七年级数学下册《用尺规作角》综合练习1(含答案)
北师大版七年级下册数学 4.4 用尺规作三角形 同步练习(含答案)

4.4 用尺规作三角形同步练习一.选择题1.尺规作图是指()A.用量角器和刻度尺作图 B.用圆规和有刻度的直尺作图C.用圆规和无刻度的直尺作图 D.用量角器和无刻度的直尺作图2.如图,两钢条中点连在一起做成一个测量工件,AB的长等于内槽宽A'B',那么判定△OAB≌△OA'B'的理由是()A.SSS B.SAS C.ASA D.AAS3.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS4. 如图,∠1=∠2,∠3=∠4,下面结论中错误的是()A.△ADC≌△BCD B.△ABD≌△BACC.△ABO≌△CDO D.△AOD≌△BOC5.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.ASA D.AAS6.角平分线的性质:角平分线上的点到这个角的两边距离相等,其理论依据是全等三角形判定定理()A.SAS B.HL C.AAS D.ASA7.小明将一块三角形的玻璃棒摔碎成如图所示的四块(即图中标有1,2,3,4的四块),若只带一块配成原来一样大小的三角形,则应该带第块.8.小明做了一个如图所示的风筝,其中∠EDH=∠FDH,ED=FD=a,EH=b,则四边形风筝的周长是.9.用尺规作一个直角三角形,使其两直角边分别等于已知线段,则作图的依据是.10.如图所示,已知线段a,用尺规作出△ABC,使AB=a,BC=AC=2a.作法:(1)作一条线段AB= ;(2)分别以、为圆心,以为半径画弧,两弧交于C点;(3)连接、,则△ABC就是所求作的三角形.11.作图题的书写步骤是、、,而且要画出和结论,保留.12.将一副三角尺按如图所示的方式放置,使含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,则∠1的度数是.13.如图,已知△ABC,用尺规作出△ABC的角平分线BD.(保留作图的痕迹,不写作法)14.如图所示,要测量河两岸相对的两点A,B的距离,因无法直接量出A,B两点的距离,请你设计一种方案,求出A,B的距离,并说明理由.15.数学家鲁弗斯设计了一个仪器,它可以三等分一个角.如图所示,A、B、C、D分别固定在以O为公共端点的四根木条上,且OA=OB=OC=OD,E、F可以在中间的两根木条上滑动,AE=CE=BF=DF.求证:∠AOE=∠EOF=∠FOD.一.选择题1.【答案】C;【解析】尺规作图所用的作图工具是指不带刻度的直尺和圆规.故选:C.2.【答案】B;【解析】∵两钢条中点连在一起做成一个测量工件,∴OA′=OB,OB′=OA,∵∠AOB=A′OB′,∴△AOB≌△A′OB′.所以AB的长等于内槽宽A'B',用的是SAS的判定定理.3.【答案】D;【解析】解:根据作图过程可知O′C′=OC,O′B′=OB,C′D′=CD,∴△OCD≌△O′C′D′(SSS).故选D.4.【答案】C;【解析】根据已知所给条件,结合图形中隐含的公共边条件,可以得到A、B、D中的三角形是可以全等,唯有C答案中的两个三角形不能全等,所以答案为C.5.【答案】D;【解析】根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角角边”定理作出完全一样的三角形.故选D.6.【答案】C ;【解析】作出图形,利用“角角边”证明全等三角形的判定即可.二.填空题7.【答案】2;【解析】解:1、3、4块玻璃不同时具备包括一条完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故答案为:2.8.【答案】2a+2b;【解析】△DEH和△DFH中ED=FD,∠EDH=∠FDH,DH=DH∴△DEH≌△DFH∴EH=FH=b又∵ED=FD=a,EH=b∴该风筝的周长=2a+2b.9.【答案】SAS;【解析】用尺规做直角三角形,已知两直角边.可以先画出两条已知线段和确定一个直角,作图的依据为SAS.10.【答案】a;A;B;2a;AC,BC;【解析】作法:(1)作一条线段AB=a;(2)分别以A、B为圆心,以 2a为半径画弧,两弧交于C点;(3)连接AC、BC,则△ABC就是所求作的三角形.11.【答案】已知、求作、作法,图形,作图痕迹;【解析】作图题的书写步骤是已知、求作、作法,而且要画出图形和结论,保留作图痕迹.12. 【答案】75°.【解析】如图,∵含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,∴AB∥CD,∴∠3=∠4=45°,∴∠2=∠3=45°,∵∠B=30°,∴∠1=∠2+∠B=30°+45°=75°.三.解答题13. 【解析】解:如图:14.【解析】解:在AB的垂线BF上取两点C,D,使CD=BC,再作出BF的垂线DE,使A,C,E在一条直线上,这时测得的DE的长就是AB的长.15. 【解析】证明:在△AOE和△COE中,,∴△AOE≌△COE(SSS),∴∠AOE=∠COE,同理∠COE=∠FOD,∴∠AOE=∠EOF=∠FOD.。
北师大版七年级下册数学作一个角等于已知角专项训练(原创)

【分析】
先作∠B=∠α,分别在∠B的两边上截取BA=a,BC=2a,连接AC,则△ABC即为所作.
【详解】
如图,先作∠B=∠α,分别在∠B的两边上截取BA=a,BC=2a,连接AC,则△ABC即为所求作.
【点睛】
考查了复杂作图,解题关键是掌握作一个角等于已知角的方法.
16.见解析
【来源】广东省茂名市九校联考2018-2019学年七年级下学期期中数学试题
【解析】
【分析】
根据平行线的判定:同位角相等,两条直线平行,即可作图.
【详解】
过点M作∠AMF=∠AOB,延长FM,如图:
∴EF就是所求作的与OB平行的直线.
【点睛】
本题主要考查尺规作图,掌握同位角相等,两条直线平行,是解题的关键.
15.见解析
【来源】山东省东营市垦利区2019-2020学年七年级上学期期中数学试题
10.已知∠α和线段m,n,求作△ABC,使BC=m,AB=n,∠ABC=∠α,作法的合理顺序为________.(填序号即可)
①在射线BD上截取线段BA=n;②作一条线段BC=m;③以B为顶点,以BC为一边,作∠DBC=∠α;④连接AC,△ABC就是所求作的三角形.
11.完成作图步骤:已知∠ ,∠ (∠ >∠ ),求作一个角,使它等于∠ -∠ .作法:(1)作∠AOB=_______;(2)以OA为一边,在∠AOB的内部作∠AOC=___,则∠BOC就是所求作的角(如图).
则∠ABD=∠CBD=25°,
∴∠BDC的度数为:∠A+∠ABD=105°.
故选D.
【点睛】
此题主要考查了基本作图以及等腰三角形的性质,得出BD平分∠ABC是解题关键.
4.D
七年级数学下册 相交线与平行线用尺规作角练习 北师大版(1)

2.4 用尺规作图同步测试一、单选题(共10题;共20分)1.如图所示的尺规作图的痕迹表示的是()A. 尺规作线段的垂直平分线B. 尺规作一条线段等于已知线段C. 尺规作一个角等于已知角D. 尺规作角的平分线2.下列尺规作图的语句正确的是()A. 延长射线AB到DB. 以点D为圆心,任意长为半径画弧C. 作直线AB=3cmD. 延长线段AB至C,使AC=BC3.已知三边作三角形,用到的基本作图是()A. 作一个角等于已知角 B.平分一个已知角C. 在射线上截取一线段等于已知线段D. 作一条直线的垂线4.在直线m上顺次取A,B,C三点,使AB=10cm,BC=4cm,如果点O是线段AC的中点,则线段OB的长为()A. 3cmB. 7cmC. 3cm或7cm D. 5cm或2cm5.用直尺和圆规作线段的垂直平分线,下列作法正确的是()A. B. C.D.6.作已知角的平分线是根据三角形的全等判定()作的.A. AASB. ASAC. SASD. SSS7.作一个角等于已知角用到下面选项的哪个基本事实()A. SSSB. SASC. ASAD. AAS8.如图,用尺规法作∠DEC=∠BAC,作图痕迹的正确画法是()A. 以点E为圆心,线段AP为半径的弧B. 以点E为圆心,线段QP为半径的弧C. 以点G为圆心,线段AP为半径的弧D. 以点G为圆心,线段QP为半径的弧9.在△ABC中,AB=AC,∠A=80°,进行如下操作:①以点B为圆心,以小于AB长为半径作弧,分别交BA、BC于点E、F;②分别以E、F为圆心,以大于EF长为半径作弧,两弧交于点M;③作射线BM交AC于点D,则∠BDC的度数为()A. 100°B. 65°C. 75°D. 105°10.如图,在△ABC中,∠C=90°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法错误的是()A. ∠BAD=∠CADB. 点D到AB边的距离就等于线段CD的长C. S△ABD=S△ACDD. AD垂直平分MN二、填空题(共5题;共5分)11.如图,已知线段AB,分别以点A,B为圆心,大于线段AB长度一半的长为半径画弧,相交于点C,D,连接AC,BC,BD,CD.其中AB=4,CD=5,则四边形ABCD的面积为________ .12.在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为________ .13.如图,用直尺和圆规画∠AOB的平分线OE,其理论依据是________ .14.利用直尺和圆规作出一个角的角平分线的作法,其理论依据是全等三角形判定方法________ .15.数学活动课上,同学们围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”其中一位同学作出了如图所示的图形.你认为他的作法的理由有________三、解答题(共2题;共20分)16.综合题。
七年级数学下册 用尺规作图习题

C、画弧既需要圆心,还需要半径,缺少半径长,这样的弧可以画出无数条,语句错误;
D、作一个角等于两个已知角的和是基本作图,语句正确.
故选C.
【分析】分别利用尺规作图的定义,结合能否画出图形进而分析得出即可.
9.答案:D
解析:【解答】根据尺规作图的定义可得:在射线OP上截取OA=AB=BC=a,属于尺规作图,
D.在射线OP上截取OA=AB=BC=a
10.下列关于作图的语句正确的是( )
A.作∠AOB的平分线OE=3 cm
B.画直线AB=线段CD
C.用直尺作三角形的高是尺规作图
D.已知A、B、C三点,过这三点不一定能画出一条直线
11.下列作图属于尺规作图的是( )
A.画线段MN=3cm
B.用量角器画出∠AOB的平分线
参考答案
一、选择题
1.答案:D
解析:【解答】A、直线没有长度,故A选项错误;
B、射线没有长度,故B选项错误;
C、三点有可能在一条直线上,可画出一条直线,也可能不在一条直线上,此时可画出三条直线,故选项错误;
D、正确.
故选:D.
【分析】根据基本作图的方法,逐项分析,从而得出正确的结论.
2.答案:D
解析:【解答】A、用刻度尺和圆规作△ABC,而尺规作图中的直尺是没有长度的,错误;
B、以∠AOB的边OB为一边作∠BOC,∠BOC的度数不确定,故此选项错误;
C、以点O为圆心画弧,交射线OA于点B,没有半径长,故此选项错误;
D、在线段AB的延长线上截取线段BC=AB,正确.
故选:D.
【分析】分别利用尺规作图的定义,结合能否画出图形进而分析得出即可.
七年级数学下册第二章 相交线与平行线 用尺规作角一课一练基础闯关(新版)北师大版

用尺规作角一课一练·基础闯关题组作一个角等于已知角1.下列说法不正确的是( )A.尺规作图是指用刻度尺和圆规作图B.尺规中的尺是指没有刻度的直尺C.用直尺和三角板过直线外一点作已知直线的平行线不是尺规作图D.最基本的尺规作图是作线段和角【解析】选A.尺规作图中的尺是指没有刻度的直尺.2.下列关于尺规作图的语句错误的是( )A.作∠AOB,使∠AOB=3∠αB.以点O为圆心作弧C.以点A为圆心,线段a的长为半径作弧D.作∠ABC,使∠ABC=∠α+∠β【解析】选B.根据基本作图的方法,逐项分析,从而得出结论.A.作一个角等于已知角的倍数是常见的尺规作图,正确;B.画弧既需要圆心,还需要半径,缺少半径长,错误.C.以点A为圆心,线段a的长为半径作弧,正确;D.作∠ABC,使∠ABC=∠α+∠β,正确.3.如图,点C在∠AOB的边OB上,用尺规作出了∠NCB=∠AOC,作图痕迹中,弧FG是( )A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧【解析】选D.根据作一个角等于已知角可得弧FG是以点E为圆心,DM为半径的弧.4.如图,用尺规作图:“过点C作CN∥OA”,其作图依据是( )A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角相等,两直线平行D.同旁内角互补,两直线平行【解析】选B.如题图所示:“过点C作CN∥OA”,其作图依据是:作出∠NCO=∠O,则CN∥AO,故作图依据是:内错角相等,两直线平行.5.已知:如图∠α,∠β.求作:∠AOC,使∠AOC=∠α+∠β.【解析】先作∠AOB=∠α,然后在∠AOB的外部作∠BOC=∠β,则∠AOC=∠α+∠β.如图所示,∠AOC=∠α+∠β.6.已知:如图∠1和∠2(∠2>∠1),求作:∠3=∠2-∠1.【解析】作法:(1)作∠AOB=∠2;(2)以O为顶点,以AO为一边,在∠AOB内作∠AOC=∠1;(3)∠BOC就是所求作的∠3.如图,已知直线AB及AB外一点C,过点C作直线EF∥AB.(要求:写作法,保留作图痕迹)【解析】作法:①过点C作AB的相交线,与AB交于H点;②以H点为圆心,任意长为半径画弧,交HC于点D,交AB于点G;③以点C为圆心,以HG长为半径画弧,交HC于点M;④以点M为圆心,DG长为半径画弧交前弧于点N,⑤过CN画直线EF即可如图所示:直线EF即为所求.。
七年级数学下册4.4用尺规作三角形同步练习1(新版)北师大版

4.4 用尺规作三角形基础训练1.基本尺规作图包括:①作一条线段等于___________;②作一个角等于___________;③作一个角的___________;④作一条线段的___________;⑤过一点作已知直线的___________.2.尺规作图的画图工具是( )A.刻度尺、圆规B.三角板和量角器C.直尺和量角器D.没有刻度的直尺和圆规3.如图,用尺规作出∠OBF=∠AOB,作图痕迹是( )A.以点B为圆心,OD为半径的弧B.以点B为圆心,DC为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DC为半径的弧4.利用尺规作三角形,有三种基本类型:(1)已知三角形的两边及其夹角,求作符合要求的三角形,其作图依据是“”;(2)已知三角形的两角及其夹边,求作符合要求的三角形,其作图依据是“”;(3)已知三角形的三边,求作符合要求的三角形,其作图依据是“”.5.已知三边作三角形,用到的基本作图是( )A.作一个角等于已知角B.作已知直线的垂线C.作一条线段等于已知线段D.作一条线段等于已知线段的和6.利用基本作图方法,不能作出唯一三角形的是( )A.已知两边及其夹角B.已知两角及其夹边C.已知两边及一边的对角D.已知三边7.根据下列已知条件,能唯一画出△ABC的是( )A.∠A=36°,∠B=45°,AB=4B.AB=4,BC=3,∠A=30°C.AB=3,BC=4,CA=1D.∠C=90°,AB=68.如图,小敏做试题时,不小心把题目中的三角形用墨水弄污了一部分,她想在一块白纸上作一个完全一样的三角形,然后粘贴在上面,她作图的依据是( )A.SSSB.SASC.ASAD.AAS9.下列尺规作图,能判断AD是△ABC边上的高是( )10.如图,已知线段a,b和∠α=40°,你能作出符合如下要求的唯一三角形吗?AB=a,BC=b,∠A=∠α,若能,写出作法;若不能,请说明理由.11.如图是数轴的一部分,其单位长度为a,已知在△ABC中,AB=3a,BC=4a,AC=5a.用直尺和圆规作出△ABC(要求:使点A,C在数轴上,保留作图痕迹,不必写出作法).12.如图,已知线段a,c,∠α.求作△ABC,使BC=a,AB=c,∠ABC=∠α.提升训练13.如图,已知∠α,∠β且∠α>∠β.求作∠γ,使∠γ=∠α-∠β.14.市政建筑公司要在学校东面分别建造一座桥和一个汽车站(汽车站在学校的正东方向),桥在汽车站北面,现已知学校到桥、桥到汽车站及学校到汽车站的距离分别为500 m,500 m,250 m,请根据以上信息确定桥与汽车站应分别建在何处,在下面图纸上标出来(不写作法,保留作图痕迹);这三个场所构成一个什么形状的三角形?15. “综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形,请列举出所有满足条件的三角形;(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).参考答案1.【答案】①已知线段②已知角③平分线④垂直平分线⑤垂线2.【答案】D3.【答案】D4.【答案】(1)SAS (2)ASA (3)SSS5.【答案】C解:在已知三边作三角形时,是作边等于已知线段,即作一条线段等于已知线段.6.【答案】C解:能作出唯一三角形的是能够得出三角形全等的条件,“已知两边及一边的对角”,即“SSA”是不能判定三角形全等的.7.【答案】A 8.【答案】C 9.【答案】B10.解:如图,能作出两个三角形:△ABC'和△ABC,所以不能作出唯一的符合要求的三角形.理由:SSA不能说明两个三角形全等,所以一般情况下,已知两边和其中一边的对角不能作出唯一的三角形.11.解:如图.解:作法如下:(1)在数轴上截取AC=5a.(2)分别以A,C为圆心,以3a,4a为半径画弧,两弧相交于点B.(3)连接AB,BC,则△ABC即为所求作的三角形.12.解:(1)作∠MBN=∠α.(2)在射线BM上截取BA=c,在射线BN上截取BC=a.(3)连接AC,则△ABC即为所求作的三角形(如图).13.解:如图.(1)作射线OA.(2)以OA为一边,作∠BOA,使∠BOA=∠α.(3)以OB为一边在∠AOB内作∠BOC,使∠BOC=∠β,则∠AOC=∠α-∠β.故∠AOC=∠γ就是所求作的角.14.解:如图,A为汽车站的位置,B为桥的位置,这三个场所构成一个等腰三角形.15.解:(1)共九种:(2,2,2),(2,2,3),(2,3,3),(2,3,4),(2,4,4),(3,3,3),(3,3,4),(3,4,4),(4,4,4).(2)只有a=2,b=3,c=4的一个三角形.如图,△ABC即为满足条件的三角形.。
北师大七年级数学下2.4《用尺规作角》习题含详细答案

C、作一个角等于已知角是常见的尺规作图,正确;
D、画弧既需要圆心,还需要半径,缺少半径长,错误.
故选C.
【分析】根据画角的条件判断A;根据线段延长线的等腰判断B;根据基本作图判断C;根据确定弧的条件判断D.
5.答案:A
解析:【解答】根据图象是一条线段,它是以线段的两端点为圆心,作弧,进而作出垂直平分线,故做的是:线段的垂直平分线,
故选:D.
【分析】射线、直线具有延伸性,不能画出其长度;尺规作图需用圆规和无刻度的直尺;若A、B、C三点不共线,则无法过这三点画出一条直线,即A、B、C错误,D项正确.
11.答案:D
解析:【解答】A、画线段MN=3cm,需要知道长度,而尺规作图中的直尺是没有长度的,错误;
B、用量角器画出∠AOB的平分线,量角器不在尺规作图的工具里,错误;
B、量角器不在尺规作图的工具里,错误;
C、画半径2cm的圆,需要知道长度,而尺规作图中的直尺是没有长度的,错误;
D、正确.
故选:D.
【分析】根据尺规作图的定义分别分析得出即可.
3.答案:D
解析:【解答】尺规作图的画图工具是没有刻度的直尺和圆规.
故选D.
【分析】根据尺规作图的定义可知.
4.答案:C
解析:【解答】A、画角既需要顶点,还需要角度的大小,错误;
C、用三角尺作过点A垂直于直线L的直线,三角尺也不在作图工具里,错误;
D、正确.
故选D.
【分析】根据尺规作图的定义可知.
12.答案:B
解析:【解答】A、作一个角等于已知角的倍数是常见的尺规作图,正确;
B、画弧既需要圆心,还需要半径,缺少半径长,错误.
北师大版七年级数学下册用尺规作角(共15张)

4 用尺规作角
用尺规作一个角等于已知角 利用尺规作一个角等于已知角,是一个尺规基本作图,因为一个角 的大小只与角的两边___张__开___的大小有关,而与两边的___长__短___无关, 因此可利用尺规作图作一个角等于已知角.
1.在上学期我们已经学习了一个尺规基本作图,你还记得那个尺 规基本作图的内容吗?
解:方法一:把∠A移到∠B上,如图1,得∠A<∠B; 方法二:把∠B移到∠A上,如图2,得∠A<∠B.
5 cm.其中,属于尺规作图的有
(A )
A.1个
B.2个
C.3个
D.4个
2.下列关于尺规功能的说法不正确的是
(B )
A.直尺的功能:在两点间连接一条线段或将线段向两方向延长
B.直尺的功能:可作平角和直角
C.圆规的功能:以任意长为半径,以任意点为圆心作一个圆
D.圆规的功能:以任意长为半径,以任意点为圆心作一段弧
答:那个尺规基本作图内容是:“作一条线段等于已知线段.”
知识点 用尺规作一个角等于已知角 例 如图,已知直线m与直线m外一点M,请你利用尺规过点M作 一条直线与直线m平行.说出作图方法,保留作图痕迹.
解:作法如下: (1)过点M任意画一条直线OM与直线m交于点O; (2)以点O为圆心,任意长为半径画弧交直线OM于点A,交直线m于 点B; (3) 以 点 M 为 圆 心 , OA 为 半 径 画 弧 交 直 线 OM 于 点 C , 以 点 C 为 圆 心,AB为半径画弧交前弧于点D;
(4)过点M,D画直线,则直线MD即为所求,如图.
2.本题利用尺规作直线MD与直线m平行,平行的根据是 ( B ) A.平行公理 B.同位角相等,两直线平行 C.内错角相等,两直线平行 D.同旁内角互补,两直线平行 3.本题中,弧OA的半径产生变化时,作出的∠CMD的度数一定 ___不__会___变化.(填“会”或“不会”)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.4 用尺规作角
1.按要求画出下列角.
(1)如图,试画出αβ∠-∠;
(2)如图,试画出αβ∠+∠2;
(3)如图,试画出βα∠+∠2
1. 2.按要求画出下面线段.
(1)如图,试画出线段a b -;
(2)如图,试画出线段a b 2+.
3.用1:10000的比例尺,即用1cm 表示100米,精确到0.1cm ,按下列要求画图.
如图,某人从O 点向南偏西30°方向走了100米,到P 点,从P 点向南偏东60°方向走了173米,到Q 点,再从Q 点向北偏东30°,走了100米,到达A 点,通过度量来计算一下该人这时到O 点的距离和相对于O 点的方位.
参考答案
1.(1)提示:β∠的一边为要作的一边,在β∠内作α∠,则另一部分就是αβ∠-∠.
(2)提示:以β∠的一边为边,在β∠的外部作2α∠,就得到了αβ∠+∠2;
(3)提示:如答图,先以β∠的一边OB 边为边,在β∠的外侧作α∠=∠AOB ,
再作OE 平分β∠,则βα∠+∠=∠2
1AOE .
2.略
3.7.1≈OA cm 即OA 的距离是170米,A 点的方位是南偏东60°.。