2010年潍坊中考数学题解答题

合集下载

2010年山东潍坊数学中考模拟题(七)

2010年山东潍坊数学中考模拟题(七)

2010年潍坊市初中学生学业考试(五)数 学 模 拟 试 题姓名 班级一、选择题(共10小题,每小题4分,满分40分)1.√36的相反数是( )A . 6 B .-6 C .√6 D 、-√6 2.2008年末我市常住人口约为2630000人,将2630000用科学记数法表示为(保留一位有效数字)( )A .26×105 B .2.6×106 C .2.0×106 D .2.6×107 3.下列计算正确的是 ( )A . a 2+ a 2= 2a 4B .(2a 2) 2=4a 2C .30+3-1=-3 D .√4=±2 4.在下面的四个几何体中,它们各自的主视图与左视图可能不相同的是( )A .B .C .D .5.下列事件是必然事件的是( )A .打开电视机,正在播电视剧 B .小明坚持体育锻炼,今后会成为奥运冠军C .买一张电影票,座位号正好是偶数 D .13个同学中,至少有2人出生的月份相同6.九年级(1)班10名同学在某次“1分钟仰卧起坐”的测试中,成绩如下(单位:次):39,45,40,44,37,39,46,40,41,39,这组数据的众数、中位数分别是( )A .39,40B .39,38C .40,38D .40,39 7.如图, △ABC 是边长为2的等边三角形,将△ABC 沿射线BC 向右平移得到△DCE ,连接AD 、BD ,下列结论错误..的是( )A .//A D B C B .AC ⊥BD C .四边形ABCD面积为 D .四边形ABED 是等腰梯形8.点P (2,1)关于直线y =x 对称的点的坐标是( ) A .(-2,1) B .(2,-1) C .(-2,-1) D .(1,2) 9.如图,已知圆锥的高为4,底面圆的直径为6,则此圆锥的侧面积是( ) A .12π B .15π C .24π D .30π 10.如图,直线l 和双曲线y=kx(k ≠0)交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴 作垂线,垂足分别为C 、D 、E ,连接OA 、OB 、OP ,设△AOC的面积为1S 、△BOD 的面积为2S 、△POE 的面积为3S , 则有( )A .S 1 <S 2 <S 3 B .S 1 >S 2 >S 3 C .S 1= S 2 =S 3 D .S 1= S 2 >S 3二、填空题(共6小题,每小题4分,满分24分.) 11.化简:√12-√48= .12. 分解因式:ax 2-4ax+4a= . 13. 已知一个多边形的内角和等于900 ,则这个多边形的边数是 .14. 如图,△ABC 内接于⊙O ,∠C =30 ,AB =5,则⊙O 的直径为 .15.袋中装有2个红球和2个白球,它们除了颜色外都相同.随机从中摸出一球,记下颜色后放回袋中,再随机摸出一球,则两次都摸到红球的概率是 .16.根据下列5个图形及相应点的个数的变化规律,试猜测第n 个图中有 个点.三、解答题(共7小题,满分86分. 17.(每小题8分,满分16分) (1)化简:(1a-3 +1a+3 )÷a a 2-9;、(2)解不等式组并把解集在数轴上表示出来.(1)(2)(3)(4)(5)……18.(本题满分10分)如图,A、B两点分别位于一个池塘的两端,由于受条件限制无法直接度量A、B间的距离.小明利用学过的知识,设计了如下三种测量方法,如图①、②、③所示(图中a b c,,...表示长度,α,β,γ..表示角度).(1)写小明设计的三种测量方法中AB的长:①AB= ,②AB= ,③AB= ;(6分)(2)请你再设计一种不同于以上三种的测量方法,画出示意图(不要求写画法),用字母标注需测量的边或角,并写出AB的长度.(4分)19.(本题满分10分)2009年4月1日《三明日报》发布了“2008年三明市国民经济和社会发展统计公报”,根据其中农林牧渔业产值的情况,绘制了如下两幅统计图,请你结合图中所给信息解答下列问题:(1)2008年全市农林牧渔业的总产值为亿元;(2分)(2)扇形统计图中林业所在扇形的圆心角为度(精确到度);(2分)(3)补全条形统计图;(2分)(4)三明作为全国重点林区之一,市政府大力发展林业产业,计划2010年林业产值达60.5亿元,求今明两年林业产值的年平均增长率.(4分)20.(本题满分12分)如图,在直角梯形ABCD中,AB CD∥,∠B=90°,AB=AD,∠BAD的平分线交BC于E,连接DE.(1)说明点D在△ABE的外接圆上;(6分)(2)若∠AED=∠CED,试判断直线CD与△ABE外接圆的位置关系,并说明理由.(6分)(第18题备用图)21.(本题满分12分)为把产品打入国际市场,某企业决定从下面两个投资方案中选择一个进行投资生产.方案一:生产甲产品,每件产品成本为a万美元(a为常数,且3<a<8),每件产品销售价为10万美元,每年最多可生产200件;方案二:生产乙产品,每件产品成本为8万美元,每件产品销售价为18万美元,每年最多可生产120件.另外,年销售x件乙产品...时需上交20.05x万美元的特别关税.在不考虑其它因素的情况下:(1)分别写出该企业两个投资方案的年利润1y、2y与相应生产件数x(x为正整数)之间的函数关系式,并指出自变量的取值范围;(4分)(2)分别求出这两个投资方案的最大年利润;(4分)(3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资方案?(4分)22.(本题满分12分)已知:矩形ABCD中AD>AB,O是对角线的交点,过O任作一直线分别交BC、AD于点M、N(如图①).(1)求证:BM=DN;(2)如图②,四边形AMNE是由四边形CMND沿MN翻折得到的,连接CN,求证:四边形AMCN是菱形;(3)在(2)的条件下,若△CDN的面积与△CMN的面积比为1︰3,求M ND N的值.23.(本题满分14分)如图,在平面直角坐标系xOy中,抛物线y=-12x2+bx+c与x轴交于A(1,0)、B(5,0)两点.(1)求抛物线的解析式和顶点C的坐标;(4分)(2)设抛物线的对称轴与x轴交于点D,将∠DCB绕点C按顺时针方向旋转,角的两边CD和CB与x轴分别交于点P、Q,设旋转角为α(0°<α≤90°).①当α等于多少度时,△CPQ是等腰三角形?(5分)②设BP=x,AQ=s,求s与t之间的函数关系式.(5分)。

山东省潍坊市2010-2011学年九年级上学期期末考试数学试题

山东省潍坊市2010-2011学年九年级上学期期末考试数学试题

潍坊九年级(上)数学期末试卷(满分150分,答卷时间120分钟)一、选择题:(本大题共8小题;每小题3分,共24分)下列各题都有代号为A、B、C、D的四个结论供选择,其中只有一个结论是正确的.请将正确选项的代号填在左边的括号里.【】1.下列图形中不是中心对称图形的是A B C D【】2.下列成语所描述的事件是必然发生的事件是A.水中捞月 B.拔苗助长 C.守株待免 D.瓮中捉鳖【】3.如果3-x有意义,那么字母x的取值范围是A.3>x B.3<x C.3≥x D.3≤x【】4.已知正三角形的边长为12,则这个正三角形外接圆的半径是A.32 B.3 C.34 D.33【】5.如图,点A、C、B在⊙O上,已知∠AOB =∠ACB =α.则α的值为A.135° B.120° C.110° D.100°【】6.如图,⊙O的半径为5,弦AB=8,M是弦AB上的动点,则OM不可能为A.2 B.3 C.4 D.5【】7.若a是方程020092=++xx的一个根,则代数式()1+a a的值等于A.0 B.2009 C.2008 D.-2009【】8.设[]x表示不超过x的最大整数,如=1,=3,……第5题图第6题图OCBAαα那么3⎤⎦等于A .2B .3C .4D .5二、填空题:(本题共10小题;每小题3分,共30分)不需要写解答过程,请把最后结果填在横线上。

9.化简:=-81810.已知⊙O 1的半径为2cm ,⊙O 2的半径为3cm ,两圆的圆心距为5cm ,则⊙O 1和⊙O 2的位置关系为11.直径12cm 的圆中,垂直平分半径的弦长为 cm . 12.已知13-=-y x ,321=xy ,则22y x += 13.若322+-+-=x x y 成立,则=x y14.关于x 的方程()()06211232=++-+-x x m x m ,当m = 时为一元二次方程.15.在2、12、22、32中任取其中两个数相乘,积为有理数的概率为 16.如图,直角坐标系中一条圆弧经过网格点A ,B ,C ,其中B 点坐标为(4,4),则该弧所在圆心的坐标是 .第16题图 第17题图 第18题图17.如图,等边三角形ABC 的边长为2cm ,D 、E 分别是AB 、AC 上的点,将△ADE 沿直线DE折叠,点A 落在点A ′处,且点A ′在△ABC 外部,则阴影部分图形的周长 为 cm .18.如图,正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按照如图所示的方式放置,点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线()0>+=k b kx y 和x 轴上,已知点B 1(1,1),B 2(3,2),则B 3的坐标是A B C Oy x 第16题图三、解答题:(本大题共10小题,共96分)解答时应写出文字说明、证明过程或演算步骤.(第19题(1)5分,19题(2)5分,20题(1)5分,20题(2)5分,共20分)19.解方程(1) 25)23(2=+x (2) 01072=+-x x20.计算(1)()|3|1210-+-+π (2) ⎪⎪⎭⎫ ⎝⎛--27814483122(第21题8分,22题8分,共16分)21.已知ABC △在平面直角坐标系中的位置如下图所示. (1)分别写出图中点A C 和点的坐标;(2)画出ABC △绕点A 按逆时针方向旋转90后的''C AB ∆; (3)求点C 旋转到点'C 所经过的路线长(结果保留π).22.如图,ABCD 是围墙,AB ∥CD ,∠ABC =120°,一根6m长的绳子,一端拴在围墙一角的柱子上(B 处),另一端拴着一只羊(E 处). (1)请在图中画出羊活动的区域.(2)求出羊活动区域的面积.87654321(第23题8分,24题10分,共18分)23.已知a 、b 、c 均为实数,且()02|1|12=++++-c b a ,求方程02=++c bx ax 的根.24.观察下列等式:1==;====回答下列问题:(1)利用你观察到的规律,化简: 22231+(2)计算:4151231321211++++++++(第25题10分,26题10分,共20分)25.如图,PA ,PB 是⊙O 的切线,点A ,B 为切点,AC 是⊙O 的直径,∠ACB =70°.求∠P 的度数.26.有四张背面图案相同的卡片A 、B 、C 、D ,其正面分别画有四个不同的几何图形(如图).小敏将这四张卡片背面朝上洗匀摸出一张,放回洗匀再摸出一张. (1)用树状图(或列表法)表示两次摸出卡片所有可能的结果.(卡片可用A 、B 、C 、D 表示)(2)求摸出的两张卡片图形都是中心对称图形的概率.(第27题10分)27.李明的爸爸从市场上卖回来一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1m 的正方形后,剩下的部分刚好能围成一个容积为15m 3的无盖长方体运输箱,且此长方体运输箱底面的长比宽多2m ,现已知购买这种铁皮每平方米需30元,问李明爸爸购回这张矩形铁皮共花了多少钱?(第28题12分)28.如图,在平面直角坐标系中有一矩形ABCO ,B 点的坐标为(12,6),点C 、A 在坐标轴上.⊙A 、⊙P 的半径均为1,点P 从点C 开始在线段CO 上以1单位/秒的速度向左运动,运动到点O 处停止.与此同时,⊙A 的半径每秒钟增大2个单位,当点P 停止运动时,⊙A 的半径也停止变化.设点P 运动的时间为t 秒.(1)在0<t <12时,设△OAP 的面积为s ,试求s 与t 的函数关系式.并求出当t 为何值时,s 为矩形ABCO 面积的31; (2)在点P 的运动过程中,是否存在某一时刻,⊙A 与⊙P 相切,若存在求出点P 的坐标,若不存在,说明理由.A D CB九年级数学参考答案一、选择题:(本大题共8小题;每小题3分,共24分)二、填空题(本大题共10小题;每小题3分,共30分)9.2 10.外切 11.36 12.34- 13.3 14.-1 15.6116.(2,0) 17.6 18.(7,4) 三、解答题(本大题共10小题,共96分) 19.解方程(1)25)23(2=+x解:3x +2=5或 3x +2=-5………………………………………………………………3分x 1=1 x 2=37-…………………………………………………………………5分 (2)01072=+-x x解:(x -2)(x -5)=0…………………………………………………………………3分x -2=0或x -5=0x 1=2 x 2=5 …………………………………………………………………5分 20.计算(1)()|3|1210-+-+π解:原式=3321+-……………………………………………………………3分 =31-……………………………………………………………………5分 (2)⎪⎪⎭⎫ ⎝⎛--27814483122解:原式=()33231234--………………………………………………3分=()23934-………………………………………………………4分=108-64 ……………………………………………………………5分21.876解:(1)点A 的坐标(2,1),点B 的坐标(6,0)………………………………2分 (2)如图,''C AB ∆为所求作的图形……………………………………………5分 (3)174122=+=AC ………………………………………………………6分点C 旋转到点'C 所经过的路线长:1801790π=l π217=………………………………………………………8分22.解:(1)如图,扇形BFG 和扇形CGH 为羊活动的区域.………………………2分(2)ππ1236061202==BFGS 扇形m 2……………………………………………4分ππ323602602==CGHS 扇形m 2………………………………………………6分∴羊活动区域的面积为:πππ3383212=+m 2…………………………………8分 23. 解:∵ 1-a ≥0,|1|+b ≥0,()22+c ≥0∴a -1=0 ,b +1=0, c +2=0∴a =1 ,b =-1, c =-2…………………………………………………………3分 将a =1 ,b =-1, c =-2代入02=++c bx ax 得F GH022=--x x …………………………………………………………………5分解得:11-=x ,22=x ………………………………………………………8分24.解:(1)()()22232223222322231-+-=+=2223-……………3分(2)4151231321211++++++++()()()()()()154154154232323121212-+-++-+-+-+-=…5分1542312-++-+-= ………………………………………8分3=…………………………………………………………………………10分25.解:连接OB∵∠C 、∠AOB 均对弧AB∴∠AOB =2∠C =2×70°=140°………………………………………………3分 ∵PA 是⊙O 的切线. ∴OA ⊥PA∴∠OAP =90°…………………………………………………………………5分 同理∠OBP =90° ∵在四边形AOBP 中∠AOB +∠OAP +∠OBP +∠P =360°…………………………………………7分 ∴140°+90°+90°+∠P =360°∴∠P =40°……………………………………………………………………10分26.解:(1)树状图……………………………………………………………3分或列表法(2摸出的两张卡片图形都是中心对称图形(记为事件A )有4种,即:(B ,B )(B ,D )(D ,B )(D ,D ). …………………………………………………………7分∴P (A )=41164=………………………………………………………………10分 27.解:设长方体运输箱底面的宽为x m ,则长为(x +2)m.第一张卡片 第二张卡片 A B D C A B B D C A C B D C A D B D C A()1512=⨯+x x …………………………………………………………………4分解得::51-=x (不合题意,舍去),32=x …………………………………6分∴x +2=5∴这块铁皮的长为7 m ,宽为5 m. …………………………………………8分 ∴买铁皮需付费:5×7×30=1050元. ………………………………………10分28.解:(1)∵B 点的坐标为(12,6)∴OA =6,OB =12 ∴OP =12-t当0<t <12时,s =OP OA ⨯21=()t -⨯⨯12621=363+-t …………3分 ∵s=矩形S 31∴363+-t =61231⨯⨯解得: 4=t即当t =4时,s 为矩形ABCO 面积的31.…………………………………5分 (2)如图1,当⊙A OP =12-t ,AP 在Rt △AOP 中,∴()()22222126+=-+t t解得:()434421=-=t t ,不合题意,舍去 此时,P 点坐标为(8,0)………………………………………………………8分如图2,当⊙A OP =12-t ,在Rt △AOP∴()()2222126t t =-+解得:()4192,419221-=--=t t 不合题意,舍去…………………11分此时,P 点坐标为(19216-,0)。

2010年中考梯形

2010年中考梯形

2010年中考梯形1、(芜湖)如图,在等腰梯形ABCD中,AD∥BC,对角线AC⊥BD于点O,AE⊥BC,DF⊥BC,垂足分别为E、F,AD=4,BC=8,则AE+EF等于()A.9 B.10 C.11 D.122、(芜湖)如图,直角梯形ABCD中,∠ADC=90°,AD∥BC,点E在BC上,点F在AC上,∠DFC=∠AEB.(1)求证:△ADF ∽△CAE;(2)当AD=8,DC=6,点E、F分别是BC、AC的中点时,求直角梯形ABCD的面积3、(鞍山)如图,设M、N分别是直角梯形ABCD两腰的中点,DE⊥AB,将△ADE沿DE翻折,M、N恰好重合,则AB:BE等于()A.2:1B.1:2C.3:2D.2:34、(鞍山)如图,在等腰梯形ABCD中,AB=DC=5,AD=4,BC=10. 点E在下底边BC上,点F在腰AB上.(1)若EF平分等腰梯形ABCD的周长,设BE长为x,试用含x的代数式表示△BEF的面积;(2)是否存在线段EF将等腰梯形ABCD的周长和面积同时平分?若存在,求出此时BE 的长;若不存在,请说明理由;(3)是否存在线段EF将等腰梯形ABCD的周长和面积同时分成1∶2的两部分?若存在,求出此时BE的长;若不存在,请说明理由.③如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21。

动点P从点D出发,沿射线DA的方向以每秒2两个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动。

设运动的时间为t(秒).(1)设△BPQ 的面积为S ,求S 与t 之间的函数关系式(2)当t 为何值时,以B ,P ,Q 三点为顶点的三角形是等腰三角形? (3)当线段PQ 与线段AB 相交于点O ,且2AO =OB 时,求t 的值.(4)是否存在时刻t ,使得PQ ⊥BD ?若存在,求出t 的值;若不存在,请说明理由.5、(巴中)已知如图8所示,在梯形ABCD 中,AD ∥BC ,AB =AD =DC =8,∠B =60°,连接A C .(1)求cos ∠ACB 的值(2)若E 、F 分别是AB 、DC 的中点,连接EF ,求线段EF 的长。

近三年潍坊市中考数学真题对比

近三年潍坊市中考数学真题对比

近三年潍坊市中考数学真题对比选择题1. 下面计算正确的是( ).A.3333=+B.3327=÷C.532=⋅D.24±= 1.计算:2-2=( ). A .41 B .2 C .41- D .4 1.实数0.5的算术平方根等于( ). A.2 B.2 C.22D.212. 根据《全国人口普查条例》和《国务院关于开展第六次全国人口普查的通知》,我国以2010年11月1日零时为标准时点进行了第六次全国人口普查,普查得到全国总人口为1370536875人,该数用科学记数法表示为( ).(保留3个有效数字) A .13.7亿 B .13.7×108C .1.37×109D .1.4×1092.如果代数式34-x 有意义,则x 的取值范围是( ). A .x ≠3 B .x <3 C .x >3 D .x ≥32.下面的图形是天气预报中的图标,其中既是轴对称图形又是中心对称图形的是( ).A. B. C. D.3. 如图(1),已知等腰三角形ABC ,AB = AC ,底边BC 的长为2,DE 是它的中位线,则下面三个结论:(1)DE =1;(2)△ADE ∽△ABC ;(3)△ADE 的面积与△ABC 的面积之比为1︰4. 其中正确的有( ).A .0个 B .1个 C .2个 D .3个3.某班6名同学参加体能测试的成绩如下(单位:分):75,95,75,75,80,80.关于这组数据的表述错误的是( ).A .众数是75 B .中位数是75 C .平均数是80 D .极差是203.2012年,我国财政性教育经费支出实现了占国内生产总值比例达4%的目标.其中在促进义务教育均衡发展方面,安排义务教育教育经费保障教育机制改革资金达865.4亿元.数据“865.4亿元”用科学技术法可表示为( )元.A.810865⨯ B.91065.8⨯ C.101065.8⨯ D. 1110865.0⨯ 4. 如图(2),阴影部分是由5个小正方形组成的一个直角图形,将方格内空白的两个小正方形涂黑,得到新的图形,其中 不是..轴对称图形的是( ).A. B. C. D.4.右图空心圆柱体的主视图的画法正确的是( ).4.如图是常用的一种圆顶螺杆,它的俯视图正确的是( ).5.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( ).A.众数B.方差C.平均数D.中位数5. 不等式组1124,2231,22x x x x ⎧+-⎪⎪⎨⎪-≤⎪⎩>的解集在数轴上表示正确的是( ).A.B.5.不等式组{532423>+<-x x 的解等于( ).A . 1<x <2 B . x >1 C . x <2 D . x <1或x >2 6. 某市2011年5月1日—10日对空气污染指数的检测数据如下(主要污染物为可吸入颗粒物):61,75,70,56,81,91,92,91,75,81.那么该组数据的极差和中位数分别是( ). A .36,78 B .36,86 C .20,78 D .20,77.36.许多人由于粗心,经常造成水龙头“滴水”或“流水”不断.根据测定,一般情况下一个水龙头“滴水”1个小时可以流掉3.5千克水.若1年按365天计算,这个水龙头1年可以流掉( )千克水.(用科学计数法表示,保留3个有效数字)A .3.1×104B .0.31×105C .3.06×104D .3.07×104 6.设点()11,y x A 和()22,y x B 是反比例函数xky =图象上的两个点,当1x <2x <0时,1y <2y ,则一次函数k x y +-=2的图象不经过的象限是( ).A.第一象限B.第二象限C.第三象限D.第四象限 7. 关于x 的方程0122=-++k kx x 的根的情况描述正确的是( ).A .k 为任何实数,方程都没有实数根B .k 为任何实数,方程都有两个不相等的实数根C .k 为任何实数,方程都有两个相等的实数根D .根据k 的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种7.已知两圆半径r 1、r 2分别是方程菇x 2—7x +10=0的两根,两圆的圆心距为7,则两圆 的位置关系是( ). A .相交 B .内切 C .外切 D .外离 7.用固定的速度向如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是( ).8. 如图(3)在今年我市体育学业水平考试女子800米耐力测试中,小莹和小梅测试所跑的路程S (米)与所用时间t (秒)之间的函数关系的图象分别为线段OA 和折线OBCD . 下列说法正确的是( ).A .小莹的速度随时间的增大而增大B .小梅的平均速度比小莹的平均速度快C .在180秒时,两人相遇D .在50秒时,小莹在小梅的前面8.如图(4)已知矩形ABCD 中,AB =1,在BC 上取一点E ,沿AE 将ΔABE 向上折叠,使B 点落在AD 上的F 点,若四边形EFDC 与矩形ABCD 相似,则AD =( ). A .215- B .215+ C .3D .28.如图(5),⊙O 的直径AB=12,CD 是⊙O 的弦,CD ⊥AB ,垂足为P ,且BP :AP=1:5,则CD 的长为( ). A.24 B.28 C.52 D.549. 如图(6),半径为1cm 的小圆在半径为9cm 的大圆内滚动,且始终与大圆相切,则小圆扫过的阴影部分的面积为( ).A .17πB .32π C .49π D .80π9.如图(7)轮船从B 处以每小时50海里的速度沿南偏东300方向匀速航行,在B 处观测灯塔A 位于南偏东750方向上,轮船航行半小时到达C 处,在C 处观测灯塔A 位于北偏东600方向上,则C 处与灯塔A 的距离是 ( )海里.A .325B .225C .50D .259.如图(8)一渔船在海岛A 南偏东20°方向的B 处遇险,测得海岛A 与B 的距离为20海里,渔船将险情报告给位于A 处的救援船后,沿北偏西80°方向向海岛C 靠近.同时,从A 处出发的救援船沿南偏西10°方向匀速航行.20分钟后,救援船在海岛C 处恰好追上渔船,那么救援船航行的速度为( ).A.310海里/小时B. 30海里/小时C.320海里/小时D.330海里/小时 10. 身高相等的四名同学甲、乙、丙、丁参加风筝比赛,四人放出风筝的线长、线与地面夹角如表(假设风筝线是拉直的),则四名同学所放的风筝中最高的是( ).A .甲B .乙C .丙D .丁10.如图(9)甲乙两位同学用围棋子做游戏.如图所示,现轮到黑棋下子,黑棋下一子后白棋再下一子,使黑棋的5个棋子组成轴对称图形,白棋的5个棋子也成轴对称图形.则下列下子方法不正确的是( ).[说明:棋子的位置用数对表示,如A 点在(6,3)] A .黑(3,7);白(5,3) B .黑(4,7);白(6,2)C .黑(2,7);白(5,3) D .黑(3,7);白(2,6)10.已知关于x 的方程()0112=--+x k kx ,下列说法正确的是( ).A.当0=k 时,方程无解B.当1=k 时,方程有一个实数解C.当1-=k 时,方程有两个相等的实数解D.当0≠k 时,方程总有两个不相等的实数解11. 如图(10)已知直角梯形ABCD 中,AD ∥BC ,∠BCD =90°,BC =CD =2AD ,E 、F 分别是BC 、CD 边的中点,连接BF 、DE 交于点P ,连接CP 并延长交AB 于点Q ,连接AF ,则下列结论不正确...的是( ). A .CP 平分∠BCD B .四边形ABED 为平行四边形C .CQ 将直角梯形ABCD 分为面积相等的两部分 D .△ABF 为等腰三角形 11.若直线y =-2x -4与直线y =4x +b 的交点在第三象限,则b 的取值范围是( ). A . -4<b <8 B .-4<b <0 C .b <-4或b >8 D .-4≤6≤811.为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x ,不吸烟者患肺癌的人数为y ,根据题意,下面列出的方程组正确的是( ).A.⎩⎨⎧=⨯+⨯=-10000%5.0%5.222y x y xB.⎪⎩⎪⎨⎧=+=-10000%5.0%5.222yx y x C.⎩⎨⎧=⨯-⨯=+22%5.0%5.210000y x y x D.⎪⎩⎪⎨⎧=-=+22%5.0%5.210000yx y x 12. 已知一元二次方程20ax bx c ++=的两个实数根1x 、2x 满足124x x +=和123x x ⋅=,那么二次函数2y ax bx c =++的图象可能是( ).A. B. C. D.12.下图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,l3,14,l5,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为( ).A .32B .126C .135D .14412.对于实数x ,我们规定[]x 表示不大于x 的最大整数,例如[]12.1=,[]33=,[]35.2-=-,若5104=⎥⎦⎤⎢⎣⎡+x ,则x 的取值可以是( ). A.40 B.45 C.51 D.5近三年潍坊市中考数学真题对比二、填空13. 分解因式:321a a a +--=_____________________. 13.分解因式:x 3—4x 2—12x = .13.方程012=++x xx 的根是_________________. 14. 写出一个y 关于x 的函数,使其具有两个性质:①图象过(2,1)点;②在第一象限内y 随x 的增大而减小. 函数解析式为____________________. (写出一个即可) 14.点P 在反比例函数xky =(k ≠0)的图象上,点Q (2,4)与点P 关于y 轴对称,则反比例函数的解析式为 .14.如图(1),ABCD 是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件 ____________,使ABCD 成为菱形.(只需添加一个即可)15. 方程组524050x y x y --=+-=⎧⎨⎩,,的解是____________.15.方程060366=-+xx 的根是 . 15.分解因式:()()=+-+a a a 322_________________.16.如图(2) 已知线段AB a =,以AB 为边在AB 的下方作正方形ACDB . 取AB 边上一点E ,以AE 为边在AB 的上方作正方形AENM . 过E 作EF CD ⊥,垂足为F 点. 若正方形AENM 与四边形EFDB 的面积相等,则AE 的长为____________________.16.如图(3)所示,AB =DB ,∠ABD =∠CBE ,请你添加一个适当的条件 , 使ΔABC ≌ΔDBE . (只需添加一个即可)16.一次函数b x y +-=2中,当1=x 时,y <1;当1-=x 时,y >0则b 的取值范围是_____________.17.(4)已知长方形ABCD ,AB =3cm ,AD =4cm ,过对角线BD 的中点O 做BD 的垂直平分线EF ,分别交AD 、BC 于点E 、F ,则AE 的长为_____________.17.右图中每一个小方格的面积为l ,则可根据面积计算得到如下算式:1+3+5+7+…+(2n -1)= .(用n 表示,n 是正整数)17.如图(6)当白色小正方形个数n 等于1,2,3…时,由白色小正方形和和黑色小正方形组成的图形分别如图所示.则第n 个图形中白色小正方形和黑色小正方形的个数总和等于_____________.(用n 表示,n 是正整数)(2013)18.如图,直角三角形ABC 中,︒=∠90ACB ,10=AB ,6=BC ,在线段AB 上取一点D ,作AB DF ⊥交AC 于点F .现将ADF ∆沿DF 折叠,使点A 落在线段DB 上,对应点记为1A ;AD 的中点E 的对应点记为1E .若11FA E ∆∽BF E 1∆,则AD =__________.。

2010年山东潍坊数学中考模拟题(二)

2010年山东潍坊数学中考模拟题(二)

2010年潍坊市初中学生学业考试(二)数 学 模 拟 试 题一、选择题(本题共12个小题,每小题4分,满分48分)将正确的答案代号写在下一页的表格中,否则不计分.1.│-3│的相反数是( )A .3B .-3C .13D .- 13 2.视力表对我们来说并不陌生.如图是视力表的一部分,其中开口向上的两个“E ”之间的变换是( )A .平移B .旋转C .对称D .位似3.学完分式运算后,老师出了一道题“化简:x+3x+2+2-xx 2-4 小明的做法是:原式= (x+3)(x-2)x 2-4-x-2x 2-4=x 2+x-6-x-2x 2-4=x 2-8x 2-4;小亮的做法是:原式=(x+3)(x-2)+(2-x)=x 2+x-6+2-x=x 2-4;小芳的做法是:原式=x+3x+2 - x-2(x-2)(x+2)=x+3x+2- 1x+2=x+3-1x+2=1.其中正确的是( )A .小明 B .小亮 C .小芳 D .没有正确的 4.设a,b 是方程x 2-x-2010=0的两个实数根,则a 2+2a+b 的值为( ) A .2007 B .2008 C .2009D .20105.一个长方体的左视图、俯视图及相关数据如图所示, 则其主视图的面积为( ) A .6 B .8 C .12 D .24 6.如图,数轴上A B ,两点表示的数分别为-1点B 关于点A 的对称点为C ,则点C 所表示的数为( )A .-2-√3B .-1-√3C .-2+√3D .1-√37.某校初一年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是( )A .全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间B .将六个平均成绩之和除以6,就得到全年级学生的平均成绩C .这六个平均成绩的中位数就是全年级学生的平均成绩D .这六个平均成绩的众数不可能是全年级学生的平均成绩 8.如图,直线y=kx+b 经过点A(-1,-2)和点B(-2,0), 直线y=2x 过点A ,则不等式2x <kx+b <0的解集为( ) A .x <-2 B .-2<x<-1C .-2<x<0D .-1<x<0 9.现有四种地面砖,它们的形状分别是:正三角形、正方形、正六边形、正八边形,且它们的边长都相等.同时选择其中两种地面砖密铺地面,选择的方式有( )A .2种B .3种C .4种D .5种10.如图,等边A B C △的边长为3,P 为B C 上一点,且BP=1,D 为A C 上一点,若∠BPD=60°,则 C D 的长为( ) A .32B .23C .12D .3411.二次函数y=ax 2+bx+c 的图象如图所示,则一次函数y=bx+b 2-4ac 与反比例函数y=a+b+c x在同一坐标系内的图象大致为( )12.利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是( ) A .73cm B .74cm C .75cm D .76cm①②(第12题3左视图俯视图 (第5题图) (第6题图) x (第8A D C PB(第10题图)60° xxx x x标准对数视力表 0.1 4.00.12 4.10.15 4.2(第2题图)姓名 二、填空题(本题共6个小题,每小题4分,满分24分) 13.若3x m+2y 2与3n x y 的和是单项式,则m n = . 14.设a ≠b ≠0,a 2+b 2-6ab=0,则a+bb-a的值等于 . 15.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是 .16.如果不等式组的解集是0≤x<1,那么a-b 的值为 .17.观察右表,回答问题:第 个图形中“△”的个数是“○”的个数的5倍.18.如图,A B C △与A E F △中,AB=AE,BC=EF,∠B=∠E,AB 交E F 于D .给出下列结论: ①∠AFC=∠C ;②DF=CF ;③A D E F D B △∽△;④∠BFD=∠CAF .其中正确的结论是 (填写所有正确结论的序号).三、解答题(本大题共8个小题,满分78分)19.(本题满分6分)化简:√18 - √92 -√3-√6√3 - (√3+2)0- √(1-√2) 220.(本题满分8分)将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是偶数的概率是 ;(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是 ; (3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率. 21.(本题满分8分)某市教育行政部门为了了解初一学生每学期参加综合实践活动的情况,随机抽样调查了某校初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图).请你根据图中提供的信息,回答下列问题:(1)求出扇形统计图中a 的值,并求出该校初一学生总数;(2)分别求出活动时间为5天、7天的学生人数,并补全频数分布直方图; (3)求出扇形统计图中“活动时间为4天”的扇形所对圆心角的度数; (4)在这次抽样调查中,众数和中位数分别是多少?(5)如果该市共有初一学生6000人,请你估计“活动时间不少于4天”的大约有多少人?22.(本题满分8分)序号 1 2 3 …图形…(第20题图) 27 (第21题图)时间A E DB FC(第18题图)腾飞中学在教学楼前新建了一座“腾飞”雕塑.为了测量雕塑的高度,小明在二楼找到一点C,利用三角板测得雕塑顶端A点的仰角为30°,底部B点的俯角为45°,小华在五楼找到一点D,利用三角板测得A点的俯角为60°(如图).若已知CD为10米,请求出雕塑AB的高度.(结果精确到0.1173. ).23.(本题满分10分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y 与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?24.(本题满分10分)如图,AB,BC分别是O⊙的直径和弦,点D为 BC上一点,弦DE交O⊙于点E,交AB于点F,交BC于点G,过点C的切线交ED的延长线于H,且HC=HG,连接B H,交O⊙于点M,连接MD ME,.求证:(1)DE⊥AB;(2)∠HMD=∠MHE+∠MEH.BD CA(第22题图)B (第24题图)25.(本题满分14分)如图,直角梯形ABCD中,AD∥BC,∠BCD=90°,且CD=2AD,tan∠ABC=2,过点D作A BD E∥,交∠BCD的平分线于点E,连接BE.(1)求证:BC=CD;(2)将B C E△绕点C,顺时针旋转90°得到D C G△,连接EG..求证:CD垂直平分EG.(3)延长BE交CD于点P.求证:P是CD的中点.26.(本题满分14分)如图,抛物线y=ax2+bx+3与x轴交于A B,两点,与y轴交于C点,且经过点(2,-3a),对称轴是直线x=1,顶点是M.(1)求抛物线对应的函数表达式;(2)经过C,M两点作直线与x轴交于点N,在抛物线上是否存在这样的点P,使以点P A C N,,,为顶点的四边形为平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)设直线y=-x+3与y轴的交点是D,在线段B D上任取一点E(不与B D,重合),经过A B E,,三点的圆交直线B C于点F,试判断A E F△的形状,并说明理由;(4)当E是直线y=-x+3上任意一点时,(3)中的结论是否成立?(请直接写出结论).2009年烟台市初中学生学业考试数学试题参考答案及评分意见一、选择题(本题共12个小题,每小题4分,满分48分)A DGECB(第25题图)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B D C C B A A B B B D C二、13.1414.15.1716.1 17.20 18.①,③,④三、19.(本题满分6分)2)++(11|1=+++-.2分111=--+.4分1=6分20.解:(1)121分(2)133分(3)根据题意,画树状图:6分(第20题图)由树状图可知,共有16种等可能的结果:11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44.其中恰好是4的倍数的共有4种:12,24,32,44.所以,P(4的倍数)41164==.8分或根据题意,画表格:6分第一次第二次1 2 3 41 11 12 13 142 21 22 23 243 31 32 33 344 41 42 43 44由表格可知,共有16种等可能的结果,其中是4的倍数的有4种,所以,P(4的倍数)41164==.8分21.(本题满分8分)解:(1)1(10%15%30%15%5%)25%a=-++++=.1分初一学生总数:2010%200÷=(人).2分(2)活动时间为5天的学生数:20025%50⨯=(人).活动时间为7天的学生数:2005%10⨯=(人).3分频数分布直方图(如图)······························ 4分(3)活动时间为4天的扇形所对的圆心角是36030%108⨯=°°.········································· 5分(4)众数是4天,中位数是4天.···················7分(5)该市活动时间不少于4天的人数约是6000(30%25%15%5%)4500⨯+++=(人).8分22.(本题满分8分)解:过点C作C E AB⊥于E.906030903060D AC D∠=-︒=∠=-=°°,°°°,90C A D∴∠=°.11052C D AC C D=∴==,. ········································ 3分在R t AC E△中,5sin5sin302A E A C A C E=∠==°,························· 4分cos5cos30C E A C A C E=∠==°···················· 5分在R t B C E△中,45tan45B C E B E C E∠=∴==°,°················································································· 6分551) 6.822A B A E B E∴=+=+=≈(米).所以,雕塑A B的高度约为6.8米.········································································································ 8分23.(本题满分10分)解:(1)根据题意,得(24002000)8450xy x⎛⎫=--+⨯⎪⎝⎭,即2224320025y x x=-++.2分(2)由题意,得22243200480025x x-++=.整理,得2300200000x x-+=.4分解这个方程,得12100200x x==,.5分要使百姓得到实惠,DBA(第22题图)C1 2 3 41第一次第二次 1 2 3 421 2 3 431 2 3 44开始(第21题图)时间取200x =.所以,每台冰箱应降价200元.6分 (3)对于2224320025y x x =-++,当241502225x =-=⎛⎫⨯- ⎪⎝⎭时, ··································· 8分 150(24002000150)8425020500050y ⎛⎫=--+⨯=⨯= ⎪⎝⎭最大值.所以,每台冰箱的售价降价150元时,商场的利润最大,最大利润是5000元.10分 24.(本题满分10分)(1)证明:连接O C ,H C H G H C G H G C =∴∠=∠ ,.······································· 1分H C 切O ⊙于C 点,190H C G ∴∠+∠=°, ······················· 2 12O B O C =∴∠=∠ ,,··························································· 3分 3H G C ∠=∠ ,2390∴∠+∠=°.··································· 4分 90B F G ∴∠=°,即D E AB ⊥.············································ 5分(2)连接B E .由(1)知D E AB ⊥.A B 是O ⊙的直径,∴ BDBE =.6分BED BM E ∴∠=∠.7分O ⊙,H M D BED∴∠=∠.8分H M D BM E ∴∠=∠. B M E ∠ 是H E M △的外角,BM E M H E M EH ∴∠=∠+∠.9分H M D M H E M EH ∴∠=∠+∠.10分25.(本题满分14分) 证明:(1)延长D E 交B C 于F .A D B C ∥,AB D F ∥,A DB F A BCD F C ∴=∠=∠,. ··········································································································· 1分 在R t D C F △中,tan tan 2D F C A B C ∠=∠= ,2C DC F∴=,即2C D C F =.22C D A D B F== ,B F C F ∴=.3 1122B C B F C F C D C D C D ∴=+=+=,即B C C D =.4分(2)C E 平分B C D ∠,∴B C E D C E ∠=∠.由(1)知B C C D C E C E == ,,BC E D C E ∴△≌△,BE D E ∴=.··························· 6分由图形旋转的性质知C E C G BE D G D E D G ==∴=,,. ························································· 8分C D ∴,都在E G 的垂直平分线上,C D ∴垂直平分E G . ························································· 9分(3)连接B D .由(2)知BE D E =,12∴∠=∠.AB D E ∥.32∴∠=∠.13∴∠=∠.11分AD BC ∥,4DBC ∴∠=∠.由(1)知B C C D =.D B C B D C ∴∠=∠,4BD P ∴∠=∠. ·············································12分又BD BD = ,B A D B P D ∴△≌△,D P AD ∴=. ······························································13分12A D C D =,12D P C D ∴=.P ∴是C D 的中点. ······························································· 14分 28.(本题满分14分)解:(1)根据题意,得34231.2a a b b a-=+-⎧⎪⎨-=⎪⎩,2分解得12.a b =⎧⎨=-⎩,∴抛物线对应的函数表达式为223y x x =--. ············ 3分 (2)存在.在223y x x =--中,令0x =,得3y =-. 令0y =,得2230x x --=,1213x x ∴=-=,.(10)A ∴-,,(30)B ,,(03)C -,.又2(1)4y x =--,∴顶点(14)M -,.53y x =--.在3y x =--中,令0y =,得3x =-.(30)N ∴-,,2A N ∴=.6分在223y x x =--中,令3y =-,得1202x x ==,.2C P A N C P ∴=∴=,.A N C P ∥,∴四边形A N C P 为平行四边形,此时(23)P -,.8分 (3)A E F △是等腰直角三角形.理由:在3y x =-+中,令0x =,得3y =,令0y =,得3x =.∴直线3y x =-+与坐标轴的交点是(03)D ,,(30)B ,.O D O B ∴=,45O B D ∴∠=°.9分又 点(03)C -,O B O C ∴=.45O B C ∴∠=°.10分由图知45A E F A B F ∠=∠=°,45AFE ABE ∠=∠=°.11分90EAF ∴∠=°,且AE AF =.A E F ∴△是等腰直角三角形.·························· 12分(4)当点E 是直线3y x =-+上任意一点时,(3)中的结论成立.14分AD GE B(第25题图)P (第24题图) (第26题图)。

2010潍坊

2010潍坊

2010年潍坊市初中学业水平考试化学试题 2010.6 一、选择题(本题包括18小题,每小题2分,共36分。

每小题只有一个选项符合题意)(2010·潍坊)1.在我们的日常生活中涉及到许多变化。

下列变化中不包含化学变化的是A.用石灰浆涂抹墙壁后,表面有水珠生成B.在口中咀嚼米饭或馒头时感到有甜味C.用干冰做制冷剂进行人工降雨D.绿色植物的光合作用(2010·潍坊)2.菜刀在生活中有重要应用。

下列情况中,菜刀腐蚀由快到慢的是①切青菜后用清水冲洗②切湿咸菜后未清洗③切肥猪肉后放置A.①③②B.②①③C.③①②D.③②①(2010·潍坊)3.物质的性质决定物质的用途。

下列说法中,不合理的是A.稀盐酸用于除铁锈B.碳酸氢钠用于治疗胃酸过多C.灯泡中充氮气以延长使用寿命D.玻璃刀头上镶嵌的石墨用于切割玻璃(2010·潍坊)4.物质的分类非常重要。

下列按酸、碱、盐的顺序排列的一组是A.H2SO4、Na2CO3、NaCl B.Ca(OH)2、HCl、Na2SO4C.NaOH、H2CO3、NaCl D.H2SO4、NaOH、Na2CO3(2010·潍坊)5.某品牌牛奶包装袋的营养成分表如下:下列说法中,正确的是A.脂肪是维持生命活动的重要供能物质B.“碳水化合物”是指维生素,属于六大营养素之一C.“钠”是指钠元素,其质量分数为60%D.蛋白质是构成细胞的基本物质,它是由多种氨基酸混合组成(2010·潍坊)6.化学兴趣小组利用如图所示装置进行实验:打开弹簧夹,将液体a滴入试管①中与固体b接触,若试管②中的导管口没有气泡产生,则液体a和固体b的组合可能是A.稀盐酸和碳酸钠B.水和生石灰C.锌和稀盐酸D.水和硝酸铵(2010·潍坊)7.甲分子与乙分子反应生成丙分子的示意图如下:下列说法中,不正确的是A.物质甲是单质B.丙分子中A、B原子个数比为3∶1C.反应前后原子的个数没有改变,分子的个数也没有改变D.根据质量守恒定律可推知,乙的化学式为A2(2010·潍坊)8.下列实验操作或数据中,正确的是(2010·潍坊)9.物质X是一种重要的阻燃剂,工业上用三氧化二锑(Sb2O3)生产X,反应的化学方程式为:Sb2O3+2H2O2=X+2H2O(已配平),则X的化学式为A.Sb2O5B.SbO2C.HsbO3D.H3SbO4 (2010·潍坊)10.化学学习小组做实验时记录了下列实验现象,其中正确的是A.细铁丝在氧气中剧烈燃烧,火星四射,有黑色固体生成B.红磷在空气中燃烧,发出红色的火焰,产生大量白色烟雾C.少量高锰酸钾固体溶于水可得到浅绿色溶液D.在滴有石蕊的盐酸中逐滴加入氢氧化钠溶液,溶液颜色由蓝色逐渐变成红色(2010·潍坊)11.硫酸锰广泛用于医药、食品、造纸等行业。

2010年中考数学真题分类汇编三角形全等解答题

2010年中考数学真题分类汇编三角形全等解答题

2010年中考数学真题分类汇编:三角形全等解答题三、解答题1.(2010江苏苏州)(本题满分6分)如图,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE.(1)求证:△ACD≌△BCE;(2)若∠D=50°,求∠B的度数.【答案】2.(2010江苏南通)(本小题满分8分)如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.能否由上面的已知条件证明AB∥ED?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件.......,添加到已知条件中,使AB∥ED成立,并给出证明.供选择的三个条件(请从其中选择一个):①AB=ED;②BC=EF;③∠ACB=∠DFE.AEFC(第25题)【答案】解:由上面两条件不能证明AB//ED .有两种添加方法. 第一种:FB =CE ,AC =DF 添加 ①AB =ED证明:因为FB =CE ,所以BC =EF ,又AC =EF ,AB =ED ,所以 ABC ≅ DEF 所以∠ABC =∠DEF 所以AB//ED第二种:FB =CE ,AC =DF 添加 ③∠ACB =∠DFE证明:因为FB =CE ,所以BC =EF ,又∠ACB =∠DFE AC =EF ,所以 ABC ≅ DEF 所以∠ABC =∠DEF 所以AB//ED3.(2010浙江金华)如图,在△ABC 中,D 是BC 边上的点(不与B ,C 重合),F ,E 分别是AD 及其延长线上的点,CF ∥BE . 请你添加一个条件,使△BDE ≌△CDF (不再添加其它线段,不再标注或使用其他字母),并给出证明. (1)你添加的条件是: ▲ ; (2)证明: 【答案】解:(1)DC BD =(或点D 是线段BC的中点),ED FD =,BE CF =中 任选一个即可﹒(2)以DC BD =为例进行证明: ∵CF ∥BE , ∴∠FCD ﹦∠EBD .又∵DC BD =,∠FDC ﹦∠EDB ,∴△BDE ≌△CDF .4.(2010福建福州)(每小题7分,共14分)(1)如图,点B 、E 、C 、F 在一条直线上,BC =EF ,AB ∥DE ,∠A =∠D . 求证:△ABC ≌△DEF .(第17(1)题)【答案】证明:∵ AB ∥DE . ∴ ∠B =∠DEF . 在△ABC 和△DEF 中,B DEF A D BC EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,,.∴ △ABC ≌△DEF .5.(2010四川宜宾,13(3),5分)如图,分别过点C 、B 作△ABC 的BC 边上的中线AD 及其延长线的垂线,垂足分A CBDF E(第18题图)别为E 、F .求证:BF =CE .【答案】∵CE ⊥AF ,FB ⊥AF ,∴∠DEC =∠DFB =90°又∵AD 为BC 边上的中线,∴BD =CD , 且∠EDC =∠FDB (对顶角相等) ∴所以△BFD ≌△CDE (AAS ),∴BF =CE .6.(2010福建宁德)如图,已知AD 是△ABC 的角平分线,在不添加任何辅助线的前提下,要使△AE D ≌△AFD ,需添加一个条件是:_______________,并给予证明.【答案】解法一:添加条件:AE =AF ,证明:在△AED 与△AFD 中,∵AE =AF ,∠EAD =∠FAD ,AD =AD , ∴△AED ≌△AFD (SAS ). 解法二:添加条件:∠EDA =∠FDA ,证明:在△AED 与△AFD 中,∵∠EAD =∠FAD ,AD =AD ,∠EDA =∠FDA∴△AED ≌△AFD (ASA ). 7.(2010湖北武汉)如图,B ,F ,C ,E 在同一条直线上,点A ,D 在直线BE 的两侧,AB ∥DE ,AC ∥DF ,BF=CE .求证:AC=DFB D CAEF【答案】证明:∵AB ∥DE , ∴∠ABC=∠DEF∵AC ∥DF , ∴∠ABC=∠DEF ∵BF=CE ,∴BC=EF ∴△ABC ≌△DEF ∴AC=DF8.(2010江苏淮安)已知:如图,点C 是线段AB 的中点,CE=CD ,∠ACD=∠BCE, 求证:AE=BD .题20图【答案】证明:∵点C 是线段AB 的中点, ∴AC=BC ,∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE, 即∠ACE=∠BCD,在△ACE 和△BCD 中,AC BC ACE BCD CE CD ⎧=⎪∠=∠⎨⎪=⎩,∴△ACE ≌△BCD (SAS ), ∴AE=BD.9.(2010北京)已知:如图,点A 、B 、C 、D 在同一条直线上,EA ⊥AD ,FD ⊥AD ,AE =DF ,AB =DC .求证:∠ACE =∠DBF .【答案】证明:∵AB =DC∴AC =DB∵EA ⊥AD ,FD ⊥AD ∴∠A =∠D =90° 在△EAC 与△FDB 中⎪⎩⎪⎨⎧=∠=∠=DB AC D A FDEA ∴△EAC ≌△FDB ∴∠ACE =∠DBF .10.(2010云南楚雄)如图,点A 、E 、B 、D 在同一条直线上,AE =DB ,AC =DF ,AC ∥DF . 请探索BC 与EF 有怎样的位置关系?并说明理由.【答案】解:BC ∥EF .理由如下:∵AE =DB ,∴AE +BE =DB +BE ,∴AD =DE .∵AC ∥DF , ∴∠A =∠D ,∵AC =DF , ∴△ACB ≌△DFE ,∴∠FED =∠CBA ,∴BC ∥EF . 11.(2010云南昆明)如图,点B 、D 、C 、F 在一条直线上,且BC = FD ,AB = EF.(1)请你只添加一个条件(不再加辅助线),使△ABC ≌△EFD ,你添加的条件是 ;(2)添加了条件后,证明△ABC ≌△EFD.【答案】(1)∠B = ∠F 或 AB ∥EF 或 AC = ED .(2)证明:当∠B = ∠F 时 在△ABC 和△EFD 中A B E FB F BC FD =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△EFD (SAS) 12.(2010四川 泸州)如图4,已知AC ∥DF ,且BE =CF . (1)请你只添加一个..条件,使△ABC ≌△DEF ,你添加的条件是 ; (2)添加条件后,证明△ABC ≌△DEF.【答案】(1)添加的条件是AC =DF (或AB ∥DE 、∠B =∠DEF 、∠A =∠D )(有一个即可)(2)证明:∵AC ∥DF ,∴∠ACB =∠F ,∵BE=CF ,∴BC =EF ,在△ABC 和△DEF 中,ACB F AC DF BC EF===⎧⎪⎨⎪⎩∠∠ ,∴△ABC ≌△DEF. ABCDEFFABCDEDO BA 13.(2010 甘肃)(8分)如图,BAC ABD ∠=∠.(1)要使OC OD =,可以添加的条件为: 或 ;(写出2个符合题意的条件即可)(2)请选择(1)中你所添加的一个条件,证明OC OD =. 【答案】解:(1)答案不唯一. 如C D ∠=∠,或ABC BAD ∠=∠,或OAD OBC ∠=∠,或AC BD =. ……4分 说明:2空全填对者,给4分;只填1空且对者,给2分. (2)答案不唯一. 如选AC BD =证明OC=OD. 证明: ∵ BAC ABD ∠=∠,∴ OA=OB. ……………………6分 又 AC BD =,∴ AC-OA=BD-OB ,或AO+OC=BO+OD. ∴ OC OD =. ……………………8分14.(2010 重庆江津)已知:点B 、E 、C 、F 在同一直线上,AB =DE ,∠A =∠D ,AC ∥DF . 求证:⑴ △ABC ≌△DEF ;⑵ BE =CF .【答案】证明:(1)∵AC ∥DF∴∠ACB =∠F ……………………………………………………………………2分 在△ABC 与△DEF 中ACB F A D AB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEF ……………………………………………………………………6分 (2) ∵△ABC ≌△DEF ∴BC=EF∴BC –EC=EF –EC即BE=CF ……………………………………………………………………………10分15.(2010 福建泉州南安)如图,已知点E C ,在线段BF 上,CF BE =,请在下列四个等式中,①AB =DE ,②∠ACB =∠F ,③∠A =∠D ,④AC =DF .选出两个..作为条件,推出ABC DEF △≌△.并予以证明.(写出一种即可)已知: , .DOCBA BC E B FDA求证:ABC DEF △≌△. 证明:【答案】解:已知:①④(或②③、或②④)……………3分 证明:若选①④ ∵CF BE =∴EF BC EC CF EC BE =+=+即,.…………………………………………5分 在△ABC 和△DEF 中AB =DE ,BC =EF ,AC =DF .……………………………8分∴ABC DEF △≌△.……………………………………9分 16.(2010青海西宁)八(1)班同学上数学活动课,利用角尺平分一个角(如图).设计了如下方案:(Ⅰ)∠AOB 是一个任意角,将角尺的直角顶点P 介于射线OA 、OB 之间,移动角尺使角尺两边相同的刻度与M 、N 重合,即PM=PN ,过角尺顶点P 的射线OP 就是∠AOB 的平分线. (Ⅱ)∠AOB 是一个任意角,在边OA 、OB 上分别取OM=ON ,将角尺的直角顶点P 介于射线OA 、OB 之间,移动角尺使角尺两边相同的刻度与M 、N 重合,即PM=PN ,过角尺顶点P 的射线OP 就是∠AOB 的平分线. (1)方案(Ⅰ)、方案(Ⅱ)是否可行?若可行,请证明;若不可行,请说明理由.(2)在方案(Ⅰ)PM=PN 的情况下,继续移动角尺,同时使PM⊥OA,PN ⊥OB.此方案是否可行?请说明理由. 【答案】解:(1)方案(Ⅰ)不可行.缺少证明三角形全等的条件. ……………………………2分(2)方案(Ⅱ)可行. ……………………………3分证明:在△OPM 和△OPN 中⎪⎩⎪⎨⎧===OP OP PN PM OP OM∴△OPM ≌△OPN(SSS)∴∠AOP=∠BOP(全等三角形对应角相等) ……………………………5分 (3)当∠AOB 是直角时,此方案可行. ……………………………6分∵四边形内角和为360°,又若PM ⊥OA,PN ⊥OB, ∠OMP=∠ONP=90°, ∠MPN=90°, ∴∠AOB=90°∵若PM ⊥OA,PN ⊥OB, 且PM=PNC E B CDA∴OP 为∠AOB 的平分线.(到角两边距离相等的点在这个角的角平分线上) 当∠AOB 不为直角时,此方案不可行. …………8分 17.(2010广西梧州)如图,AB 是∠DAC 的平分线,且AD =AC 。

2010数学中考

2010数学中考

2010数学中考二0一0年潍坊市初中学业水平考试 xy,,10,,的解是( ). 5(二元一次方程组数学试题 ,240xy,,,,注意事项:1.本试题分第?卷和第?卷两部分.第?卷4页,为选择题,36分;第?卷814,x,.考试时间为120分钟. 页,为非选择题,84分;共120分,x,2x,8x,7,,,,3A( B. ,. ,. 2.答第?卷前务必将自己的姓名、准考证号、考试科目、试卷类型涂写在答,,,,16y,8y,3y,2,,,,y,题卡上.考试结束,试题和答题卡一并收回. ,3,3.第?卷每题选出答案后,都必须用2B铅笔把答题卡上对应题目的答案标号(ABCD)涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案.2xxk,,,6206.关于的一元二次方程有两个不相等的实数根,则实数的取值kx第?卷选择题(共36分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确范围是( ).9999的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一A. B. C. D. k,k,k?k?个均记0分) 22221.下列运算正确是( ). 7.如图,雷达探测器测得六个目标出现.按照规定的目标表示方ABCDEF、、、、、1a2263,aaa,,,,,2323A( B. C. ,,CF61205210.,?、,?法,目标的位置表示为CF、,,,,2a按照此方法在表示目标 D. 1882,,的位置时,其中表示不正确的是ABDE、、、( ). ,8 5.6210,2.将用小数表示为( ).……………………………密……………………………………………………封…………………………………………线………………………A530,?B290,?A( B. ,,,,A(0.000 000 005 62 B.0.000 000 056 2 C.0.000 000 562 D.0.000 000 ……………………………答……………………………………………………题…………………………………………线………………………000 562 线……………………… D4240,?E360,?C. D. ,,,, AB3.如图,数轴上AB、两点对应的实数分别是1和,若点关于点的对称点38.如图,已知矩形ABCD,一条直线将该矩形ABCD分割成两个多边形(含三角M为点C,则点C所对应的实数为( ). 形),若这两个多边形的内角和分别为和N,则MN,不可能是( ).A(360? B. 540? C. 720? D. 630?1 29.已知函数yx,与函数的图象大致如yx,,,321 2图.若则自变量的取值范围是( ). yy,,x12A. B. C. D. 231,13,23,231,33×××××××中学班级姓名准考证号A( B. ,,,x2xx,,,2或 AB?OOCAB,D, 4(如图,是的弦,半径于点22 33AB,6cm,OD,4cm.DC且则的长为( ). C. D. ,,,2xxx,,,2或5cm2.5cm2cmA( B. ,. ,. 2210.已知一个圆锥的侧面展开图是一个半径为9,1cm120?圆心角为的扇形,则该圆锥的底面半径等于( ).- 1 -……………………………答……………………………………………………题…………………………………………线………………………A(9 B. 27 C. 3 D. 10 三、解答题(本大题共7小题,共69分,解答要写出必要的文字说明、证明过k程或演算步骤.) ykx,211.若正比例函数与反比例函数的图象交于点则的Am,,1kyk,,0,,,,18((本题满分8分)2010年5月1日至20日的20天里,每天参观上海世博会x值是( ). 的人数统计如下:(单位:万人次)20,22,13,15,11,11,14,20,14,16, 22218,18,22,24,34,24,24,26,29,30. ,A(或 B. 或 C. D. ,222222(1)写出以上20个数据的众数、中位数、平均数;EF12.如图所示,一般书本的纸张是在原纸张多次对开得到的.矩形沿对开(2)若按照前20天参观人数的平均数计算,估计上海世博会期间(2010年5月ABCD AB1日至2010年10月31日)参观的总人数约是多少万人次, 后,再把矩形沿对开,依此类推.若各种开本的矩形都相似,那么MNEFCD(3)要达到组委会预计的参观上海世博会的总人数约为7000万人次,2010年5AD等于( ). 月21日至2010年10月31日期间,平均每天参观人数约为多少万人次,(结果精确到0.01万人次) 2 2A( B. C. D. 0.61822第?卷非选择题(共84分)注意事项:1.第?卷共8页,用蓝黑钢笔或圆珠笔直接答在试卷上.2.答卷前将密封线内的项目填写清楚二、填空题(本大题共5小题,共15分,只要求填写最后结果,每小题填对得3分.)xx,4AB是?O的直径,CD、是?O上的两点,且ACCD,. 19((本题满分8分)如图,13.分式方程的解是_________. ,xx,,56OCBD?;(1)求证:214.分解因式:_________. xyxyy,,,,224(2)若BC将四边形OBDC分成面积相等的两个三角形,试确定四边形OBDC的15.有4张背面相同的扑克牌,正面数字分别为2,3,4,形状.5.若将这4张扑克牌背面向上洗匀后,从中任意抽取一张,放回后洗匀,再从中任意抽取一张.这两张扑克牌正面数字之和是3的倍数的概率为_________.AB?ABCABBCABF,,,,12cm16.如图,在中,是边FEFEBC?ACE.上一点,过点作交于点过点作ED?ABBDEFBCD.交于点则四边形的周长是_________.ABCDABBC,,ADBC?,BCAD,,17.直角梯形中,EABBAD,2,AB,4,?CBECE点在上,将沿翻折,使点D,BCE与点重合,则的正切值是_________.……………………………答……………………………………………………题…………………………………………线………………………- 2 -……………………………答……………………………………………………题…………………………………………线……………………… ……………………………密……………………………………………………封…………………………………………线………………………AB20((本题满分9分)某中学的高中部在校区,初中部在校区,学校学生会已22((本题满分10分)学校计划用地面砖铺设教学楼前矩形广场的地面ABCD,A计划在3月12日植树节当天安排部分学生到郊区公园参加植树活动.已知校区知矩形广场地面的长为100米,宽为80米.图案设计如图所示:广场的四角为小B的每位高中学生往返车费是6元,每人每天可栽植5棵树;校区的每位初中学正方形,阴影部分为四个矩形,四个矩形的宽都为小正方形的边长,阴影部分铺生往返车费是10元,每人每天可栽植3棵树.要求初高中均有学生参加,且参加绿色地面砖,其余部分铺白色地面砖.活动的初中学生比参加活动的高中学生多4人,本次活动的往返车费总和不得超(1)要使铺白色地面砖的面积为5200平方米,那么矩形广场四角的小正方形的过210元.要使本次活动植树最多,初高中各有多少学生参加,最多植树多少棵, 边长为多少米,(2)如果铺白色地面砖的费用为每平方米30元,铺绿色地面砖的费用为每平方米20元.当广场四角小正方形的边长为多少米时,铺广场地面的总费用最少,最少费用是多少,BA21((本题满分10分)路边路灯的灯柱BC垂直于地面,灯杆的长为2米,灯……………………………密……………………………………………………封…………………………………………线………………………ADABAD杆与灯柱BC成120?角,锥形灯罩的轴线与灯杆垂直,且灯罩轴线正……………………………答……………………………………………………题…………………………………………线………………………DD好通过道路路面的中心线(在中心线上).已知点C与点之间的距离为12米,线………………………求灯柱BC的高.(结果保留根号)×××××××中学班级姓名准考证号- 3 -……………………………答……………………………………………………题…………………………………………线………………………轴交于点两点,与((本题满分12分)如图所示,抛物线与AB,1030,、,24x23((本题满分11分)如图,已知正方形在直角坐标系中,点分OABCAC、,,,,xOyABP轴交于点C03.,,以为直径作过抛物线上一点作的切线y?,M?MPD,别在轴、轴的正半轴上,点在坐标原点.等腰直角三角板的直角顶点OOEFOy,,x AEDM在原点,分别在上,且将三角板绕点逆时切点为并与的切线相交于点连结并延长交于点连结EF、OAOC、OAOE,,42.,OEFOD,?ME,?MN,ANAD、.针旋转至的位置,连结 OEFCFAE,.1111(1)求抛物线所对应的函数关系式及抛物线的顶点坐标; (1)求证: ???OAEOCF.PD(2)若四边形EAMD的面积为求直线的函数关系式; 43,11PEAMD(2)若三角板绕点逆时针旋转一周,是否存在某一位置,使得(3)抛物线上是否存在点,使得四边形的面积等于的面积,若OEFOOECF?.?DANEP若存在,请求出此时点的坐标;若不存在,请说明理由. 存在,求出点的坐标;若不存在,说明理由.……………………………答……………………………………………………题…………………………………………线………………………- 4 -……………………………答……………………………………………………题…………………………………………线……………………… ……………………………密……………………………………………………封…………………………………………线………………………。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年潍坊中考数学题解答题
19.如图,AB是⊙O的直径,C、D是⊙O上的两点,且AC=CD.
(1)求证:OC∥BD;
(2)若BC将四边形OBDC分成面积相等的两个三角形,试确定四边形OBDC的形状.
22.学校计划用地面砖铺设教学楼前矩形广场的地面ABCD,已知矩形广场地面的长为100米,宽为80米.图案设计如图所示:广场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都为小正方形的边长,阴影部分铺绿色地面砖,其余部分铺白色地面砖.
(1)要使铺白色地面砖的面积为5200平方米,那么矩形广场四角的小正方形的边长为多少米?
(2)如果铺白色地面砖的费用为每平方米30元.铺绿色地面砖的费用为每平方米20元,当广场四角小正方形的边长为多少米时,铺广场地面的总费用最少?最少费用是多少?。

相关文档
最新文档