠D=∠A,∵∠AOD=84°,(180°﹣84°)=48°,∴∠A=12又∵AD∥OC,∴∠BOC=∠A=48°.故答案为:48°.【变式5-3】(2022•大丰市月考)如图,直线l经过⊙O的圆心O,且与⊙O交于A、B两点,点C在⊙O 上,且∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于点Q.是否存在点P,使得QP=QO;若存在,求出相应的∠OCP的大小;若不存在,请简要说明理由.【分析】点P是直线l上的一个动点,因而点P与线段AO有三种位置关系,在线段AO上,点P在OB 上,点P在OA的延长线上.分这三种情况进行讨论即可.【解答】解:①根据题意,画出图(1),在△QOC中,OC=OQ,∴∠OQC=∠OCP,在△OPQ中,QP=QO,∴∠QOP=∠QPO,又∵∠AOC=30°,∴∠QPO=∠OCP+∠AOC=∠OCP+30°,在△OPQ中,∠QOP+∠QPO+∠OQC=180°,即(∠OCP+30°)+(∠OCP+30°)+∠OCP=180°,整理得,3∠OCP=120°,∴∠OCP=40°.②当P在线段OA的延长线上(如图2)∵OC=OQ,∴∠OQP=(180°﹣∠QOC)×1①,2∵OQ=PQ,∴∠OPQ=(180°﹣∠OQP)×1②,2在△OQP中,30°+∠QOC+∠OQP+∠OPQ=180°③,把①②代入③得∠QOC=20°,则∠OQP=80°∴∠OCP=100°;③当P在线段OA的反向延长线上(如图3),∵OC=OQ,∴∠OCP=∠OQC=(180°﹣∠COQ)×1①,2∵OQ=PQ,∴∠P=(180°﹣∠OQP)×1②,2∵∠AOC=30°,∴∠COQ+∠POQ=150°③,∵∠P=∠POQ,2∠P=∠OCP=∠OQC④,①②③④联立得∠P=10°,∴∠OCP=180°﹣150°﹣10°=20°.故答案为:40°、20°、100°.【题型6 圆中线段长度的计算】【例6】(2022•潮安区模拟)如图,在△ABC中,∠C=90°,AB=10.若以点C为圆心,CA长为半径的圆恰好经过AB的中点D,则⊙C的半径为( )A .B .8C .6D .5【分析】连结CD ,根据直角三角形斜边中线定理求解即可.【解答】解:如图,连结CD ,∵CD 是直角三角形斜边上的中线,∴CD =12AB =12×10=5.故选:D .【变式6-1】(2022•海港区校级自主招生)如图,圆O 的周长为4π,B 是弦CD 上任意一点(与C ,D 不重合),过B 作OC 的平行线交OD 于点E ,则EO +EB = 2 .(用数字表示)【分析】根据圆的周长公式得到OD =2,根据等腰三角形的判定和性质定理即可得到结论.【解答】解:∵⊙O 的周长为4π,∴OD =2,∵OC =OD ,∴∠C =∠D ,∵BE ∥OC ,∴∠EBD =∠C ,∴∠EBD =∠D ,∴BE =DE ,∴EO +EB =OD =2,故答案为:2.【变式6-2】(2022•龙湖区校级开学)如图,已知AB 是⊙O 的直径,C 是⊙O 上的一点,CD ⊥AB 于D ,AD <BD ,若CD =2cm ,AB =5cm ,求AD 、AC 的长.【分析】由直径AB =5cm ,可得半径OC =OA =12AB =52cm ,分别利用勾股定理计算AD 、AC 的长.【解答】解:连接OC ,∵AB =5cm ,∴OC =OA =12AB =52cm ,Rt △CDO 中,由勾股定理得:DO =32cm ,∴AD =52−32=1cm ,由勾股定理得:AC ==则AD 的长为1cm ,AC .【变式6-3】(2022秋•邗江区期中)如图,半圆O 的直径AB =8,半径OC ⊥AB ,D 为弧AC 上一点,DE ⊥OC ,DF ⊥OA ,垂足分别为E 、F ,求EF 的长.【分析】连接OD ,利用三个角是直角的四边形是矩形判定四边形DEOF 是矩形,利用矩形的对角线相等即可得到所求结论.【解答】解:连接OD .∵OC ⊥AB DE ⊥OC ,DF ⊥OA ,∴∠AOC =∠DEO =∠DFO =90°,∴四边形DEOF是矩形,∴EF=OD.∵OD=OA∴EF=OA=4.【题型7 圆相关概念的应用】【例7】(2022秋•南岗区校级期中)某中学原计划修一个半径为10米的圆形花坛,为使花坛修得更加美观,决定向全校征集方案,在众多方案中最后选出两种方案:方案A如图1所示,先画一条直径,再分别以两条半径为直径修两个圆形花坛;方案B如图2所示,先画一条直径,然后在直径上取一点,把直径分成2:3的两部分,再以这两条线段为直径修两个圆形花坛;(花坛指的是图中实线部分)(1)如果按照方案A修,修的花坛的周长是 .(保留π)(2)如果按照方案B修,与方案A比,省材料吗?为什么?(保留π)(3)如果按照方案B修,学校要求在5天内完成,甲工人承包了此项工程,甲每天能完成工程的1,他15做了1天后,发现不能完成任务,就请乙来帮忙,乙的速度是甲的2倍,乙加入后,甲的速度也提高了1,结果正好按时完成任务,若修1米花坛可得到10元钱,修完花坛后,甲,乙各得到多少钱?(π取23)【分析】(l)根据圆的周长公式:c=xd,把数据代入公式求此直径是10米的两个圆的周长即可.(2)首先根据圆的周长公式:c=元d,求出直径是4米、和6米的圆的周长和,然后与图1进行比较.(3)求出乙的钱数,再用总钱数﹣乙是钱数,可得结论.【解答】解:(1)10÷2=5(米),2π×5×2=20π(米).故答案为:20π米.=8(米),8÷2=4(米),(2)10×2=20(米),20×223=12(米),12÷2=6(米),20×323方案B花坛周长:2π(4+6)=20π(米),20π=20π,方案B与A周长一样,用的材料一样.×2×(5﹣1)×20π×10=320(元).(3)乙的钱数=115甲的钱数=20π×10﹣320=280(元),答:修完花坛后,甲,乙分别得到320元和280元.【变式7-1】(2022•南岗区期末)一个压路机的前轮直径是1.7米,如果前轮每分钟转动6周,那么这台压路机10分钟前进( )米.A.51πB.102πC.153πD.204π【分析】首先根据圆的周长公式C=πd,求出前轮的底面圆周长,然后用前轮的底面周长乘每分钟转的周数(6周),求出1分钟前进多少米,再乘工作时间10分钟即可.【解答】解:前轮的底面圆周长:π×1.7=1.7π(米),1.7π×6×10=102π(米)故选:B.【变式7-2】(2022•罗田县校级模拟)一个塑料文具胶带如图所示,带宽为1cm,内径为4cm,外径为7cm,已知30层胶带厚1.5mm,则这卷胶带长 51.81 m.(π≈3.14,结果保留4位有效数字)【分析】首先求出胶带的体积,用胶带的体积除以一米长的胶带的体积即可求得.【解答】解:4÷2=2(cm),7÷2=3.5(cm),胶带的体积是:π(3.52﹣22)•1=8.25πcm3=8.25π×10﹣6(m3),一米长的胶带的体积是:0.01×1×5×10﹣5=5×10﹣7(m3),因而胶带长是:(8.25π×10﹣6)÷(5×10﹣7)≈51.81(m).故答案为:51.81.【变式7-3】(2022•张店区期末)如图,大圆和圆的半径都分别是4cm和2cm,两圆外切于点C,一只蚂蚁由点A开始ABCDEFCGA的顺序沿着两圆圆周不断地爬行,其中各点分别是两圆周的四等分点,蚂蚁直到行走2010πcm后才停下来.则这只蚂蚁停在点 E .【分析】首先求得蚂蚁由点A开始ABCDEFCGA的顺序走一周的路线长,然后确定走2010πcm是走了多少周,即可确定.【解答】解:A开始ABCDEFCGA的顺序转一周的路径长是:8π+4π=12πcm,蚂蚁直到行走2010πcm所转的周数是:2010π÷12π=167…6π.即转167周以后又走了6πcm.从A到B得路长是:2π,再到C的路线长也是2π,从C到D,到E的路线长是2π,则从A行走6πcm 到E点.故答案是:E.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20 . 如 图 , 点 A , D , G , M 在 半 圆 O 上 , 四 边 形 ABOC , DEOF , HMNO均为矩形,设BC=a,EF=b,NH=c,则a,b,c的大小关系是 ___a_=__b_=__c___.
21.如图,射线OA经过⊙O的圆心,与⊙O相交于点A,点C在⊙O上,且 ∠AOC=30°,点P是射线OA上的一个动点( 与点O不重合),直线PC与 ⊙O相交于点B. (1)当点P在线段OA上,且满足BP=OB时,求∠OCP的度数; (2)当点P在线段OA的延长线上,且满足BP=OB时,求∠OCP的度数.
∵∠OBP

∠OCB.∵BP

OB

∴∠BOP

∠BPO

1 2
(180°-
∠OBP)=12(180°-∠OCB).由三角形的外角性质,得∠OCB=
知识点2:同圆的半径相等 8.如图,AB和CD都是⊙O的直径,∠AOC=50°,则∠C的度数是 (B ) A.20° B.25° C.30° D.50°
9.如图,⊙O的半径为4 cm,∠AOB=60°,则弦AB的长为 ____4____cm.
10.如图,OA,OB为⊙O的半径,C,D分别为OA,OB的中点, 求证:AD=BC.
九年级上册数学(人教版)
十四章 圆 24.1 24.圆1.1的圆有关性质
知识点1:圆的有关概念 1.以已知点O为圆心,已知线段a为半径作圆,可以作( A ) A.1个 B.2个 C.3个 D.无数个 2.下列说法正确的是( A ) A.直径是圆中最长的弦 B.弧是半圆 C.长度相等的弧是等弧 D.过圆心的线段是直径
6.已知⊙O中最长的弦为16 cm,则⊙O的半径为______8__cm.
7.如图,△ABC和△ABD都为直角三角形,且∠C=∠D=90°.求证: A,B,C,D四点在同一个圆上.
取AB的中点O,连接OC,OD,图略.∵△ABC和 △ABD都为直角三角形,且∠C=∠D=90°,∴DO, CO分别为Rt△ABD和Rt△ABC斜边上的中线,∴OA =OB=OC=OD,∴A,B,C,D四点在同一个圆 上.
17.如图,AB是⊙O的直径,点C在⊙O上,CD⊥AB,垂足为D,已 知CD=4,OD=3,则AB的长为_____1_0__.
18.如图,已知在△ABC中,点D是∠BAC的平分线上一点,BD⊥AD 于点D,过点D作DE∥AC交AB于点E,求证:点E是过A,B,D三点 的圆的圆心. 18.如图,∵点D在∠BAC的平分线上,∴∠1= ∠2.∵DE∥AC,∴∠1=∠3,∴∠2=∠3,∴AE= DE.∵BD⊥AD于点D,∴∠ADB=90°,∴∠EBD +∠2=∠EDB+∠3=90°,∴∠EBD=∠EDB, ∴BE=DE,∴AE=BE=DE,∴点E是过A,B,D 三点的圆的圆心.
易错点:对圆的有关概念理解不准确致误 12.下列命题中,正确的个数是( A) ①直径是弦,弦是直径;②弦是圆上的两点间的部分;③半圆是弧, 但弧不一定是半圆;④等于半径两倍的线段是直径. A.1 B.2 C.3 D.4
13 . 如 图 , AB 是 ⊙ O 的 直 径 , 点 C , D 在 ⊙ O 上 , ∠ BOC = 110° , AD∥OC,则∠AOD等于( D ) A.70° B.60° C.50° D.40°
(1)当点 P 在线段 OA 上时,在△ BOC 中,OC=OB,∴∠OBC
=∠OCB.在△ OPB 中,BP=OB,∴∠BOP=∠BPO.又∵∠BPO
=∠OCB+∠AOC,∠AOC=30°, ∠BOP+∠BPO+∠OBC=
180°,∴3∠OCP=120°,∴∠OCP=40°.
(2)当点 P 在线段 OA 的延长线上时,如图,∵OC=OB,
3.如图,点A,O,D以及点B,O,C分别在一条直线上,则圆中 弦的条数是( B )
A.2 B.3 C.4 D.5
4.已知A,B是半径为5 cm的⊙O上两个不同的点,则弦AB的取值范
围是( D) A.AB>0 B.0<AB<5 cm
C.0<AB<10 cm D.0<AB≤10 cm 5 . 如 图 , 在 ⊙ O 中 , 直 径 有 _____A__B_____ , 弦 有 _A__B_,__B_C_ , 劣 弧 有 __A︵_C_,优弧有__,___,___,___,_______.
14.在半径为1的⊙O中,弦AB长 ,2 则∠AOB的度数为( C) A.45° B.60° C.90° D.120° 15.下列四边形:①平行四边形;②菱形;③矩形;④正方形.其中 四个顶点一定能在同一个圆上的有( B) A.1个 B.2个 C.3个 D.4个
16 . 如 图 , ⊙ O 的 直 径 AB 与 弦 CD 的 延 长 线 交 于 点 E , 若 DE = OB , ∠AOC=84°,则∠E等于( B ) A.42° B.28° C.21° D.20°
∵C,D分别为OA,OB的中点,OA=OB, ∴OD=OC,又∵∠O=∠O, ∴△AOD≌△BOC(SAS),∴AD=BC.
11.如图,点O是同心圆的圆心,大圆的半径OA,OB分别交小圆于点 C,D,求证:AB∥CD.
∵OC=OD,OA=OB,∴∠OCD=∠ODC,∠OAB = ∠OBA. 又 ∵∠OCD + ∠ODC + ∠O = 180°, ∠OAB+∠OBA+∠O=180°,∴∠OCD=21(180°- ∠O),∠OAB=21(180°-∠O),∴∠OCD=∠OAB, ∴AB∥CD.
19.已知MN为直径,ABCD,EFGD是正方形,小正方形的面积为16,
求圆的半径.
19.如图,连接 OC,OF,设 AD=2x,∵CO2 =DO2+CD2,∴x2+(2x)2=r2,∵OF2=OG2+FG2, ∴r2=(x+4)2+42=x2+8x+32,∴x2+(2x)2=x2+8x +32,解得 x1=4,x2=-2(舍去),∴r2=5×42,r= 4 5.
相关文档
最新文档