人教版五年级下册数学知识点归纳总结(最新版)
人教版小学五年级数学下册知识点总结和复习要点

人教版小学五年级数学下册知识点总结和复习要点一、数与代数分数的加法和减法概念:分数的加法和减法是指对两个或多个分数进行相加或相减的运算。
性质:同分母分数相加减,分母不变,分子相加减;异分母分数相加减,先通分,然后按照同分母分数相加减的法则进行计算。
特点:分数的加减运算需要注意分子、分母的变化。
举例:2/3 + 1/3 = 3/3 = 1;5/6 - 1/6 = 4/6 = 2/3。
分数的乘法和除法概念:分数的乘法和除法是指两个或多个分数进行相乘或相除的运算。
性质:分数乘整数,分母不变,分子乘整数;分数乘分数,用分子乘分子,用分母乘分母;分数除以一个数等于乘以这个数的倒数。
特点:分数的乘除法运算需要理解乘法与倒数的概念。
举例:2/3 × 4 = 8/3;3/4 ÷ 2 = 3/4 ×1/2 = 3/8。
因数与倍数概念:因数与倍数是整数之间的一种关系,一个整数能被另一个整数整除,则后者是前者的因数,前者是后者的倍数。
性质:一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身;一个数的倍数的个数是无限的。
特点:理解因数和倍数的概念对于解决与整除相关的问题至关重要。
举例:12的因数有1、2、3、4、6、12;12的倍数有12、24、36、48等。
二、空间与几何长方体和正方体的认识概念:长方体是由六个长方形围成的立体图形;正方体是六个面都是正方形的特殊长方体。
性质:长方体有6个面,12条棱,8个顶点;正方体有6个面,12条棱,8个顶点,且所有面都是正方形。
特点:长方体和正方体是常见的立体图形,具有特定的形状和性质。
举例:日常生活中的纸箱、书本等可以近似看作长方体;骰子是典型的正方体。
长方体和正方体的表面积概念:长方体和正方体的表面积是指它们所有面的面积之和。
性质:长方体的表面积= 2 ×(长×宽+ 长×高+ 宽×高);正方体的表面积= 6 ×边长^2。
人教版五年级数学下册中知识点、易错点、易错题汇总

;4知识点易错点汇总★知识点归纳一、轴对称1、定义:把一个图形沿着某一条直线对折,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴。
折叠后重合的点是对应点,叫做对称点。
2、性质:对称点到对称轴的距离相等。
3、轴对称图形:指具有特殊形状的一个图形,它可以有一条或多条对称轴。
二、旋转1、定义:把一个图形绕某一点(或轴)转动一定的角度的图形变换叫做旋转。
2、旋转三要素:旋转点(旋转中心)、旋转方向、旋转角度钟表中指针运动的方向为顺时针方向,与钟表中指针的运动方向相反的方向为逆时针方向。
3、性质:图形绕着某一点旋转一定的度数,图形的对应点、对应线段都旋转了相应的度数,对应点到旋转点的距离相等,对应的线段和对应的角度相等。
图形旋转后,形状、大小都没有发生变化,只有位置变了。
4、旋转90°的方法(1)找出原图行的关键点或关键线段;(2)借助三角板或量角器作原图行关键点或线段与旋转中心所在线段的垂线(3)在所垂线上量出或数出与原线段相等的长度(即找到原图关键点的对应点);(4)顺次连接所找到的对应点,即可得到原图形旋转90°后的图形。
5、时钟上包含12大格,60小格,时钟上相邻两数字间即为一大格,一大格为30°;每一大格又平均分为了五个小格,一小格为6°三、平移1、定义:指在一个平面内,将一个图形上的所有点都按照某个方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。
2、性质:平移不改变图形的形状和大小。
3、图形平移的步骤:(1)确定原图形位置、平移的方向、平移的距离。
(2)找出原图形的各关键点。
(3)根据题目要求将各个点依次平移,找出各个点的对应点。
(4)顺次连接平移后的各点。
◆习题:1、图形的变换包括:、、。
其中只是改变原图形位置的变换是、。
2、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这样的图形就叫()图形,那条直线就是()。
最新人教版小学数学五年级下册知识点归纳总结

最新人教版小学数学五年级下册知识点归纳总结亲爱的小朋友们,今天我们来聊聊最新人教版小学数学五年级下册的知识点。
这个学期我们学了很多有趣的东西,让我们一起来回顾一下吧!我们学习了分数。
分数是表示一个整体的一部分,有分子和分母组成。
比如,三分之一就是1/3,四分之一就是1/4。
我们还学会了如何比较分数的大小,例如:2/3 >1/2。
这些知识在生活中很有用哦,比如我们可以帮妈妈把蛋糕分成8份,每份就是1/8。
我们学习了小数。
小数是一种特殊的分数,它的分母不是10、100等整数,而是无限不循环的小数。
比如,0.5就是1/2的小数形式。
我们还学会了如何将小数转换为分数,例如:0.75 = 3/4。
这些知识可以帮助我们更好地理解和计算一些问题。
我们学习了几何图形。
几何图形有很多种,比如长方形、正方形、圆形、三角形等等。
我们学会了如何计算它们的面积和周长。
例如,一个长方形的面积是长乘以宽,周长是(长+宽)×2。
这些知识可以帮助我们更好地理解和绘制各种图形。
我们还学习了一些关于时间的知识。
比如,一天有24小时,一小时有60分钟,一分钟有60秒。
我们学会了如何看时钟、计时和做时间表。
这些知识可以帮助我们更好地管理自己的时间哦!我们还学习了一些关于统计的知识。
统计是指对数据进行收集、整理和分析的过程。
我们学会了如何制作简单的统计图表,并通过图表来分析数据。
例如,我们可以画一个柱状图来比较不同班级的成绩高低。
这些知识可以帮助我们更好地理解和应用数据哦!以上就是最新人教版小学数学五年级下册的知识点总结啦!希望你们能够认真学习和掌握这些知识,成为聪明的小数学家!。
五年级下册重点知识归纳

五年级下册重点知识归纳一、数学(人教版五年级下册)1. 因数与倍数。
- 因数和倍数的概念:如果a× b = c(a、b、c都是非0自然数),那么a和b 是c的因数,c是a和b的倍数。
例如3×4 = 12,3和4是12的因数,12是3和4的倍数。
- 一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身;一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
- 2、3、5的倍数特征:- 2的倍数特征:个位上是0、2、4、6、8的数是2的倍数。
- 3的倍数特征:一个数各位上的数字之和是3的倍数,这个数就是3的倍数。
- 5的倍数特征:个位上是0或5的数是5的倍数。
- 既是2又是5的倍数特征:个位上是0的数。
- 质数与合数:- 质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。
例如2、3、5、7等。
- 合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
例如4、6、8、9等。
- 1既不是质数也不是合数。
2. 长方体和正方体。
- 长方体:- 长方体有6个面,每个面都是长方形(特殊情况有两个相对的面是正方形),相对的面完全相同;有12条棱,相对的棱长度相等;有8个顶点。
- 长方体的棱长总和=(长 + 宽+高)×4。
- 长方体的表面积=(长×宽+长×高+宽×高)×2。
- 长方体的体积 = 长×宽×高,用字母表示V = abh。
- 正方体:- 正方体是特殊的长方体,正方体的6个面都是正方形,6个面完全相同;12条棱长度都相等;8个顶点。
- 正方体的棱长总和=棱长×12。
- 正方体的表面积 = 棱长×棱长×6,用字母表示S = 6a^2。
- 正方体的体积=棱长×棱长×棱长,用字母表示V=a^3。
- 体积单位:- 常用的体积单位有立方厘米、立方分米、立方米。
2024年五年级数学知识点归纳总结(3篇)

2024年五年级数学知识点归纳总结一、四则运算1. 加法:两个整数相加,进一法;2. 减法:两个整数相减,退位法;3. 乘法:两个整数相乘,从右往左逐位相乘,再相加;4. 除法:一个整数除以另一个整数,找到最大的整数使其乘以除数小于被除数,然后将商加到答案中。
二、分数1. 分数的定义:一个数的整数部分和真分数部分的总和;2. 分数的比较:分数的大小比较可转化为分子和分母的比较;3. 分数的加减法:- 分母相同:直接将分子相加或相减;- 分母不同:通分后再进行加减法;4. 分数的乘除法:- 乘法:将分子相乘,分母相乘;- 除法:将被除数和除数的分子分母调换位置,然后转化为乘法运算。
三、小数1. 小数的定义:分数的小数表示法;2. 小数的加减法:小数点对齐,直接相加或相减;3. 小数的乘法:先忽略小数点,进行整数的乘法运算,然后将小数点向左移动相应的位数;4. 小数的除法:先将被除数和除数扩大相同倍数,然后进行整数的除法运算,最后将小数点移动相应的位数。
四、质数和合数1. 质数:只能被1和自己整除的数;2. 合数:除了1和自身,还能被其他数整除的数。
五、约数和倍数1. 约数:能整除某个数的数;2. 倍数:某个数的倍数是指能被这个数整除的数。
六、整数1. 整数的加减法:- 同号相加:将绝对值相加,结果的符号与原来保持一致;- 异号相加:将绝对值相减,结果的符号取绝对值较大的那个数的符号。
2. 整数的乘法:- 同号相乘为正;- 异号相乘为负。
3. 整数的除法:- 正数除以正数为正;- 正数除以负数为负;- 负数除以正数为负;- 负数除以负数为正。
七、面积和周长1. 长方形的面积:长乘以宽;2. 长方形的周长:长加上宽的两倍;3. 正方形的面积:边长的平方;4. 正方形的周长:边长的四倍;5. 三角形的面积:底乘以高的一半;6. 圆的面积:半径的平方乘以π;7. 圆的周长:直径乘以π。
八、图形的分类1. 几何图形的分类:点、线、线段、射线、角、直角、锐角、钝角、平行线、垂直线等。
人教版五年级下册数学重点知识(精华版)

人教版五年级下册数学重点知识第一单元观察物体1、长方体(或正方体)放在桌子上,从不同角度观察,一次最多能看到3个面。
第二单元:因数与倍数1、一个数因数的个数是有限的,一个数倍数的个数是无限的。
2、一个数的最小因数是1,最大因数是它本身。
一个数的最小倍数是它本身,没有最大倍数。
3、整数中,是2的倍数的数叫做偶数(0也是偶数)。
不是2的倍数的数叫做奇数。
4、2的倍数的特征:个位上是0、2、4、6、8的数。
5的倍数的特征:个位上是0或5的数。
3的倍数的特征:一个数各个数位上的数相加的和是3的倍数。
2和5的倍数的特征:个位上是0的数。
2、3、5的倍数的特征:个位是0并且各个数位上的数字之和能被3整除的数。
5、最小的偶数是0,最小的奇数是1;最小的质数是2,最小的合数是4。
6、奇数偶数的性质(1)奇数+奇数=偶数;偶数+偶数=偶数;偶数+奇数=奇数;(2)奇数-奇数=偶数;偶数-偶数=偶数;偶数-奇数=奇数;奇数-偶数=奇数;(3)奇数×奇数=奇数;偶数×偶数=偶数;奇数×偶数=偶数;质数×质数=合数(4)除2外所有的偶数均为合数;(5)相邻偶数最大公约数为2,最小公倍数为它们乘积的一半。
7、1既不是质数,也不是合数。
8、100以内质数表:第三单元:长方体和正方体1、长方体和正方体(立方体)的特征面棱顶点长方体①有6个面;②相对的两个面完全相同;③每个面是长方形(特殊情况下有两个相对的面是正方形)。
①有12条棱;②相对的4条棱长度相等(特殊情况下有8条棱长度相等)。
有8个顶点正方体①有6个面;②6个面完全相同;③每个面是正方形。
①有12条棱;②12条棱全部相等。
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 972、相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
3、正方体是长、宽、高都相等的特殊长方体。
人教版小学五年级(下册)数学知识点总结大全

人教版小学五年级(下册)数学知识点总结大全一、图形的变换1、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
2、成轴对称图形的特征和性质:①对称点到对称轴的距离相等;②对称点的连线与对称轴垂直;③对称轴两边的图形大小形状完全相同。
3、物体旋转时应抓住三点:①旋转中心;②旋转方向;③旋转角度。
旋转只改变物体的位置,不改变物体的形状、大小。
二、因数与倍数1、因数和倍数:如果整数a能被b整除,那么a就是b的倍数,b就是a 的因数。
2、一个数的因数的求法:一个数的因数的个数是有限的,最小的是1,最大的是它本身,方法是成对地按顺序找。
3、一个数的倍数的求法:一个数的倍数的个数是无限的,最小的是它本身,没有最大的,方法时依次乘以自然数。
4、2、5、3的倍数的特征:个位上是0、2、4、6、8的数,都是2的倍数。
个位上是0或5的数,是5的倍数。
一个数各位上的数的和是3的倍数,这个数就是3的倍数。
5、偶数与奇数:是2倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
6、质数和和合数:一个数,如果只有1和它本身两个因数的数叫做质数(或素数),最小的质数是2。
一个数,如果除了1和它本身还有别的因数的数叫做合数,最小的合数是4。
三、长方体和正方体1、长方体和正方体的特征:长方体有6个面,每个面都是长方形(特殊的有一组对面是正方形),相对的面完全相同;有12条棱,相对的棱平行且相等;有8个顶点。
正方形有6个面,每个面都是正方形,所有的面都完全相同;有12条棱,所有的棱都相等;有8个顶点。
2、长、宽、高:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
3、长方体的棱长总和=(长+宽+高)×4正方体的棱长总和=棱长×124、表面积:长方体或正方体6个面的总面积叫做它的表面积。
5、长方体的表面积=(长×宽+长×高+宽×高)×2S=(ab+ah+bh)×2正方体的表面积=棱长×棱长×6用字母表示:S=6、表面积单位:平方厘米、平方分米、平方米相邻单位的进率为1007、体积:物体所占空间的大小叫做物体的体积。
最全面人教版数学五年级下册知识点归纳总结

最全面人教版数学五年级下册知识点归纳总结五年级下册数学内容涵盖了面积、容积、数的认识和计算、时间、图形的认识和运用等多个方面的内容。
以下是对人教版数学五年级下册的知识点进行归纳总结:一、面积1. 长方形的面积计算公式:面积 = 长 ×宽2. 正方形的面积计算公式:面积 = 边长 ×边长3. 三角形的面积计算公式:面积 = 底边长 ×高 ÷ 24. 平行四边形的面积计算公式:面积 = 底边长 ×高5. 长方体的表面积计算公式:表面积 = 2 ×长 ×宽 + 2 ×长 ×高 + 2 ×宽 ×高二、容积1. 直接用长宽高相乘得到的数字,就是长方体的容积(即体积)。
2. 立方体的容积计算公式:容积 = 边长 ×边长 ×边长三、数的认识和计算1. 整数:包括正整数、负整数和零。
2. 加法和减法:掌握多位数的加减法计算方法,注意进位和借位。
3. 乘法:会进行大位数的乘法计算,理解乘法的意义。
4. 除法:会进行大位数的除法计算,理解除法的意义。
5. 分数:能够简单的进行分数的加减运算,理解分数的大小比较。
6. 小数:能够进行小数的四则运算。
7. 千分数:能够进行千分数的简单计算,理解千分数的大小比较。
8. 序数词:知道如何用序数词表示年份或名次。
四、时间1. 分钟和小时:能够用时钟读出准确的时间。
2. 日历:能够根据日历进行简单的日期计算。
3. 时间的计算:能够计算时间间隔,如计算一天之前或之后的日期。
五、图形的认识和运用1. 二维图形:熟悉正方形、长方形、三角形、平行四边形、菱形、圆形等基本的图形,并了解它们的性质。
2. 三维图形:熟悉长方体、正方体、圆柱体、圆锥体、球体等基本的立体图形,并了解它们的性质。
3. 坐标系:能够在二维坐标系中表示点的位置,并进行简单的坐标计算。
总结:人教版数学五年级下册的知识点非常广泛,涉及了面积、容积、数的认识和计算、时间、图形的认识和运用等多个方面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级(下)各单元重点知识归纳第二单元:因数与倍数一、因数和倍数(1).因数和倍数的意义:如果a×b=c(a、b、c都是不为0的整数),那么a、b就是c的因数,c就是a、b的倍数。
(2).因数与倍数的关系:因数和倍数是两个不同的概念,但又是一对相互依存的概念,不能单独存在。
(3).找一个数的因数的方法:A.列乘法算式:根据因数的意义,有序地写出两个数的乘积是此数的所有乘法算式,乘法算式中每个因数就是该数的因数。
B.列除法算式:用此数除以大于(1)等于(1)而小于等于它本身的整数,所得的商是整数而无余数,这些除数和商都是该数的因数。
(4).找一个数的倍数的方法:求一个数的倍数,就是用这个数,依次与非零自然数相乘,所得之数就是这个数的倍数。
二、(2)、((3))、(5)的倍数的特征(1). 2的倍数的特征:个位上是0、2、4、6、8的数都是2的倍数。
(2).奇数和偶数的意义:在自然数中,是2的倍数的数叫做偶数,0也是偶数;不是2的倍数的数叫做奇数。
(3).奇数、偶数的运算性质:奇数±奇数=偶数,偶数±偶数=偶数,奇数±偶数=奇数,奇数×奇数=奇数,奇数×偶数=偶数,偶数×偶数=偶数。
(4).5的倍数的特征:个位上是0或5的数都是5的倍数.(5).3的倍数的特征:一个数各位上的数的和是3的倍数,这个数就是3的倍数。
三、质数和合数(1).质数和合数的意义:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数);一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
(2).质因数:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的质因数。
(3).分解质因数:把一个合数用质数相乘的形式表示出来,就是分解质因数。
(4).分解质因数的方法:A:“树枝”图式分解法;B:短除法分解。
第三单元:长方体和正方体一、长方体(正方体)的特征(1).长方体的特征:有6个面,相对的面完全相同;有12条棱,相对的棱长度相等;有8个顶点(2).正方体的特征:正方体的6个面完全相同;12条棱的长度全相等;有8个顶点。
(3).长方体长、宽、高的意义:相交于同一顶点的三条棱的长度分别叫做长方体的长、宽、高。
二、长方体和正方体的表面积(1).表面积的意义:长方体或正方体6个的总面积,叫做它的表面积。
(2).长方体表面积的计算方法:2个(3).正方体表面积的计算方法:正方体的表面积=棱长×棱长×6三、长方体和正方体的体积(1).体积的意义:物体所占的空间的大小叫做体积。
(2).体积单位:立方米、立方分米、立方厘米;字母表示:m3,dm3,cm3。
(3).体积单位间的进率: 1 m3=1000dm31dm3 =1000cm3.(4).容积的意义:箱子、油桶等所能装下物体的体积,叫做箱子等的容积。
(5).容积的单位和容积单位之间的进率:1L=1000ml(6).容积单位和体积单位之间的换算:1L= 1dm 3 1ml = 1 cm3(7).长方体体积计算公式和正方体体积计算公式。
(8).容积与体积的计算方法相同,只是要从里面量它的长、宽和高。
第四单元:分数的意义和性质一、分数的产生和意义(1).单位“1”的意义:一个物体、一些物体都可以看作一个整体,可以用自然数1来表示,通常把它叫做单位“1”。
(2).分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
(3).分数单位意义:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。
(4).分数与除法的关系:被除数÷除数= ,反来,分数也可以看作两个数相除,分数的分子相等于被除数,分母相等于除数,分数线等于除号。
(5).“求一个数是(占)另一个数的几分之几”的问题的解题办法:用前数除以后数。
二、真分数和假分数(1).真分数的意义:分子比分母小的分数叫做真分数。
(2).真分数的特征:分子比分母小;真分数﹤1。
(3).假分数的意义:分子比分母大或等于分母的分数叫做假分数。
(4).假分数的特征:分子比分母大或等于分母;假分数≦1。
(5).带分数的意义:由整数(不包括0)和真分数合成的数叫做带分数。
(6).带分数的读法:先读整数部分,再读分数部分,中间加“又”字。
(7).带分数的写法:先写整数部分,再写分数部分,分数部分的分数线与整数的中间对齐。
(8).假分数化成整数或带分数的方法:用分子除以分母。
当分子是分母倍数时,能化成整数;当分子不是分母的倍数时,能化成带分数,商是带分数的整数部分,余数是分数部分的分子,分母不变。
三、分数的基本性质(1).分数的基本性质:分数的分子和分母同时乘或者除以一个相同的数(0除外),分数的大小不变,这就是分数的基本性质。
(2).分数基本性质的运用:可以把不同分母的分数化成同分母分数,也可以把一个分数化成指定分母的分数。
(如把三分之二和二分之三化成分母是六的分数。
如把四分之三化成分母是十二的分数)四、约分(1).公因数和最大公因数的意义:几个数公有的因数,叫做这几个数的公因数;其中最大的一个,叫做它们的最大公因数。
(2).求两个数的最大公因数的方法: A.列举法;B.先找出两个数中较小数的因数,再圏出是另一个数的因数,再看哪一个最大; C.分解质因数法;D.短除法。
(3).求两个数的最大公因数的特殊方法: A.当两个数成倍数关系时,较小数是这两个数的最大公因数。
B.当两个数是互质数时,最大公因数是1。
(4).约分的意义:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
(5).最简分数的意义:分子和分母只有公因数1的分数。
(6).约分的方法:A.逐步约分;B.一次约分。
(7).公因数只有1的两个数,叫做互质数。
五、通分(1).公倍数和最小公倍数的意义:几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个数,叫做最小公倍数。
(2).求两个数最小公倍数的方法: A.列举法B.先求出两个数中较大数的倍数,按从小到大的顺序圈出较小数的倍数,第一个圈的就是它们的最小公倍数 C.分解质因数法 D.短除法。
(3). 求两个数的最小倍数的特殊方法: A.当两个数成倍数关系时,较大数是这两个数的最小公倍数。
B.当两个数是互质数时,这两个数的乘积就是它们最小公倍数。
(4).通分的意义:把异分母的分数分别化成和原来分数相等的的同分母分数,叫做通分。
(5).通分的方法:通分时用原分母的公倍数作公分母,一般选用最小公倍数作公分母,然后把各分数化成用这个最小公分母作分母的分数。
六、分数和小数的互化(1).小数化成分数的方法:有限小数可以直接写成分母是10、100、1000…的分数。
原来有几位小数,就在1后面写几个零作分母,把原来的小数点去掉作分子。
能约分的要约分,化成最简分数。
(2).分数化成小数的方法: A.分母是(1)0,(1)00,(1)000…的分数化成小数,可以直接去掉分母,看分母1后面有几个零,就在分子中从最后一位起向左数出几位,点上小数点。
B.分母不是10,100,1000…的分数化成小数,用分子除以分母,除不尽时,按“四舍五入”法保留几位小数。
第五单元:分数的加法和减法同分母分数加、减法(1).分数加法的意义:和整数加法的意义相同,就是把两个数合并成一个数的运算。
(2).分数减法的意义:与整数减法的意义相同,已知两个数的和与其中的一个加数,求另一个加数的运算。
(3).分数加、减法的计算方法:分母不变,分子相加减。
(4).同分母分数连加的计算方法:从左到右依次计算,也可以直接把加数的分子连加起来,分母不变。
(5).同分母分数连减的计算方法:从左到右依次计算,也可以直接用被减数的分子连续减去两个减数的分子,分母不变。
异分母分数加、减法异分母分数加、减法的计算方法:一般先通分,化成同分母的分数,然后按照同分母分数加、减法的方法计算。
分数加减混合运算(1).分数加减混合运算的顺序:与整数加减混合运算的顺序相同。
没有括号的,按照从左到右的顺序进行计算;有括号的,先算括号里的,然后算括号外的(2).分数加法的简算:整数加法的运算定律在分数加法中同样适用。
第五单元:统计具体内容重点知识学生的实际学习困难统计(1).众数的意义:在一组数据中,出现次数最多的数,是这组数据的众数。
(2).众数的特征:能够反映一组数据的集中情况。
(3).复式折线统计图:在计量过程中存在两组数据,而又需要在一个统计图中表示这两组数据时,就要用两种不同形式的折线来表示不同数量变化情况的折线统计图。
(4). 复式折线统计图的特点:能表示两组数据数量的多少,数量的增减变化情况,还能比较两组数据的变化趋势。
(5).复式折线统计图的制作: A.根据两组数据量多少和图纸大小,画出两条相互垂直的射线;B.在水平射线上确定好各点的距离,分配各点的位置;C.在与水平射线垂直的射线上,根据数据大小的具体情况,确定单位长度表示的数量; D.用不同的图例表示两组不同的数据; E.按照数据大小描出各点,再用线段顺次连接; F.标出题目,注明单位、日期。
数学广角具体内容重点知识学生的实际学习困难数学广角找次品的最优方法:把待测物体分成3份,要分得尽量平均,不能够平均分的,也应该使多的一份与少的一份只相差 1.。