最新苏教版五年级下册数学知识点总结归纳

合集下载

【精品】苏教版数学五年级下册知识点归纳总结(全册)

【精品】苏教版数学五年级下册知识点归纳总结(全册)

苏教版五年级(下册)数学知识要点归纳第一单元简易方程1、表示相等关系的式子叫做等式。

含有未知数的等式是方程。

例:x+50=150、2x=200方程一定是等式;等式不一定是方程。

3、等式的性质:①等式两边同时加上或减去同一个数,所得结果仍然是等式。

②等式两边同时乘或除以同一个不等于0的数,所得的结果任然是等式。

4、使方程左右两边相等的未知数的值叫做方程的解。

求方程中未知数的过程,叫做解方程。

5、解方程60-4X=20,解4X=60-204X=40X=10检验: 把X=10代入原方程, 左边=60-4×10=20,右边=20,左边=右边,所以X=10是原方程的解。

方程左边=60-4×10=20=方程右边,所以X=10是方程的解。

6、解方程时常用的关系式:一个加数=和-另一个加数减数=被减数-差被减数=减数+差一个因数=积÷另一个因数除数=被除数÷商被除数=商×除数五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。

奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数8、四个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间两个数或首尾两个数的和×个数÷2(高斯求和公式)9、列方程解应用题的思路:A、审题并弄懂题目的已知条件和所求问题,B、理清题目的等量关系,C、设未知数,一般是把所求的数用X表示,D、根据等量关系列出方程,E、解方程,F、检验,G、作答。

注意:解完方程,要养成检验的好习惯。

第二单元折线统计图1、复式折线统计图从复式折线统计图中,不仅能看出数量的多少和数量增减变化的情况,而且便于这两组相关数据进行比较。

2、作复式折线统计图步骤:①写标题和统计时间;②注明图例(实线和虚线表示);③分别描点、标数;④实线和虚线的区分(画线用直尺)。

注意:先画表示实线的统计图,再画虚线统计图。

苏教版五年级下册数学知识点汇总

苏教版五年级下册数学知识点汇总

苏教版五年级下册数学知识点汇总第一单元:方程•等式的性质:•理解等式的意义,掌握等式的基本性质(等式两边同时加上或减去同一个数,等式仍然成立;等式两边同时乘或除以同一个不为0的数,等式仍然成立)。

•简易方程:•初步理解方程的意义,知道方程是含有未知数的等式。

•学会用等式的性质解简易方程(如ax=b,a≠0;ax±b=c等形式),并会检验。

•列方程解决实际问题:•学习根据题目中的等量关系列方程解决简单的实际问题,如和差倍问题、简单的行程问题等。

第二单元:折线统计图•折线统计图的认识:•认识折线统计图,理解折线统计图的特点(能清楚地看出数量的增减变化情况)。

•绘制折线统计图:•学会根据统计表中的数据绘制折线统计图,注意标出图例、单位等。

•分析折线统计图:•能根据折线统计图中的数据进行分析,预测趋势,解决简单问题。

第三单元:因数与倍数•因数与倍数的概念:•理解因数与倍数的概念,知道一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身;一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。

•找因数与倍数的方法:•掌握找一个数的因数和倍数的方法,学会用列举法找出一个数的所有因数或倍数。

•2、3、5的倍数的特征:•掌握2、3、5的倍数的特征,并能运用这些特征进行判断或解决问题。

•质数与合数:•理解质数与合数的概念,知道1既不是质数也不是合数,会判断一个数是质数还是合数。

第四单元:分数的意义和性质•分数的意义:•进一步理解分数的意义,知道分数表示的是整体与部分的关系。

•分数与除法的关系:•理解分数与除法的关系,知道被除数相当于分数的分子,除数相当于分数的分母,除号相当于分数线,商相当于分数值。

•分数的基本性质:•掌握分数的基本性质(分数的分子和分母同时乘或除以同一个不为0的数,分数的大小不变)。

•约分与通分:•学会约分和通分的方法,能将分数化为最简分数或进行通分以便比较大小或进行加减运算。

【苏教版】五年级数学下册知识要点

【苏教版】五年级数学下册知识要点

苏教版数学五年级下册知识要点第一单元简易方程1、表示相等关系的式子叫做等式。

2、含有未知数的等式是方程。

3、方程一定是等式;等式不一定是方程。

等式>方程4、等式两边同时加上或减去同一个数,所得结果仍然是等式。

这是等式的性质。

5、使方程左右两边相等的未知数的值叫做方程的解。

6、求方程中未知数的过程,叫做解方程。

7、检验格式:60-4X=20解4X=60-204X=40X=10检验:把X=10代入原方程,左边=60-4×10=20,右边=20,左边=右边,所以,X=10是原方程的解.检验:方程左边=60-4×10=20=方程右边所以,X=10是方程的解8、解方程时常用的关系式:一个加数=和-另一个加数被减数=减数+差减数=被减数-差一个因数=积÷另一个因数除数=被除数÷商被除数=商×除数五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。

奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数10、4个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间两个数或首尾两个数的和×个数÷2(高斯求和公式)11、列方程解应用题的思路:A、审题并弄懂题目的已知条件和所求问题。

B、理清题目的等量关系。

C、设未知数,一般是把所求的数用X表示。

D、根据等量关系列出方程E、解方程F、检验G、作答。

注意:解完方程,要养成检验的好习惯。

第二单元折线统计图1、从复式折线统计图中,不仅能看出数量的多少和数量增减变化的情况,而且便于这两组相关数据进行比较。

2、作复式折线统计图步骤:①写标题和统计时间;②注明图例(实线和虚线表示);③分别描点、标数;④实线和虚线的区分(画线用直尺)。

注意:先画表示实线的统计图,再画虚线统计图。

不能同时描点画线,以免混淆。

(也可以先画虚线的统计图)第三单元:因数和公倍数1、几个非零自然数相乘,每个自然数都叫它们积的因数,积是这几个自然数的倍数。

新苏教版五年级下册数学知识点

新苏教版五年级下册数学知识点

新苏教版五年级下册数学知识点第一单元:小数的认识和运算1.小数的认识:了解小数的概念和三位小数的意义。

2.小数的读法和写法:掌握小数的读法和写法,能准确理解小数的整数部分和小数部分。

3.小数的比较:学会使用大小比较符号进行小数的比较,掌握比较大小的方法。

4.小数的加减法:掌握小数的加法和减法运算规则,能够熟练进行小数的运算。

5.小数的乘法:学习小数的乘法运算,能够进行小数之间和小数与整数的乘法计算。

6.小数的除法:掌握小数的除法运算,能够熟练进行小数与整数之间和小数之间的除法计算。

第二单元:图形的认识和运用1.图形的分类:了解常见的几何图形,如三角形、四边形、圆等,并学会将图形进行分类。

2.图形的性质:掌握图形的各种性质,如边的个数、角的个数、图形的对称性等。

3.图形的面积和周长:学习计算图形的面积和周长的方法,能够准确计算各种图形的面积和周长。

4.图形的位置关系:学会描述和判断图形的位置关系,如两个图形是否相交、是否相邻等。

5.图形的变换:了解图形的平移、旋转和翻转等基本变换,能够进行简单的图形变换操作。

第三单元:时间、长度和质量单位换算1.时间的认识和表示:学习常用的时间单位,如秒、分钟、小时,并掌握时间的读写和换算方法。

2.长度的认识和表示:了解常用的长度单位,如米、分米、厘米,能够准确表示和读取长度的数值。

3.长度单位的换算:学习不同长度单位之间的换算关系,能够准确进行长度单位的换算计算。

4.质量的认识和表示:掌握常用的质量单位,如千克、克,并能够准确读取和表示质量的数值。

5.质量单位的换算:学习质量单位之间的换算关系,能够准确进行质量单位的换算计算。

第四单元:分数的认识和运算1.分数的认识:了解分数的概念和分数的表示方法,能够描述分数的意义。

2.分数的读法和写法:学习分数的读法和写法,能够准确理解分数的整数部分、分子和分母的含义。

3.分数的比较:掌握分数的比较大小的方法,能够根据分数的大小进行比较。

苏教版五年级数学下册各单元知识点

苏教版五年级数学下册各单元知识点

苏教版五年级数学下册各单元知识点一、第一单元:数和数的运算- 理解整数的概念,包括正整数、负整数和零。

- 掌握整数的大小比较和顺序排列。

- 学会整数的加法和减法运算,包括正整数之间的加减运算,负整数之间的加减运算,以及正负整数之间的加减运算。

二、第二单元:小数的认识与认识- 理解小数的概念,包括小数的读法和写法。

- 掌握小数的大小比较和顺序排列。

- 学会小数的加减法运算,包括小数之间的加减运算和整数与小数之间的加减运算。

三、第三单元:长度的认识- 认识长度单位,包括厘米、分米和米,并能够互相转换。

- 了解不同物体的长度,并能够用适当的长度单位进行测量和比较。

- 研究长度的加法和减法运算,包括相同单位的长度加减运算和不同单位的长度加减运算。

四、第四单元:容积的认识- 认识容积单位,包括毫升和升,并能够互相转换。

- 掌握不同的容积,并能够用适当的容积单位进行测量和比较。

- 研究容积的加法和减法运算,包括相同单位的容积加减运算和不同单位的容积加减运算。

五、第五单元:质量的认识- 认识质量单位,包括克和千克,并能够互相转换。

- 了解不同物体的质量,并能够用适当的质量单位进行测量和比较。

- 研究质量的加法和减法运算,包括相同单位的质量加减运算和不同单位的质量加减运算。

六、第六单元:时间的认识- 认识时间的单位,包括秒、分、时和天,并能够互相转换。

- 掌握不同活动所需时间的概念。

- 研究时间的加法和减法运算,包括相同单位的时间加减运算和不同单位的时间加减运算。

七、第七单元:角度的认识- 认识角度的概念,包括直角、钝角和锐角。

- 了解不同角度的特征和分类。

- 研究角度的度量和比较,包括用直尺度量角度的大小。

八、第八单元:平方与平方根的认识- 了解平方的概念,包括正整数的平方和负整数的平方。

- 认识平方根的概念,包括正整数的平方根和非正整数的平方根。

- 研究求平方与开平方的计算方法。

九、第九单元:数据图的认识- 认识常见的数据图形式,包括条形图、折线图和饼图,并能够读取和分析图形中的数据。

(完整版)最新苏教版五年级(下册)数学知识点总结

(完整版)最新苏教版五年级(下册)数学知识点总结

最新苏教版五年级(下册)数学知识点总结第一单元:方程1、表示相等关系的式子叫做等式。

2、含有未知数的等式叫方程。

3、方程一定是等式;等式不一定是方程.4、等式两边同时加上或减去同一个数,所得结果仍然是等式。

这是等式的性质。

等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。

这也是等式的性质。

5、使方程左右两边相等的未知数的值叫做方程的解。

6、求方程中未知数的过程,叫做解方程。

注意:解完方程,要养成检验的好习惯。

7、三个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的3倍。

五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。

8、列方程解应用题的思路:①、审题并弄懂题目的已知条件和所求问题。

②、理清题目的数量关系。

③、设未知数,一般是把问题中的量用X表示。

④、根据数量关系列出方程。

⑤、解方程。

⑥、检验。

⑦、答。

第二单元:折线统计图9.折线统计图的特点:能够反映物体的变化趋势情况。

作图时要注意描点、写数据、连线。

第三单元:因数与倍数10、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。

一个数最小的倍数是它本身,没有最大的倍数。

一个数倍数的个数是无限的。

一个数最大的因数等于这个数最小的倍数。

11、是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数。

12、2的倍数特征:末尾是0、2、4、6、8;5的倍数特征:末尾是0或5;3的倍数特征:各个数位上数字之和是3的倍数。

13、只有1和它本身两个因数的数叫作质数(素数);除了1和它本身还有别的因数的数叫作合数。

如果一个数的因数是质数,这个因数就是它的质因数;把一个合数用质因数相乘的形式表示出来,叫作分解质因数。

14、两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最大公因数。

两个数的公因数也是有限的。

15、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。

苏教版五年级下册数学总复习知识点回顾(提纲+练习)

苏教版五年级下册数学总复习知识点回顾(提纲+练习)

苏教版五年级下册数学总复习知识点回顾(提纲+练习) 第一单元方程1、左右两边相等关系的式子叫做等式。

(通俗的说就是含有“=”号的式子就是等式。

) 2、含有未知数的等式是方程。

[注:(判断题)含有未知数的式子是方程(?)] 3、(背诵)方程一定是等式;等式不一定是方程。

4、等式的性质。

(1)等式两边同时加上或减去同一个数,所得结果仍然是等式。

(2)等式两边同时乘或除以同一个(不等于0)的数,所得结果仍然是等式。

用途:解方程5、求方程中未知数的过程,叫做解方程。

解方程时常用的关系式:加法:加数+加数=和和-一个加数=另一个加数减法:被减数-减数=差被减数-差=减数差+减数=被减数乘法:因数×因数=积积÷一个因数=另一个因数除法:被除数÷除数=商被除数÷商=除数商×除数=被除数注意:解完方程,要养成检验的好习惯。

6、3个、5个或7个连续的自然数(或连续的奇数,连续的偶数)它们的和=中间的数×3、5或7。

中间的数=连续数的和÷3、5或7 (个数为奇数)比如:1、2、3、4、5 1+2+3+4+5=15 即:3×5=15 15÷5=3 又比如:6÷3=2 1、2、3 35÷5=7 3、5、7、9、11 7、列方程解应用题的思路:A、审题并弄懂题目的已知条件和所求问题。

B、理清题目的等量关系。

C、设未知数,一般是把所求的数用X表示。

D、根据等量关系列出方程E、解方程F、检验G、作答。

第一单元相应练习题1、哪些是等式,哪些是方程,请填入相应的横线上。

(填序号) ①3+x=12 ②3.6+x ③ 4+17.5=21.5 ④48+x��63等式________________________;方程:________________________ 2、含有未知数的式子叫方程。

()【判断】 3、等式都是方程,方程都是等式。

最新苏教版五年级(下册)数学知识点总结

最新苏教版五年级(下册)数学知识点总结

最新苏教版五年级(下册)数学知识点总结第一单元:方程1、表示相等关系的式子叫做等式。

2、含有未知数的等式叫方程。

3、方程一定是等式;等式不一定是方程.4、等式两边同时加上或减去同一个数,所得结果仍然是等式。

这是等式的性质。

等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。

这也是等式的性质。

5、使方程左右两边相等的未知数的值叫做方程的解。

6、求方程中未知数的过程,叫做解方程。

注意:解完方程,要养成检验的好习惯。

7、三个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的3倍。

五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。

8、列方程解应用题的思路:①、审题并弄懂题目的已知条件和所求问题。

②、理清题目的数量关系。

③、设未知数,一般是把问题中的量用X表示。

④、根据数量关系列出方程。

⑤、解方程。

⑥、检验。

⑦、答。

第二单元:折线统计图9.折线统计图的特点:能够反映物体的变化趋势情况。

作图时要注意描点、写数据、连线。

第三单元:因数与倍数10、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。

一个数最小的倍数是它本身,没有最大的倍数。

一个数倍数的个数是无限的。

一个数最大的因数等于这个数最小的倍数。

11、是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数。

12、2的倍数特征:末尾是0、2、4、6、8;5的倍数特征:末尾是0或5;3的倍数特征:各个数位上数字之和是3的倍数。

13、只有1和它本身两个因数的数叫作质数(素数);除了1和它本身还有别的因数的数叫作合数。

如果一个数的因数是质数,这个因数就是它的质因数;把一个合数用质因数相乘的形式表示出来,叫作分解质因数。

14、两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最大公因数。

两个数的公因数也是有限的。

15、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新苏教版五年级(下册)数学知识点总结第一单元:方程1、表示相等关系的式子叫做等式。

2、含有未知数的等式叫方程。

3、方程一定是等式;等式不一定是方程.4、等式两边同时加上或减去同一个数,所得结果仍然是等式。

这是等式的性质。

等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。

这也是等式的性质。

5、使方程左右两边相等的未知数的值叫做方程的解。

6、求方程中未知数的过程,叫做解方程。

注意:解完方程,要养成检验的好习惯。

7、三个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的3倍。

五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。

8、列方程解应用题的思路:①、审题并弄懂题目的已知条件和所求问题。

②、理清题目的数量关系。

③、设未知数,一般是把问题中的量用X表示。

④、根据数量关系列出方程。

⑤、解方程。

⑥、检验。

⑦、答。

第二单元:折线统计图9.折线统计图的特点:能够反映物体的变化趋势情况。

作图时要注意描点、写数据、连线。

第三单元:因数与倍数10、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。

一个数最小的倍数是它本身,没有最大的倍数。

一个数倍数的个数是无限的。

一个数最大的因数等于这个数最小的倍数。

11、是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数。

12、2的倍数特征:末尾是0、2、4、6、8;5的倍数特征:末尾是0或5;3的倍数特征:各个数位上数字之和是3的倍数。

13、只有1和它本身两个因数的数叫作质数(素数);除了1和它本身还有别的因数的数叫作合数。

如果一个数的因数是质数,这个因数就是它的质因数;把一个合数用质因数相乘的形式表示出来,叫作分解质因数。

14、两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最大公因数。

两个数的公因数也是有限的。

15、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。

几个数的公倍数也是无限的。

16、两个质数(素数)的积一定是合数。

17、两个数的最小公倍数一定是它们的最大公因数的倍数。

两个数的最大公因数与最小公倍数的乘积等于这两个数的乘积。

18、求最大公因数和最小公倍数的方法:倍数关系的两个数,最大公因数是较小的数,最小公倍数是较大的数。

互质关系的两个数,最大公因数是1,最小公倍数是它们的乘积。

一般关系的两个数,求最大公因数用小数列举法或短除法,求最小公倍数用大数翻倍法或短除法。

19、奇数+奇数=偶数;奇数+偶数=奇数;偶数+偶数=偶数奇数×奇数=奇数;奇数×偶数=偶数;偶数×偶数=偶数第四单元:分数的意义和性质20、一个物体、一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。

把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。

表示其中一份的数,叫做分数单位。

一个分数的分母是几,它的分数单位就是几分之一。

21、分母越大,分数单位越小,分数单位是由分母决定的。

22、分子比分母小的分数叫做真分数;分子比分母大或者分子和分母相等的分数叫做假分数。

23、真分数小于1。

假分数大于或等于1。

真分数总是小于假分数。

能化成整数的假分数,它们的分子都是分母的倍数。

反过来,分子是分母倍数的假分数,都能化成整数。

分子不是分母倍数的假分数,可以写成整数和真分数合成的数,通常叫做带分数。

带分数是假分数的另一种形式。

带分数都大于真分数,同时也都大于1。

24、分数与除法的关系:被除数相当于分数的分子,除数相当于分数的分母。

被除数÷除数=被除数/除数,如果用a表示被除数,b表示除数,可以写成a÷b=a/b(b≠0)利用分数与除法的关系还可以把分数化成小数的方法:用分数的分子除以分母。

25、把小数化成分数的方法:如果是一位小数就写成十分之几,是两位小数就写成百分之几,是三位小数就写成千分之几,……26、把假分数转化成整数或带分数的方法:分子除以分母,如果分子是分母的倍数,可以化成整数;如果分子不是分母的倍数,可以化成带分数,除得的商作为带分数的整数部分,余数作为分数部分的分子,分母不变。

把带分数转化成假分数的方法:分母不变,整数部分乘分母再加上分子,作为假分数的分子。

27、分数大小比较方法:通分法、化成小数比较法、二分之一比较法、1的比较法。

分数小数大小比较方法:把其中的分数化成小数比较或把其中的小数化成分数比较。

28、分数的基本性质:分数的分子和分母同时乘或除以一个相同的数(0除外),分数的大小不变。

29、把一个分数化成同它相等,但分子、分母都比较小的分数,叫作约分;分子、分母只有公因数1的分数叫作最简分数。

约分时,通常要约成最简分数。

约分方法:直接除以分子、分母的最大公因数。

30、把几个分母不同的分数(也叫作异分母分数)分别化成和原来分数相等的同分母分数,叫作通分;相同的分母叫作这几个分数的公分母。

通分时,一般用原来几个分母的最小公倍数作公分母。

第五单元:分数加法和减法231、异分母分数加减法计算方法:先把几个分数化成分母相同的分数,再按照同分母分数加减法计算。

(通分—分母不变,分子相加或相减,得数能化简的要化简)32、分母的最大公因数是1,分子都是1的分数相加,得数的分母是两个分母的积,分子是两个分母的和。

分母的最大公因数是1,分子都是1的分数相减,得数的分母是两个分母的积,分子是两个分母的差。

33、分母分子相差越大,分数就越接近0;分子接近分母的一半,分数就接近1/2;分子分母越接近,分数就越接近1。

34、分数加、减法混合运算顺序与整数、小数加减混合运算顺序相同。

没有小括号,从左往右,依次运算;有小括号,先算小括号里的算式。

35、整数加法的运算律,整数减法的运算性质同样可以在分数加、减法中运用,使计算简便。

第六单元:圆36、圆是由一条曲线围成的平面图形。

(以前所学的图形如长方形、梯形等都是由几条线段围成的平面图形)37、画圆时,针尖固定的一点是圆心,通常用字母O表示;连接圆心和圆上任意一点的线段是半径,通常用字母r表示;通过圆心并且两端都在圆上的线段是直径,通常用字母d表示。

在同一个圆里,有无数条半径和直径。

在同一个圆里,所有半径的长度都相等,所有直径的长度都相等。

38、用圆规画圆的过程:先两脚叉开,再固定针尖,最后旋转成圆。

画圆时要注意:针尖必须固定在一点,不可移动;两脚间的距离必须保持不变;要旋转一周。

39、在同一个圆里,半径是直径的一半,直径是半径的2倍。

(d=2r, r=d÷2)40、圆是轴对称图形,有无数条对称轴,对称轴就是直径。

41、圆心决定圆的位置,半径决定圆的大小。

所以要比较两圆的大小,就是比较两个圆的直径或半径。

42、正方形里最大的圆。

两者联系:边长=直径画法:(1)画出正方形的两条对角线;(2)以对角线交点为圆心,以边长为直径画圆。

43、长方形里最大的圆。

两者联系:宽=直径画法:(1)画出长方形的两条对角线;(2)以对角线交点为圆心,以边长为直径画圆。

44、同一个圆内的所有线段中,圆的直径是最长的。

45、车轮滚动一周前进的路程就是车轮的周长。

每分前进米数(速度)=车轮的周长×转数46、任何一个圆的周长除以它直径的商都是一个固定的数,我们把它叫做圆周率。

用字母π(读pài)表示。

π是一个无限不循环小数。

π=3.141592653……我们在计算时,一般保留两位小数,取它的近似值3.14。

47、如果用C表示圆的周长,那么C=πd或C = 2πr48、求圆的半径或直径的方法:d = C圆÷π r= C圆÷π÷249、半圆的周长等于圆周长的一半加一条直径。

C半圆= πr+2rC半圆= πd÷2+d50、常用的3.14的倍数:1π=3.14 2π=6.28 3π=9.424π=12.56 5π=15.7 6π=18.847π=21.98 8π=25.12 9π=28.2651、圆的面积公式:S圆=πr2。

圆的面积是半径平方的π倍。

52、圆的面积推导:圆可以切拼成近似的长方形,长方形的面积与圆的面积相等(即S长方形=S圆);长方形的宽是圆的半径(即b=r);长方形的长是圆周长的一半(即a==πr)。

即:S长方形= a × b↓↓S圆=πr × r=πr2S圆=πr2注意:切拼后的长方形的周长比圆的周长多了两条半径。

C长方形=2πr+2r=C圆+d53、半圆的面积是圆面积的一半。

S半圆=πr2÷254、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,面积的倍数=半径的倍数255、周长相等的平面图形中,圆的面积最大;面积相等的平面图形中,圆的周长最短。

56、求圆环的面积一般是用外圆的面积减去内圆的面积,还可以利用乘法分配律进行简便计算。

S圆环=πR2-πr2 S圆环=π( R2- r2)第七单元解决问题的策略57、割补法58、倒推法59、找规律第八单元整理与复习60、数的世界61、图形王国62、统计天地63、综合实践。

相关文档
最新文档