Multisim实验报告
电路仿真实验报告

Multisim模拟电路仿真实验1.实验目的(1)学习用Multisim实现电路仿真分析的主要步骤。
(2)用仿真手段对电路性能作较深入的研究。
2.实验内容实验19-1 基本单管放大电路的仿真研究(2)静态工作点理论上,由V E=1.2V得:I E=V E/(R E1+R E2)=1mA,I B=I E/(β+1)=16.39uA,I C=βI B=0.9836mA;U CE=Vcc- I C*Rc-V E=7.554V。
实测值I B =13.995uA,Ic=0.9916mA,U CE=7.521V;相对误差分别为14.63%,0.817%,0.438%(3)电压放大倍数理论值r be=1.886kΩ,Au=-14.0565实测值Au=-13.8476,相对误差1.486%(4)波特图观察电压放大倍数为Au=-13.8530,下限截止频率为17.6938Hz,上限截止频率为18.07MHz,带宽为18.07MHz。
(5)用交流分析功能测量幅频和相频特性。
(6)加大输入信号强度,观测波形失真情况。
失真度为31.514%(7)测量输入电阻、输出电阻。
测输入电阻:U rms=1.00mV,I rms=148nA,则输入电阻R i= U rms/I rms=6.757kΩ;测输出电阻:空载时U oO=14.0mV,带载时U oL=10.6mV,R L=10kΩ,则输出电阻R o=(U oO/U oL-1)* R L =3.208kΩ(8) 将R E1去掉,R E2=1.2kΩ,重测电压放大倍数,上下限截止频率及输入电阻,对比说明R E1对这三个参数的影响。
测得放大倍数Au=-95.2477,下限截止频率为105.7752Hz,上限截止频率为18.9111MHz,带宽为18.9110MHz,输入电阻R i=1.859kΩ。
由表易知,去掉R E1后电压放大倍数变大;上下截止频率都略有增加,通频带变宽;输入电阻变小。
Multisim电路仿真实验报告(实验1.2)

Multisim电路仿真实验报告(实验1.2)实验⼀1.电路图
1
2
电容c1和电阻R2交换后
3. 逻辑分析仪和字信号发⽣器的使⽤
实验⼆
1.
静态⼯作点分析
IBQ=12.954uA ICQ=2.727mA
结合电路图可知:UBQ=3.39196V,UCQ=6.54870V,所以三极管的放⼤倍数:β= ICQ/IBQ =210
2.估算出该电路的放⼤倍数Av
从仿真结果中得到:
Uo=1.94895V, Ui=0.014V.
从⽽估算出该电路的放⼤倍数:Av=139
对两电路的带负载能⼒进⾏⽐较
3.1
由以上两个仿真图可知,放⼤电路2⽐放⼤电路1带负载能⼒更强。
⽽放⼤电路的带负载能⼒受其输出电阻影响,输出电阻越⼩,带负载能⼒越强。
由后⾯的计算可知放⼤电路2的输出电阻更⼩,因⽽其带负载能⼒⽐放⼤电路1强。
因此仿真实验结果符合理论要求。
3.2 对电路1和2分别作温度扫描分析
3.3 测试电路1和2
的输⼊和输出阻抗
电路1
输⼊电阻的测试电路图及测试结果
电路1输出电阻的测试电路图及测试结果由以上实验结果算出电路1的输⼊阻抗1264kΩ,输出阻抗为1.92kΩ
电路2
输⼊电阻的测试电路图及测试结果
电路2输出电阻的测试电路图及测试结果
由以上实验结果算出电路1的输⼊阻抗5.9kΩ,输出阻抗为4.8Ω
放⼤电路1是放⼤电路2的电流串联负反馈形式,电流串联负反馈的作⽤是增⼤输⼊输出电阻。
电子技术实验报告(Multisim的应用)

实验报告(一)
课程名称:电子技术
实验项目:multisim的基本使用
专业班级:机电
姓名:座号:09
实验地点:仿真室
实验时间:
指导老师:成绩:
一.实验目的:
了解multisim7软件界面各分区的功能;
掌握电路创建方法与基本测试方法;
掌握虚拟仪器万用表、示波器、函数发生器的使用方法。
二.实验内容:
一、电路创建与基本测试
二、常用虚拟仪器的使用
三.实验步骤:一、电路创建与基本测试
1.创建电路1-1,测试开关闭合与断开时电路中发光二极管的状态。
2.创建电路1-2,测试R1和R2及电源的电压。
改变R1或R2的值为2K,再次观察结果。
电路创建的步骤为:
1、调用元器件
2、电路连接
3、电路文件存盘
4、电路功能测试
二、常用虚拟仪器的使用
1.万用表
(1)创建电路2-3
电路2-3
(2)分别测试电路2-3中三个小电路中的电流、电压和电阻
2.函数发生器与示波器
(1)创建电路2-4
电路2-4
(2)将XFG1设置成500Hz,10V的方波,XFG2设置成1KHz,10V 的方波,观察示波器的波形。
四.实验总结:
1.说明电路创建的步骤有那些?
答:调用元器件、电路连接、电路文件存储、电路功能测试
2.说明如何放置电路所需的元器件(以12V直流电压源为例)。
答:先找出12V直流电压源放置,再找出所需元件隔一些距离放置,然后从电压源引出电线与所需元件连接起来,组成一个闭合回路,其次检查电路的接线是否正确,最后调整电路元件位置使其电路更直观。
学生签名:
年月日。
Multisim电路仿真实验报告

Multisim电路仿真实验报告谢永全1 实验目的:熟悉电路仿真软件Multisim的功能,掌握使用Multisim进行输入电路、分析电路和仪表测试的方法。
2使用软件:NI Multisim student V12。
(其他版本的软件界面稍有不同)3 预习准备:提前安装软件熟悉其电路输入窗口和电路的编辑功能、考察其元件库中元件的分类方式、工具栏的定制方法、仪表的种类、电路的分析方法等;预习实验步骤,熟悉各部分电路。
4熟悉软件功能(1)了解窗口组成:主要组建包括:电路图编辑窗口、主菜单、元件库工具条、仪表工具条。
初步了解各部分的功能。
(2)初步定制:定制元件符号:Options|Global preferences,选择Components标签,将Symbol Standard区域下的元件符号改为DIN。
自己进一步熟悉全局定制Options|Global preferences窗口中各标签中的定制功能。
(3)工具栏定制:选择:View|Toolbars,从显示的菜单中可以选择显示或者隐藏某些工具栏。
通过显示隐藏各工具栏,体会其功能和工具栏的含义。
关注几个主要的工具栏:Standard(标准工具栏)、View(视图操作工具栏)、Main(主工具栏)、Components(元件工具栏)、Instruments (仪表工具栏)、Virtual(虚拟元件工具栏)、Simulation(仿真)、Simulation switch(仿真开关)。
(4)Multisim中的元件分类元件分两类:实际元件(有模型可仿真,有封装可布线)、虚拟元件(有模型只能仿真、没有封装不能布线)。
另有一类只有封装没有模型的元件,只能布线不能仿真。
在本实验中只进行仿真,因此电源、电阻、电容、电感等使用虚拟元件,二极管、三极管、运放和其他集成电路使用实际元件。
元件库的结构:元件库有三个:Master database(主库)、Corporate database(协作库)和User database(用户库)。
MultiSIM仿真实验基础_实验报告模版

Multisim仿真实验基础一、实验目的1.学习Multisim分析调试电路。
2.掌握放大器静态工作点调试方法以及对放大器性能影响;测试最大不失真输出电压3.学习测试放大电路的影响二、实验电路和内容1、改变电位器值,使得基极电位为1.15v。
此时用直流分析方法得到三极管三个电位和电流;去掉旁路电容后重复测量。
2、对电路最瞬态分析,比较输入输出信号的相位。
去掉r6后再做瞬态分析。
3、对电路作交流分析4、逐渐增大输入信号的幅度,记录输入信号不失真的最大值5、对r1进行参数扫描,电阻值为80k,100k,200k,300k,观察瞬间特性6、对r3进行参数扫描,电阻值为5k,15k,20k,50k,观察瞬间特性7、对电路进行温度扫描,观察-20度,0度,27度,50度,100度的瞬间特性,讨论温度对静态工作点的影响压控振荡器一、 实验目的1、 掌握multisim 仿真软件的使用,并能进行电路的分析和调试2、 了解压控振荡器的原理、组成及调试方法二、 实验原理调节可变电阻或可变电容可以改变波形发生电路的振荡频率,一般是通过人的手来调节的。
而在自动控制等场合往往要求能自动地调节振荡频率。
常见的情况是给出一个控制电压(例如计算机通过接口电路输出的控制电压),要求波形发生电路的振荡频率与控制电压成正比。
这种电路称为压控振荡器,又称为VCO 或u-f 转换电路。
利用集成运放可以构成精度高、线性好的压控振荡器。
下面介绍这种电路的构成和工作原理,并求出振荡频率与输入电压的函数关系。
1、电路的构成及工作原理怎样用集成运放构成压控振荡器呢?我们知道积分电路输出电压变化的速率与输入电压的大小成正比,如果积分电容充电使输出电压达到一定程度后,设法使它迅速放电,然后输入电压再给它充电,如此周而复始,产生振荡,其振荡频率与输入电压成正比。
即压控振荡器。
图2.9.1就是实现上述意图的压控振荡器(它的输入电压U i >0)。
图2.9.1所示电路中A 1是积分电路,A 2是同相输入滞回比较器,它起开关作用。
multisim 实验报告

multisim 实验报告Multisim 实验报告引言:Multisim 是一款电子电路仿真软件,可用于设计、分析和验证各种电子电路。
本实验旨在使用 Multisim 软件对不同类型的电路进行仿真,并通过实验结果和分析,深入了解电子电路的工作原理和性能。
一、直流电路实验1.1 电压分压器电路仿真电压分压器是一种常见的电路,能将输入电压分为不同比例的输出电压。
通过Multisim 软件,我们可以模拟不同电阻值下的电压分压情况,并观察输出电压与输入电压的关系。
1.2 电流分流器电路仿真电流分流器是一种能将输入电流分为不同比例的输出电流的电路。
通过Multisim 软件,我们可以模拟不同电阻值下的电流分流情况,并观察输出电流与输入电流的关系。
二、交流电路实验2.1 RC 电路仿真RC 电路是由电阻和电容组成的简单交流电路。
通过 Multisim 软件,我们可以模拟不同电阻和电容值下的交流电路响应情况,并观察电压和电流的变化。
2.2 RLC 电路仿真RLC 电路是由电阻、电感和电容组成的复杂交流电路。
通过 Multisim 软件,我们可以模拟不同电阻、电感和电容值下的交流电路响应情况,并观察电压和电流的变化。
三、数字电路实验3.1 逻辑门电路仿真逻辑门是数字电路中常见的基本组件,用于实现逻辑运算。
通过Multisim 软件,我们可以模拟不同逻辑门的输入和输出情况,并观察逻辑门的工作原理。
3.2 计数器电路仿真计数器是一种能够进行计数操作的电路。
通过 Multisim 软件,我们可以模拟不同计数器的计数过程,并观察计数器的工作状态和输出结果。
结论:通过 Multisim 软件的实验仿真,我们深入了解了不同类型的电子电路的工作原理和性能。
通过观察和分析实验结果,我们可以更好地理解电路中的各种参数和元件的作用,为电子电路设计和分析提供了有力的工具和支持。
通过不断实践和探索,我们可以进一步提高对电子电路的理解和应用能力,为实际电路设计和故障排除提供更加准确和可靠的解决方案。
multisim实验四实验报告

multisim实验四实验报告仲恺农业⼯程学院实验报告纸__⾃动化学院_(院、系)__⼯业⾃动化__专业__144_班_电⼦线路计算机仿真课程实验四:触发器及其应⽤仿真实验⼀、实验⽬的1.掌握集成JK触发器和D触发器的逻辑功能及其使⽤⽅法。
2.熟悉触发器之间相互转换的设计⽅法。
3.熟悉Multisim中逻辑分析仪的使⽤⽅法。
⼆、实验设备PC机、Multisim仿真软件。
三、实验内容1.双JK触发器74LS112逻辑功能测试(1)创建电路创建如下图所⽰电路,并设置电路参数。
图4-1 74LS112逻辑功能测试(2)仿真测试①J1和J5分别74LS112的异步复位端输⼊,J2和J4分别为J、K数据端输⼊,J3为时钟端输⼊,X1和X2指⽰74LS112的输出端Q和Q_的状态。
②异步置位和异步复位功能测试。
闭合仿真开关拨动J1为“0”、J5为“1”,其他开关⽆论为何值,则74LS112被异步置“1”,指⽰灯X1亮,X2灭。
理解异步置位的功能。
拨动J1为“1”、J5为“0”,其他开关⽆论为何值,则74LS112被异步清“0”,指⽰灯X1灭,X2灭,理解异步复位的功能。
③74LS112逻辑功能测试⾸先拨动J1和J5,设定触发器的初态。
接着,拨动J1和J5均为“1”,使74LS112处于触发器⼯作状态。
然后,拨动J2-J4,观察指⽰灯X1和X2亮灭的变化,尤其注意观察指⽰灯令亮灭变化发⽣的时刻,即J3由“1”到“0”变化的时刻,从⽽掌握下降沿触发的集成边沿JK触发器的逻辑功能。
如下图所⽰:图4-2 JK触发器逻辑功能测试设定触发器的初态为Q = 1。
将J2置1后,再将J3置1,可以观察到此时触发器状态并⽆改变。
将J3清0,观察到输出Q = 1。
同样的,将J2清0,同时将J4置1,在J3由1->0的时刻,可以观察到Q = 0。
2.JK触发器构成T触发器(1)创建电路创建如图所⽰电路,并设置电路参数。
图4-3 74LS112构成T触发器(2)仿真测试①闭合仿真开关。
电子电路multisim仿真实验报告

电子电路multisim仿真实
验报告
班级:XXX
姓名:XXX
学号:XXX
班内序号:XXX
一:实验目的
1:熟悉Multisim软件的使用方法。
2:掌握放大器静态工作点的仿真方法及其对放大器性能的影响。
3:掌握放大电路频率特性的仿真方法。
二:虚拟实验仪器及器材
基本电路元件(电阻,电容,三极管)双踪示波器波特图示仪直流电源
三:仿真结果
(1)电路图
其中探针分别为:
探针一探针二
(2)直流工作点分析。
(3)输入输出波形
A通道为输入波形B通道为输出波形
四:实验流程图
开始
选取实验所需电路元件
及测量工具
合理摆放元件位置并连
接电路图
直流特性分析
结束
五:仿真结果分析
(1)直流工作点
电流仿真结果中,基极电流Ib为7.13u,远小于发射极和集电极,而发射极和集电极电流Ie和Ic近似相等,与理论结果相吻合。
电压仿真结果中,基极与发射极的电位差Vbe经过计算约为0.625V,符合三极管的实际阈值电压,而Vce约为5.65V。
以上数据均满足放大电路的需求,所以电路工作在放大区。
(2)示波器图像分析
示波器显示图像中,A路与B路反相,与共射放大电路符合。
六:总结与心得
这次的仿真花费了大量时间,主要是模块的建立。
经过本次的电子电路仿真实验,使我对计算机在电路实验中的应用有了更为深刻的认识,对计算机仿真的好处有了进一步的了解。
仿真可以大大的减轻实验人员的工作负担,同时更可以极大的提升工作效率,事半功倍,所以对仿真的学习是极为必要的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一单级放大电路一、实验目的1、熟悉multisim软件的使用方法2、掌握放大器静态工作点的仿真方法及其对放大器性能的影响3、学习放大器静态工作点、放大电压倍数、输入电阻、输出电阻的仿真方法,了解共射极电路的特性二、虚拟实验仪器及器材双踪示波器、信号发生器、交流毫伏表、数字万用表三、实验步骤4、静态数据仿真电路图如下:当滑动变阻器阻值为最大值的10%时,万用表示数为2.204V。
仿真得到三处节点电压如下:则记录数据,填入下表: 仿真数据(对地数据)单位:V计算数据 单位:V 基极V (3) 集电极V (6) 发射级V (7) Vbe Vce Rp 2.833876.126732.204360.629513.9223710K Ω5、 动态仿真一(1)单击仪器表工具栏中的第四个(即示波器Oscilloscope ),放置如图所示,并且连接电路。
(注意:示波器分为两个通道,每个通道有+和-,连接时只需要连接+即可,示波器默认R151kΩR25.1kΩR320kΩR41.8kΩR5100kΩKey=A 10 %V110mVrms 1000 Hz 0°V212 VC110µFC210µFC347µF2Q12N2222A 3R7100Ω81XSC1ABExt Trig++__+_746R61.5kΩ5的地已经接好。
观察波形图时会出现不知道哪个波形是哪个通道的,解决方法是更改连接的导线颜色,即:右键单击导线,弹出,单击wire color,可以更改颜色,同时示波器中波形颜色也随之改变)(2)右键V1,出现properties,单击,出现对话框,把voltage的数据改为10mV,Frequency的数据改为1KHz,确定。
(3)单击工具栏中运行按钮,便可以进行数据仿真。
(4)双击XSC1A B Ext Trig++_ _+_图标,得到如下波形:电路图如下:示波器波形如下:由图形可知:输入与输出相位相反。
6、 动态仿真二(1)删除负载电阻R6,重新连接示波器如图所示(2)重新启动仿真,波形如下:R151kΩR25.1kΩR320kΩR41.8kΩR5100kΩKey=A 10 %V110mVrms 1000 Hz 0°V212 VC110µFC210µFC347µF 2Q12N2222A 3R7100Ω81XSC1ABExt Trig++__+_74056记录数据如下表:(注:此表RL 为无穷) 仿真数据(注意 填写单位) 计算 Vi 有效值 Vo 有效值Av 9.9914mV89.80256mV8.988R15.1kΩR251kΩR320kΩR41.8kΩC110uFC210uFR6100kΩKey=A 10%V110mVrms 1kHz 0°V212 VQ12N2222AC347uF1354R7100Ω6XMM18XSC1A BExt Trig++__+_2R55.1kΩ7仿真数据(注意填写单位) 计算 RL Vi Vo Av 5.1K Ω 9.994mV 193.536mV 19.3536 330Ω9.994mV24.314mV2.433(4)其他不变,增大和减小滑动变阻器的值,观察Vo 的变化,并记录波形:综上可得到下列表格:动态仿真三1、测输入电阻Ri,电路图如下在输入端串联一个5.1千欧的电阻,如图所示,并且连接一个万用表,如图连接。
启动仿真,记录数据,并填表。
万用表的示数如下:则填表如下:2、测量输出电阻Ro如图所示:*万用表要打在交流档才能测试数据,其数据为VL。
电路图及万用表示数如下:R15.1kΩR251kΩR320kΩR41.8kΩC110uFC210uFR6100kΩKey=A 50%V110mVrms 1kHz 0°V212 VQ12N2222A C347uF354R7100Ω6R55.1kΩR85.1kΩ1892XMM17如图所示:*万用表要打在交流档才能测试数据,其数据为V0 则可得下表:仿真数据计算VL VO RO 117.633mV 233.339mV5.016K Ω思考题:1、 画出电路如下:R175ΩR2100ΩV115 V V215 VQ12N3904Q22N3906340U1DC 10M W0.403V+-U2DC 10M W0.294V+-0XFG12XSC1A BExt Trig++__+_162、 第一个单击,第二个单击。
3、双击该原件,进行参数修改。
4、波形如下:实验心得:通过本次实验学会了Multisim 基本操作,学到如何翻转元件、连线以及一些测试工具如示波器、万用表等。
借助于这个软件,以后很多现象可以不用通过实际实验进行验证,直接在计算机上就可以完成,较为方便。
实验二 射极跟随器画出电路图如下:V13000mVrms 1kHz 0°V212 VR182kΩR21.8kΩR31.8kΩQ12N2222A C110uFC210uF123560射极输出波形如下:选取一个区域放大如下:设备扫描参数如下:则max y 和min y 差距最小时rr1=138667Ω,则将R1阻值更改为138K Ω。
改后图如下:V13000mVrms 1kHz 0°V212 VR1138kΩR21.8kΩR31.8kΩC110uFC210uF160Q12N2222A253直流仿真得如下图:则可填写下表:Vb Vc Ve Ie=Ve/Re 9.00664V12.00000V8.33900V4.63278mA万用表档位在交流档上,数据填入下表:Vi Vo Av=Vo/Vi3V 2.924V 0.9747根据分压公式可以计算输入电阻,得到下表:Vs Vi Ri=Vi*Rs/(Vs-Vi)3V 2.802V 72.1727KΩ(开关断开时,测Vo)(开关闭合时,测VL)记录到下表:Vo VL Ro=(Vo-VL)*RL/VL2.988V 2.924V 39.4Ω思考题:1、电路图如下:V1120 Vrms 60 Hz 0°T1TS_PQ4_10D11B4B421243C110uFR11kΩ234XSC1A BExt Trig++__+_15输入与输出的波形如下:2、分析射极跟随器的性能和特点:射极跟随器件可以将输入电压近似保留的输出,即电压增益Av为1,输出电阻很小大概几十欧,输入电阻很大大概几十千欧。
实验心得:本次实验模拟了射极跟随器,更好地理解了射极跟随器的性能和特点,了解了如何估算集电极静态工作点的电阻,并得到了电压增益,输入、输出电阻等值同时对Multisim 软件的操作更加熟练了。
实验三 负反馈放大电路画出电路图如下:V15mVrms 1kHz 0°V212 VR151kΩR224kΩR33kΩR41.8kΩR5100ΩR620kΩR747kΩR81kΩR93kΩR105.1kΩR111.5kΩR123kΩR13100ΩC110uF2J1Key = A C210uF7C310uFC410uF11C510uFC612J2Key = A135Q12N2222A Q22N2222A 8103461490151静态直流仿真结果如下图:则记录到下表:三极管Q1三极管Q2Vb Vc Ve Vb Vc Ve 3.71629V7.16460V3.07682V3.41389V4.50264V2.76222V开环RL=∞电路图和万用表示数如下:开环RL=1.5k电路图和万用表示数如下:闭环RL=无穷电路图和万用表示数如下:闭环RL=1.5k电路图和万用表示数如下:则记录下表:RL图中R11 Vi Vo Av 开环RL=无穷(S2开) 3.294mV 1.443V 438.1 RL=1.5K(S2闭) 3.293mV 548.442mV 166.5 闭环RL=无穷(S2开) 3.745mV 102.548mV 27.4 RL=1.5K(S2闭) 3.694mV 91.534mV 24.8下一步检查负反馈对失真的改善,将记录到的波形填入下表:在开环情况下适当加大Vi的大小,使其输出失闭合开关S1,并记录波形真,记录波形波形下一步测试放大频率特性,得到输出端的幅频特性如下:开环时:闭环时:则填入下表:开环闭环图形图形fL fH fL fH 212.5248Hz357.0302kHz222.1684Hz1.3244MHz思考题:分析如下的幅频特性和输出波形。
开关接电阻时,输出波形与幅频特性如下:V112 Vrms 1kHz 0°R151ΩR251ΩR936kΩR1068kΩRc110kΩRb110kΩR85.1kΩR710kΩ02Q12N2714Q22N271414Rc210kΩ6V212 V 5R610kΩKey=A50%78Rb210kΩ39J1Key = Space1011Q32N27141314V312XSC1ABExt T rig++__+_15开关接三极管时,波形和幅频特性如下:V112 Vrms1kHz0°R151ΩR251ΩR936kΩR1068kΩRc110kΩRb110kΩR85.1kΩR710kΩ2Q12N2714Q22N271414Rc210kΩ6V212 V50R610kΩKey=A50%78Rb210kΩ39J1Key = Space1011Q32N27141314V3120XSC1A BExt T rig++__+_15实验心得:学会了用Multisim 进行幅频特性分析,并且更好地理解了负反馈的作用,即牺牲增益来换取更大的频带,使输出尽量不失真。
实验四 差动放大电路调节放大器零点。
电路图以及万用表示数如下:J1Key = AR110kΩR610kΩ1Q12N2222A 2R210kΩQ22N2222A R8100ΩKey=A 50%67J3Key = Space 8R35.1kΩR910kΩQ32N2222A91011R710kΩ13J2Key = A14R436kΩ012R568kΩ415XMM135万用表示数较接近于0当开关S3在左端时,静态电压仿真如下:当开关S3在第二时,静态电压仿真如下:将所测数据填入下表:测量值Q1 Q2 R9C B E C B E US3在左端 6.36V -26.11mV -637.66mV 6.36V -26.11mV -637.66mV 11.33V S3在第二 4.71V -34.16mV -652.87mV 4.71V -34.16mV -652.87mV 0下一步,测量差模电压放大倍数。
更改后电路如下:(1) 典型差动放大电路单端输入:V112 VV212 VR110kΩR610kΩQ12N2222A 2R210kΩQ22N2222A R8100ΩKey=A 50%67J3Key = Space 8R35.1kΩR910kΩQ32N2222A91011R710kΩ13J2Key = A14R436kΩ012R568kΩ415V3100mVrms 1kHz 0° 10XMM13XMM250万用表示数如下:(2)、恒流源差动放大电路单端输入:万用表示数如下:(3)、典型差动放大电路共模输入:万用表示数如下:V112 V V212 VR110kΩR610kΩQ12N2222A 2R210kΩQ22N2222A R8100ΩKey=A 50%67J3Key = Space 8R35.1kΩR910kΩQ32N2222A91011R710kΩ13J2Key = A14R436kΩ012R568kΩ415V3100mVrms 1kHz 0° 1XMM13XMM25V112 VV212 VR110kΩR610kΩQ12N2222A 2R210kΩQ22N2222A R8100ΩKey=A 50%67J3Key = Space 8R35.1kΩR910kΩQ32N2222A91011R710kΩ13J2Key = AR436kΩ012R568kΩ415V31 Vrms 1kHz 0° 0XMM13XMM2514(4)、恒流源差动放大电路共模输入:V112 VV212 VR110kΩR610kΩQ12N2222A2R210kΩQ22N2222AR8100ΩKey=A50%67J3Key = Space8R35.1kΩR910kΩQ32N2222A91011R710kΩ13J2Key = AR436kΩ12R568kΩ415V31 Vrms1kHz0°XMM13XMM2514万用表示数如下:综上,可得到以下表格:典型差动放大电路恒流源差动放大电路单端输入共模输入单端输入共模输入Ui 100mV 1V 100mV 1VUc1 3.196V 493.483mV 3.487V 1.673mVUc2 3.147V 493.486mV 3.487V 1.673mV Ad1=Uc1/Ui 31.96 无34.87 无Ad=Uo/Ui 63.43 无69.74 无Ac1=Uc1/Ui 无0.493486 无0.001673 Ac=Uo/Ui 无0 无0 CMRR=|Ad1/Ac1| 64.76 20842.80思考题:1、 由上表可知,当差动放大电路接入恒流源时,CMRR 将有明显的提高。