初二期末复习精品资源命题人学而思网校韩春成老师
相交线和平行线35道核心题——韩春成老师

韩春成个人题库资料
题不在多,而在于精!
韩老师告诉你个秘密:越付出越富有!
5.
【中】平面内两两相交的 6 条直线,其交点个数最少为几个?最多为几个?
6.
【中】 (北京市八一中学 2013 年初一数学第二学期期中试卷) 如图,直线 AB 、 CD 被直线 AC 所截,且 AB ∥CD ,按要求画图并填空: ⑴ 分别画 BAC 和 DCA 的平分线,且两线相交于点 E ; ⑵ AEC _____ ; ⑶ 过点 E 分别画 EF ⊥ AB , EG ⊥ AC ,垂足分别为 F , G . ⑷ 请借助刻度尺比较点 E 到直线 AB 的距离和点 E 到直线 AC 的距离的大小.
b, c, d ,且 a b , b c , c d ,则 a 与 d 的位 15. 【易】在同一平面内的四条直线 a , 置关系是( ) a d A. B. a ∥ d C.相交但不垂直 D.不能确定
16. 【易】⑴ 如图 1,在直角三角形 ABC 中, C 90°, CD AB 于 D ,比较线段 AC 、 AB 、 CD 的大小. ⑵ 如图 2, A 点处是一座小屋, BC 是一条公路,一人在 O 处, ①此人到小屋去,怎么走最近?理由是什么?②此人要到公路,怎么走最近?理由是 什么?
A D′ B C′ F C E D
26. 【中】 (北京五中分校 2013 年初一数学第二学期期中考试)如图, AB ∥ EF ∥CD , ABC 46 , CEF 154 ,则 BCE __________ .
A 46° E 154° C D B
F
27. 【中】 (2012 年青羊区初一下期末)已知:如图, BD ∥ AF ∥CE , ABD 72 , ACE 40 , AP 是 BAF 的平分线,求 PAC 的度数.
学而思初二数学秋季班第15讲.代数综合.提高班.教师版

1初二秋季·第15讲·提高班·教师版整式乘法部分:一、幂的运算:整数指数幂运算性质1. n m m n a a a +⋅=(m 、n 是正整数)2. ()m n mn a a =(m 、n 是正整数)3. ()nn nab a b =(n 是正整数)4. m n m n a a a -÷=(0a ≠,m 、n 是正整数,m >n )5. 01a =,1p pa a -=(0a ≠,p 是正整数) 二、乘法公式1. 完全平方公式:()2222a b a ab b ±=±+ 2.平法差公式:()()22a b a b a b +-=- 三、主要题型思路导航15名校期末试题点拨——代数部分题型一:整式乘除与因式分解2初二秋季·第15讲·提高班·教师版1. 基本运算2. 化简求值3. 整体法4. 消元法5. 降次法因式分解部分: 一、知识结构因式分解提公因式法乘法分配律的逆用 公式法完全平方公式()2222+=a ab b a b ±±平方差公式()()22a b a b a b -=+-十字相乘法分解某些二次三项式 分组分解法分组后能提公因式分组后能运用公式二、注意事项:1. 分解因式必须进行到每一个多项式因式都不能再分解为止。
例如()()422111x x x -=+-,就不符合因式分解的要求,因为()21x -还能分解成()()11x x +-; 2. 在没有特别规定的情况下,因式分解是在有理数范围内进行的。
三、因式分解的一般步骤:可归纳为一“提”、二“套”、三“分”、四“查”。
1. 一“提”:先看多项式的各项是否有公因式,若有必须先提出来;3初二秋季·第15讲·提高班·教师版2. 二“套”:若多项式的各项无公因式(或已提出公因式),第二步则看能不能用公式法或十字相乘法分解;3. 三“分”:若以上两步都不行,则应考虑分组分解法,将能用上述方法进行分解的项分到一组,使之分组后能“提”或能“套”;4. 四“查”:可以用整式乘法查因式分解的结果是否正确。
学而思勤思班初二春季 第6讲 平行四边形探究(教师版)

标注 四边形 > 平行四边形 > 平行四边形问题 > 题型:平行四边形的判定
二、三角形的中位线
知识导航
定义
三角形的中位线
定义:连接三角形两边中点的线段
示例剖析
定理:三角形中位线平行于三角形的第三边且等于第三边的一半 若为
的中位线,
则
,且
三角形中位线里隐含重要性质:
① 三角形的三条中位线将原三角形分割成四个全等的三角形
两组对边分别平行的四边形叫做平 平行四边形
行四边形
四边形
叫做平行四边形
平行四边形的 一般按一定的方向依次表示各顶点.
表示
如:口
平行四边形不能表示成口
,也不能表示成
口
中心
在平面内,一个图形绕某点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫
对称图形 做中心对称图形
中心对称 图形性质
中心对称图形上的每一对对应点所连成的线段都被对称中心平分
∴ , 分别是
与
的中位线,
∴
,
,
,
,
∵
,
∴
,
∴
是等腰三角形,
∵
,
,
∴
,
∴
∴
.
, ,
标注 四边形 > 四边形综合 > 中点类 > 题型:中位线性质以及应用
2 如图,
中, 、 分别是 、 的中点, 平分
,交 于点 ,若
,
,则 的长是( ).
A.
B.
C.
D.
答案 B
解析 ∵ 、 分别是 、 的中点,
∴
,
两组对边分别相等
四边形
是平行四边形
学而思初二数学秋季班第1讲.构造轴对称图形.提高班.教师版

1初二秋季·第1讲·提高班·教师版对称的世界图形变换3级中考新题型之折纸与拼图图形变换2级 构造轴对称图形图形变换1级 轴对称初步 满分晋级漫画释义1构造轴对称图形2初二秋季·第1讲·提高班·教师版1 角平分线+垂线,等腰三角形必呈现当题设有角平分线及与角平分线垂直的线段,可延长这条线段与角的另一边相交,构成等腰三角形,可利用等腰三角形的三线合一性质证题;2 角分线,分两边;对称全等要记全当题设有角平分线及角平分线一侧的三角形时,可截长补短,利用角平分线,构造轴对称的全等三角形.例题精讲思路导航知识互联网题型一:角平分线的常见辅助线模型(二)3初二秋季·第1讲·提高班·教师版图2N M O B CP A 图1A P CO MN【引例】 如图,在ABC △中,BE 是角平分线,AD BE ⊥,垂足为D .求证:21C ∠=∠+∠.ABCED12F21DECBA【解析】如图,延长AD 交BC 于F 点.∵ABD FBD ∠=∠,BD BD =,90ADB FDB ∠=∠=︒, ∴Rt Rt ABD FBD △≌△. ∴2DFB ∠=∠. ∵1DFB C ∠=∠+∠, ∴21C ∠=∠+∠.【例1】 如图1所示: OP 平分MON ∠,A 为OM 上一点,AC OP ⊥于C 点.则延长AC 与ON交于B 点(如图2所示),易证AC BC OA OB ==,.进而可知点C 是线段AB 的中点.请根据上面的学习材料,解答下列各题:如图,在ABC △中,90BAC ∠=°,AB AC =,BE 平分ABC ∠,CE BE ⊥.求证:12CE BD =.ABCD E123321FED CBA【解析】 延长CE 、BA 相交于F ,典题精练4初二秋季·第1讲·提高班·教师版在BEC △和BEF △中12BE BE BEF BEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴BEC BEF △≌△(ASA )∴12CE EF CF ==∵BE CE ⊥,∴190F ∠=-∠° 同理390F ∠=-∠°,∴13∠=∠在ABD △和ACF △中,13AB AC BAD CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ABD ACF △≌△(ASA ) ∴BD CF =∴12CE BD =【例2】 阅读下面学习材料:如图1所示:ABC △中,取AB AC 、中点D E 、,连接DE ,则DE 叫ABC △的中位线(如图2所示).易证DE BC ∥且12DE BC =.图2图1BCAED C BA我们来一起证明一下:证明:过点C 作CF AB ∥交DE 的延长线于F . ∴ADE CFE △≌△∴DE EF =,FC AD DB ==. ∵,FC BD ∥FC BD =∴四边形DBCF 是平行四边形. ∴1122DE BC DF ==,DF BC ∥.若在ABC △中,MB 、NC 分别是三角形的外角ABP ∠、ACQ ∠的角平分线,AM BM ⊥, AN CN ⊥垂足分别是M 、N .求证:MN BC ∥,()12MN AB AC BC =++AB CMNPQFEQPNMCBA【解析】延长AM 、CB 相交于点E ,延长AN 、BC 相交于点F ,易证()()ASA ASA AMB EMB ANC FNC △≌△,△≌△, FED C BA5初二秋季·第1讲·提高班·教师版∴AM EM =,AN FN =,AB EB =,AC FC =∴MN BC ∥,且()()1122MN EB BC CF AB BC AC =++=++.【例3】 阅读下列学习材料:如图1 所示,OP 平分MON ∠,A 为OM 上一点,C 为OP 上一点.连接AC ,在射线ON 上截取OB OA =,连接BC (如图2),易证AOC BOC △≌△.图1N M OPA C图2CA PBOM N请根据上面的学习材料,解答下列各题: 如图,在四边形ABCD 中,AD BC A ∠∥,的角平分线AE 交DC 于E ,BE 是B ∠的角平分线.求证:⑴AD BC AB +=;⑵AE BE ⊥EDCB AFEDCBA【解析】⑴ 在AB 上截取AF ,使AF AD =,连接EF ,∵在ADE △和AFE △中,DA FA DAE BAE AE AE =⎧⎪∠=∠⎨⎪=⎩∴(SAS)ADE AFE △≌△ ∴ADE AFE ∠=∠ ∵AD BC ∥∴180ADE C ∠+∠=︒ ∵180EFB AFE ∠+∠=︒ ∴EFB C ∠=∠∵在EFB △和ECB △中,EBF EBC EFB C BE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴(AAS)EFB ECB △≌△ ∴BF BC =∴AD BC AF BF AB +=+= ⑵ ∵AD BC ∥,∴22180EAB EBA ∠+∠=︒ ∴90EAB EBA ∠+∠=︒ ∴AE BE ⊥.【例4】 已知:如图,在四边形ABCD 中,BC AB >,AD CD =,BD 平 A B CD6初二秋季·第1讲·提高班·教师版分ABC ∠.求证:180A C ∠+∠=°.【分析】 证两个角的和等于180°,使我们联想到证这两角和等于一个平角.由于两个角比较分散,因此根据角的平分线的条件,添加辅助线,把两个角拼成一个平角.【解析】 证法一:(这个模型我们暑期班进行过详细讲解)如图,过点D 作BA 、BC 的垂线,垂足分别为E 、F .则DE DF =. 在Rt ADE △和Rt CDF △中,AD DC DE DF =⎧⎨=⎩,∴()Rt Rt HL ADE CDF △≌△,∴EAD C ∠=∠. ∵180BAD EAD ∠+∠=°,∴180A C ∠+∠=°.FEDCBAA BCDEEDCBA证法二:如图,在BC 上截取BE AB =,连结DE , 在ABD △和EBD △中AB EB ABD EBD BD BD =⎧⎪∠=∠⎨⎪=⎩∴()SAS ABD EBD △≌△,∴A BED ∠=∠,AD ED =. ∵AD CD =,∴ED CD =.∴C DEC ∠=∠. ∴180A C BED DEC ∠+∠=∠+∠=°.证法三:如图,延长BA 到E ,BE BC =,连结ED .在BDE △和BDC △中,BD BD EBD CBD BE BC =⎧⎪∠=∠⎨⎪=⎩,∴()SAS BDE BDC △≌△∴E C ∠=∠,ED CD =.∵AD CD =,∴AD ED =∴E DAE ∠=∠,C DAE ∠=∠.∴BAD C ∠+∠180BAD DAE =∠+∠=°.7初二秋季·第1讲·提高班·教师版探索1:如图,在l 上找一点P ,使PA PB +最小.lBAP′PlBA【解析】直线AB 与l 的交点即为所求点P ,PA PB +最小值为AB .探索2:如图,在l 上找一点P ,使PA PB +最小.ABlPlB'BA【解析】做点B 关于直线l 的对称点'B ,直线'AB 与l 的交点即为所求点P ,PA PB +最小值为'AB .【备选1】模型应用:⑴ 如图1,在等边三角形ABC 中,AB =2,点E 是AB 的中点,AD 是高,在AD 上找一点P ,使BP +PE 的值最小; ⑵ 如图2,正方形ABCD 的边长为2,E 为AB 的中点,在AC 上找一点P ,使PB +PE 的值最小; ⑶ 如图3,⊙O 的半径为2,点A 、B 、C 在⊙O 上,OA ⊥OB ,∠AOC =60°,P 是OB 上一动点,求P A +PC 的最小值;⑷ 如图4,在四边形ABCD 的对角线AC 上找一点P ,使∠APB =∠APD .保留作图痕迹,不必写出作法.思路导航题型二:将军饮马问题探索8初二秋季·第1讲·提高班·教师版图4图3图2图1P DCAOPCBAP E D CB AP E D CBA【解析】 ⑴作点B 关于AD 的对称点,恰好与点C 重合,连接CE 交AD 于一点,则这点就是所求的点P ,故BP +PE 的最小值为223BC BE -=;⑵连接BD ,由正方形对称性可知,B 与D 关于直线AC 对称.连接ED 交AC 于P ,则PB +PE 的最小值是225AD AE +=;⑶作A 关于OB 的对称点A ′,连接A ′C ,交OB 于P ,P A +PC 的最小值即为A ′C 的长,∵∠AOC =60°,∴∠A ′OC =120°,作OD ⊥A ′C 于D ,则∠A ′OD =60°,∵OA ′=OA =2,A ′D =3,∴A ′C =23⑶如图4,首先过点B 作BB ′⊥AC 于O ,且OB =OB ′,连接DB ′并延长交AC 于P ,由AC 是BB ′的垂直平分线,可得∠APB =∠APD .B'DA'图4图3图2图1P DCB AO P C B AP E DCB AP E D CBA【备注】此题涉及部分勾股定理内容,程度好的班级教师可适当进行拓展,程度一般的班级可跳过计算,会画图即可.探索3:如图,在l 上找一点P ,使PA PB -最大.ABlAPB P′l【解析】直线AB 与l 的交点即为所求点P ,PA PB -最大值为AB ..探索4:如图,在l 上找一点P ,使PA PB -最大.9初二秋季·第1讲·提高班·教师版ABllB'PBA【解析】做点B 关于直线l 的对称点'B ,直线'AB 与l 的交点即为所求点P ,PA PB -最大值为AB '.探索5:如图,在l 上找一点P ,使PA PB -最小.All【解析】直线AB 的中垂线与l 的交点即为所求点P ,PA PB -最小值为0.探索6:如图,点P 在锐角AOB ∠的内部,在OB 边上求作一点D ,在OA 边上求作一点C ,使PCD△的周长最小.BOB【分析】做点P 关于直线OA 、OB 的对称点1P 、2P ,12P P 与直线OA 、OB 的交点为所求点C 、D .△PCD 的周长最小值为P 1P 2的长度.【备选2】 已知如图所示,40MON ∠=︒,P 为MON ∠内一点,A 为OM 上一点,B 为ON 上一点,则当PAB △的周长取最小值时,APB ∠的度数为 .(东城期末)【解析】 分别作点P 关于ON 、OM 的对称点P '、P '',连接OP '、OP ''、P P ''',显然PAB △的周长PA AB PB P B AB P A '''++=++, 由两点间线段最短,故PAB △的最小周长为P P ''',N PB M O AP''P'P B A N OM10 初二秋季·第1讲·提高班·教师版∵40MON =︒∠,OP OP OP '''==,∴P OP '''△是等腰三角形, 此时∠O P 'P ''=∠O P ''P '=50°∴角∠APB =∠O P 'P ''+∠O P ''P '=100°.探索7:如图,点P 在锐角AOB ∠的内部,在OB 边上求作一点D ,在OA 边上求作一点C ,使PD CD +最小.ABPP′PDC OBA【解析】做点P 关于直线OB 的对称点'P 、过'P 向直线OA 作垂线、与OB 的交点为所求点D ,垂足即为点C .PD +CD 的最小值为P ’C 的长度.【备选3】如图,在锐角三角形ABC 中,BC =42,∠ABC =45°,BD 平分∠ABC ,M 、N 分别是BD 、BC 上的动点,试求CM +MN 的最小值.【解析】 过点C 作CE ⊥AB 于点E ,交BD 于点M ′,过点M ′作M ′N ′⊥BC 于N ′,则CE 即为CM +MN的最小值,∵BC =42,∠ABC =45°,BD 平分∠ABC ,∴△BCE 是等腰直角三角形,∴CE =4,故CM +MN 的最小值为4.EN'M'ABCD NMMNDCBA探索8:如图,点C 、D 在锐角AOB ∠的内部,在OB 边上求作一点F ,在OA 边上求作一点E ,使四边形CEFD 周长最小.ODC BAC′D′FEODC BA111【解析】如图所示,作C 、D 两点分别关于直线OA 、OB 的对称点C D ''、,连接C D ''、分别交OA 、OB 于E F 、,点E 、F 即为所求.【备选4】在∠MON 的两边上分别找两点P 、Q ,使得AP +PQ +QB 最小.(保留画图痕迹,不要求写作法)A'N NO探索9:如图,直线l 外有两点A 、B ,有一定长线段a ,在直线上找到点M 、N ,使得MN 间的距离等于定长a ,使得四边形AMNB 的周长最小.B'A'aNMBAl【解析】 如图所示,将点A 向右平移a 个长度到点'A ,做点B 关于直线l 的对称点'B ,连接''A B 后交直线l 于点N ,过点A 作''AM A B ∥,交直线l 于点M ,四边形AMNB 即为所求.【备选5】⑴如图1,在△ABC 中,点D 、E 分别是AB 、AC 边的中点,BC =6,BC 边上的高为4,请你在BC 边上确定一点P ,使得△PDE 的周长最小. ①在图1中作出点P .(三角板、刻度尺作图,保留作图痕迹,不写作法) ②请直接写出△PDE 周长的最小值.⑵如图2在矩形ABCD 中,AB =4,BC =6,G 为边AD 的中点,若E 、F 为边AB 上的两个动点,点E 在点F 左侧,且EF =1,当四边形CGEF 的周长最小时,请你在图2中确定点E 、F 的位置.(三角板、刻度尺作图,保留作图痕迹,不写作法),并求出四边形CGEF 周长的最小值.aBAl图1图2图1BGCB12 初二秋季·第1讲·提高班·教师版【解析】⑴ ①如图1所示:②8;⑵ 如图2,作G 关于AB 的对称点M ,在CD 上截取CH =1,然后连接HM 交AB 于E , 接着在EB 上截取EF =1,那么E 、F 两点即可满足使四边形CGEF 的周长最小. C CGEF GE EF FC GC MH CG EF =+++=++四边形 ∵AB =4,BC =6,G 为边AD 的中点, ∴DG =AG =AM =3,∴MH=2239310+=,CG=22345+= ∴C 6310CGEF =+四边形.探索10:如图,在一组平行线l 1、l 2两侧各有两点A 、B ,在l 1、l 2间找一条线段MN ,使MN ⊥l 1并且使得AM +MN +NB 之和最短.N'M'A'l 2BN MAl 1N MBA l 2l 1【备选6】如图,荆州古城河在CC ′处直角转弯,河宽均为5米,从A 处到达B 处,须经两座桥:DD ′,EE ′(桥宽不计),设护城河以及两座桥都是东西、南北方向的,A 、B 在东西方向上相距65米,南北方向上相距85米,恰当地架桥可使ADD ′E ′EB 的路程最短,这个最短路程是多少米?CABD D'C'E E'FGE'E C'D'D BA C【解析】 作AF ⊥CD ,且AF =河宽,作BG ⊥CE ,且BG =河宽,连接GF ,与河岸相交于E ′、D ′.作DD ′、EE ′即为桥.13初二秋季·第1讲·提高班·教师版证明:由作图法可知,AF ∥DD ′,AF =DD ′, 则四边形AFD ′D 为平行四边形, 于是AD =FD ′, 同理,BE =GE ′,由两点之间线段最短可知,GF 最小; 即当桥建于如图所示位置时,ADD ′E ′EB 最短. 距离为()()2265-5+85-552110+⨯=米.【例5】 如图,30AOB =︒∠,点P 位于AOB ∠内,3OP =,点M 、N 分别是射线OA 、OB 上的动点,求PMN △的最小周长.NMPBAOP''P'OAB PMN【解析】 分别作点P 关于OA 、OB 的对称点P '、P '',连接OP '、OP ''、P P ''',显然PMN △的周长PM MN PN P M MN P N '''++=++,由两点间线段最短,P M MN P N P P ''''''++≥,故PMN △的最小周长等于P P '''的长, ∵30AOB =︒∠,∴'"60P OP ∠=︒,又∵3OP OP OP '''===, ∴P OP '''△是等边三角形,∴3P P '''=,即PMN △的最小周长为3.【例6】 如图1,OP 是MON ∠的角平分线,请利用该图形画一对以OP 所在直线为对称轴的全等三角形.请你参考构造全等三角形的方法,解答下列问题:⑴ 如图2,在ABC △中,ACB ∠是直角,60B ∠=︒,AD CE 、分别是BAC BCA ∠∠、的角平分线,AD CE 、相交于点F .请你判断写出FE 与FD 之间的数量关系;⑵ 如图3,在ABC △中,如果ACB ∠不是直角,而⑴中的其他条件不变,请问,你在⑴中所得结论是否依然成立?若成立请证明;若不成立,请说明理由.(北京中考)典题精练图3图2图1P NMOABCDEFFEDC BA14 初二秋季·第1讲·提高班·教师版4321图4G FE D CBA图5HGABCD E F【解析】 图略.⑴ FE 与FD 之间的数量关系为FE FD = ⑵ ⑴中的结论FE FD =仍然成立.证法一:如图4,在AC 上截取AG AE =,连接FG . ∵12∠=∠,AF 为公共边,∴AEF AGF △≌△, ∴AFE AFG FE FG ∠=∠=,.∵60B ∠=︒,AD 、CE 分别是BAC BCA ∠∠、的平分线,∴2360∠+∠=︒,∴60AFE CFD AFG ∠=∠=∠=︒,∴60CFG ∠=︒. ∵34∠=∠,且FC 为公共边,可得CFG CFD △≌△, ∴FG FD =,∴FE FD =.证法二:若C A ∠>∠,如图5,过点F 分别作FG AB ⊥于点G ,FH BC ⊥于点H ∵60B ∠=︒,且AD CE 、分别是BAC BCA ∠∠、的平分线, ∴2360∠+∠=︒,FG FH =, ∴601GEF ∠=︒+∠.∵1HDF B ∠=∠+∠,∴GEF HDF ∠=∠,123 4∴EGF DHF.△≌△,∴FE FD初二秋季·第1讲·提高班·教师版1516 初二秋季·第1讲·提高班·教师版训练1. 如图,已知在ABC △中,3ABC C ∠=∠,12∠=∠,BE AE ⊥.求证:2AC AB BE -=.21ECBA 543MABCE12【解析】延长BE 交AC 于M .∵AE BE ⊥,12∠=∠∴34∠=∠,AB AM =,BE EM = ∴AC AB AC AM MC -=-=,2BM BE = 又∵345C ∠=∠=∠+∠,353ABC C ∠=∠+∠=∠∴553C C ∠+∠+∠=∠ ∴5C ∠=∠ ∴MB MC = ∴2AC AB BE -=.训练2. 在ABC △中,MB 、NC 分别是三角形的内角ABC ∠、ACB ∠的角平分线,AM BM ⊥,AN CN ⊥垂足分别是M 、N .求证:MN BC ∥,()12MN AB AC BC =+-NMC B AFENMCB A【解析】延长AM 、BC 相交于点E ,延长AN 、CB 相交于点F ,易证Rt Rt AMB EMB △≌△,Rt Rt ANC FNC △≌△,∴AM EM =,AN FN =,AB EB =,AC FC =∴MN BC ∥,且()()1122MN FB BC CE AB AC BC =++=+-.训练3. 如图所示,AD 是内角平分线,求证:PC PB AC AB -<-图2CP D BA思维拓展训练(选讲)17初二秋季·第1讲·提高班·教师版【解析】 如图,在AC 上取一点E ,使AE AB =,连接PE ,∵AD 平分ABC ∠,∴CAP BAP ∠=∠.∵AE AB AP AP ==,,∴APE APB △≌△,∴PE PB = 在EPC △中,PC PE EC -<,即PC PB AC AE -<-, ∴PC PB AC AB -<-.训练4. 如图,正方形ABCD 中,8AB =,M 是DC 上的一点,且2DM =,N 是AC 上的一动点,求DN MN -的取值范围.NMD CB A【解析】当DN MN =时,DN MN -有最小值为0,此时点N 位于DM 的垂直平分线与AC 的交点处.2DN MN DM -=≤,当点N 与点C 重合时,等号成立,此时有最大值2. ∴02DN MN -≤≤图6EP D CBA18 初二秋季·第1讲·提高班·教师版题型一 角平分线的常见辅助线模型(二) 巩固练习【练习1】 如图所示,在Rt ABC △中,90C ∠=°,BD 是ABC ∠的平分线,交AC 于D 点,若CD n =,AB m =,则ABD △的面积是 .(北京四中期中)【解析】 2mn(提示:过D 作AB 垂线)【练习2】 在ABC △中,AD 平分BAC ∠,CD AD ⊥,D 为垂足,G 为BC 的中点,求证:DGC B ∠=∠.A CDGBACD EGB【解析】延长CD 交AB 于E ,则得ADC ADE △≌△,所以D 为EC 中点,所以DG AB ∥,所以DGC B ∠=∠【练习3】 ⑴ 如图1所示,在ABC △中,AC AB >,M 为BC 的中点,AD 是BAC ∠的角平分线,若CF AD ⊥且交AD 的延长线于F ,求证:1()2MF AC AB =-.⑵ 如图2所示,将⑴中AD 改成BAC ∠的外角平分线,其它条件不变,则⑴中结论是否依然成立?成立请证明;若不成立,请说明理由.图1BM F D CA图2CBM FDA【解析】 ⑴ 如图3所示,延长AB 、CF 相交于点E ,在AFE △和AFC △中,EAF CAF ∠=∠,复习巩固CDBA19初二秋季·第1讲·提高班·教师版AF AF =,AFE AFC ∠=∠,故AFE AFC △≌△,从而AE AC =,EF FC =.而CM MB =,故MF 是CBE △的中位线, 从而()()111222MF BE AE AB AC AB ==-=-.⑵ 不成立.理由如下:如图4所示,延长CF 交BA 延长于E 点易证AEF ACF △≌△,∴EF CF =,即F 点为CE 中点 ∵M 是BC 中点,∴()()111222MF BE BA AE BA AC ==+=+.【练习4】 如图所示,在ABC △中,100A ∠=︒,40ABC ∠=︒,BD 是ABC ∠的平分线,延长BD至E ,使DE AD =.求证:BC AB CE =+EDCAF EDCA【解析】 在BC 上取一点F ,使得BF BA =易证得ABD FBD △≌△,∴DF AD =, 又∵DA DE =,∴DF DE =∵100A ∠=︒,40ABC ∠=︒,∴AB AC = ∵BD 平分ABC ∠,∴20ABD ∠=︒ ∴60ADB FDB ∠=∠=︒ ∵60CDE ADB ∠=∠=︒ ∴60FDC EDC ∠=∠=︒, ∴DCF DCE △≌△图3ACD EF M B 图4ADEFM BC20 初二秋季·第1讲·提高班·教师版∴FC EC =,∴BC BF FC AB CE =+=+题型二 将军饮马问题 巩固练习【练习5】 已知ABC △的顶点坐标分别为A (0,2),B (2-,0),C (1,0),O 是坐标原点.试在AB 和AC 边上分别找一点D 、E ,使DOE △的周长最短.画出点D 、E 两点的位置图形,简述作图方法.(清华附中期中考试试题)y C O x B AO 2O 1EDyC O xB A【解析】 作点O 关于线段AB 、AC 的对称点1O 、2O ,连接两点与AB 、AC 的交点为所求点D 、E .21初二秋季·第1讲·提高班·教师版ABOP QR P′P″A B O P Q R P′P″P O B A测试1. 如图AOB ∠内有点P ,试在角的两边上找两点Q 、R (均不同于O 点),使PQR △的周长最小,画出Q 、R 两点的位置图形,保留作图痕迹.【解析】测试2. 如图,在四边形ABCD 中,AC 平分BAD ∠,过C 作CE AB E ⊥于,并且1()2AE AB AD =+,则ABC ADC ∠+∠等于多少?E DCBAF EDCBA【解析】作CF AD ⊥交AD 的延长线于点F ,可推出DF BE =,易证CEB CFD △≌△,∴ABC ADC ∠+∠180=︒测试3. 如图,已知在ABC △中,3ABC C ∠=∠,12∠=∠,BE AE ⊥.求证:2AC AB BE -=.21ECBA 543MA B CE12【解析】延长BE 交AC 于M .∵AE BE ⊥,12∠=∠∴34∠=∠,AB AM =,BE EM = ∴AC AB AC AM MC -=-=,2BM BE = 又∵345C ∠=∠=∠+∠,353ABC C ∠=∠+∠=∠∴553C C ∠+∠+∠=∠ ∴5C ∠=∠ ∴MB MC = ∴2AC AB BE -=.课后测22 初二秋季·第1讲·提高班·教师版想像力比知识更重要,因为知识是有限的,而想像力概括着世界的一切,推动着进步,并且是知识进化的源泉。
学而思初二数学秋季班第2讲.倍长中线与截长补短.提高班.教师版

1初二秋季·第2讲·提高班·教师版三角形9级 全等三角形的经典模型(二)三角形8级全等三角形的经典模型(一) 三角形7级倍长中线与截长补短倍长中线与截长补短满分晋级漫画释义2倍长中线 与截长补短2初二秋季·第2讲·提高班·教师版定 义示例剖析倍长中线:即延长三角形的中线,使得延长后的线段是原中线的两倍.其目的是构造一对对顶的全等三角形; 其本质是转移边和角.EDABC其中BD CD =,延长AD 使得DE AD =,则BDE CDA △≌△.【例1】 已知ABC △中,AD 平分BAC ∠,且BD CD =,求证:AB AC =. 【解析】 延长AD 到E ,使DE AD =,连接CE .则CDE BDA △≌△,∴CE AB =,CED BAD ∠=∠, ∵AD 平分BAC ∠,∴BAD CAD ∠=∠, ∴CED CAD ∠=∠,∴CE AC =, ∴AB AC =.思路导航例题精讲知识互联网题型一:倍长中线EABCDABCD3初二秋季·第2讲·提高班·教师版【教师备选】教师可借用例1对等腰三角形三线合一性质的逆命题进行简单归纳:已知角平分线+中线证等腰三角形,如例1; 已知角平分线+高证等腰三角形,如拓展1; 已知中线+高证等腰三角形,如拓展2.【拓展1】已知△ABC 中,AD 平分∠BAC ,且AD ⊥BC ,求证:AB =AC . 【解析】∵AD 平分∠BAC ,∴∠BAD =∠CAD∵AD ⊥BC ,∴∠ADB =∠ADC =90° ∴△ABD ≌△ACD (SAS) ∴AB =AC .【拓展2】已知△ABC 中,AD ⊥BC ,且BD CD =,求证:AB =AC . 【解析】∵AD ⊥BC ,且BD CD =∴AD 所在直线是线段BC 的垂直平分线 根据垂直平分线上的点到线段两端点距离相等 故AB =AC .【例2】 ⑴如图,已知ABC △中,AB AC =,CE 是AB 边上的中线,延长AB 到D ,使BD AB =.给出下列结论:①AD =2AC ;②CD =2CE ;③∠ACE =∠BCD ;④CB 平分∠DCE ,则以上结论正确的是 . 【解析】 ①正确.∵AB AC =,BD AB =,∴AD =2AC .②、④正确.延长CE 到F ,使EF CE =,连接BF . ∵CE 是AB 的中线,∴AE EB =. 在EBF △和EAC △中 AE BEAEC BEF CE FE =⎧⎪∠=∠⎨⎪=⎩典题精练ABDEDCBA4初二秋季·第2讲·提高班·教师版∴EBF EAC ≌△△∴BF AC AB BD ===,EBF EAC ∠=∠ ∴FBC FBE EBC A ACB DBC ∠=∠+∠=∠+∠=∠ 在FBC △和DBC △中 FB DB FBC DBC BC BC =⎧⎪∠=∠⎨⎪=⎩∴FBC DBC ≌△△∴2CD CF CE ==,∠FCB =∠DCB 即CD =2CE ,CB 平分∠DCE .③错误.∵∠FCB =∠DCB ,而CE 是AB 边上中线而不是∠ACB 的角平分线故∠ACE 和∠BCD 不一定相等.⑵如图,在△ABC 中,点D 、E 为边BC 的三等分点,给出下列结论:①BD =DE =EC ;②AB +AE >2AD ;③AD +AC >2AE ;④AB +AC >AD +AE ,则以上结论正确的是 .NM ED CBAEDCBA【解析】 点D 、E 为边BC 的三等分点,∴BD =DE =CE 延长AD 至点M ,AE 至点N ,使得DM =AD ,EN =AE ,连接EM 、CN ,则可证明△ABD ≌△MED ,进而可得AB +AE >2AD ,再证明△ADE ≌△NCE ,进而可得AD +AC >2AE ,将两式相加可得到AB +AE +AD +AC >2AD +2AE ,即AB +AC >AD +AE . ∴①②③④均正确.【例3】 如图,已知在ABC △中,AD 是BC 边上的中线,E 是AD 上一点,延长BE 交AC 于F ,AF EF =,求证:AC BE =.FCAEBD5初二秋季·第2讲·提高班·教师版【解析】 延长AD 到G ,使DG AD =,连接BG∵BD CD =,BDG CDA ∠=∠,AD GD = ∴ADC GDB △≌△, ∴AC GB =,G EAF ∠=∠ 又∵AF EF =,∴EAF AEF BED ∠=∠=∠ ∴G BED ∠=∠,∴BE BG =,∴AC BE =.【例4】 在正方形ABCD 中,PQ ⊥BD 于P ,M 为QD 的中点,试探究MP 与MC 的关系.NABCDMPQ Q PMDCBA【解析】 延长PM 至点N ,使PM =MN ,连结CP 、CN 、DN .易证△PMQ ≌△NMD , ∴PB =PQ =DN ,∠PQD =∠NDM ∴PQ ∥DN ,又∵∠BPQ =∠BDN= 90° ∴∠PBQ =∠BDC=∠NDC =45° 再证△BPC ≌△DNC (SAS) 易证△PCN 为等腰直角三角形, 又∵PM =MN ,∴PM ⊥MC ,且PM =CM .GFEDCBA FE D CBA6初二秋季·第2讲·提高班·教师版定 义示例剖析截长:即在一条较长的线段上截取一段较短的线段DCBA在线段AB 上截取AD AC =补短:即在较短的线段上补一段线段使其和较长的线段相等AB C D延长AC ,使得AD AB =【例5】 在ABC △中,A ∠的平分线交BC 于D ,AB AC CD =+,40B ∠=︒,求C ∠的大小.(希望杯培训题)D C B AED CB A【解析】 在AB 上截取AE AC =,连接DE .∵AE AC =,BAD CAD ∠=∠,AD AD =,∴ACD AED △≌△, ∴C AED ∠=∠,CD DE =,∵AB AC CD =+,AE AC =,∴CD BE DE == ∴40EBD EDB ∠=∠=︒,80C AED ∠=∠=︒例题精讲思路导航题型二:截长补短7初二秋季·第2讲·提高班·教师版D CB AEDCB AD CEBAE DCB A【例6】 如图,在ABC △中,2B C ∠=∠,BAC ∠的平分线AD 交BC 于点D .求证:AB BD AC +=. 【解析】方法一:(截长)在AC 上截取AB AE =,连接DE .在ABD △和AED △中AB AE =,BAD EAD ∠=∠,AD AD =∴ABD AED △≌△∴BD ED =,B AED ∠=∠又∵2AED EDC C B C ∠=∠+∠=∠=∠ ∴EDC C ∠=∠,∴ED EC =∴AB BD AC +=. 方法二:(补短)延长AB 到点E 使得AC AE =,连接DE . 在AED △和ACD △中,AE AC =,EAD CAD ∠=∠,AD AD = ∴AED ACD △≌△,∴C E ∠=∠ 又∵22ABC E BDE C BDE ∠=∠+∠=∠=∠ ∴E BDE ∠=∠∴BE BD =,∴AB BD AC +=.方法三:(补短)延长DB 到点E 使得AB BE =,连接AE 则有EAB E ∠=∠,2ABC E EAB E ∠=∠+∠=∠ 又∵2ABC C ∠=∠,∴C E ∠=∠ ∴AE AC = EAD EAB BAD E DAC ∠=∠+∠=∠+∠C DAC ADE =∠+∠=∠∴AE DE =,∴AB BD EB BD ED AE AC +=+=== ∴AB +BD=AC若题目条件或求证结论中含有“a b c =+”的条件,需要添加辅助线时多考虑“截长补短”.建议教师此题把3种解法都讲一下,方便学生更加深刻理解这种辅助线添加方法.【例7】 已知:在ABC △中,AB CD BD =-,AD BC ⊥,求证:2B C ∠=∠.【解析】 方法一:在DC 上取一点E ,使BD DE =,如图1,在ABD △和AED △中,AD BC ⊥,BD ED =,AD AD =.典题精练DC BA8初二秋季·第2讲·提高班·教师版∴ABD AED △≌△. ∴AB AE =,B AED ∠=∠.又∵AE AB CD BD CD DE EC ==-=-= ∴C EAC ∠=∠,∴2C EAC AED C ∠+∠=∠=∠ ∴2B C ∠=∠.图1E AB CD图2EAB CD方法二:延长DB 到点E ,使BE AB =,如图2, ∴E EAB ∠=∠.∵AB CD BD =-,∴ED CD =.在AED △和ACD △中,AD BC ⊥,ED CD =,AD AD =. ∴AED ACD △≌△. ∴E C ∠=∠. ∵2ABD E ∠=∠ ∴2B C ∠=∠.【探究对象】截长补短法是几何证明题中十分重要的方法,通常来证明几条线段的数量关系,常见做辅助线方法有: 截长法:⑴过某一点作长边的垂线;⑵在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等。
初中数学旋转解题几何

旋转基础练习一一、选择题1.在26 个英文大写字母中,通过旋转180°后能与原字母重合的有()A.6 个B.7 个C.8 个D.9 个2.从 5 点15 分到 5 点20 分,分针旋转的度数为()A.20°B.26°C.30°D.36°3.如图1,在Rt△ABC 中,∠ACB=90°,∠A=40°,以直角顶点 C 为旋转中心,将△ABC 旋转到△A′B′的C位置,其中A′、B′分别是A、B 的对应点,且点 B 在斜边A′B上′,直角边CA′交AB 于D,则旋转角等于()A.70°B.80°C.60°D.50°(图1) (图2) (图3)二、填空题.1.在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动称为________,这个定点称为________,转动的角为________.2.如图2,△ABC 与△ADE 都是等腰直角三角形,∠ C 和∠AED 都是直角,点 E 在AB 上,如果△ABC 经旋转后能与△ADE 重合,那么旋转中心是点_________;旋转的度数是__________.3.如图3,△ABC 为等边三角形, D 为△ABC 内一点,△ABD 经过旋转后到达△ACP 的位置,则,(1)旋转中心是________;(2)旋转角度是________;(3)△ADP 是________ 三角形.三、解答题.1.阅读下面材料:如图4,把△ABC 沿直线BC 平行移动线段BC 的长度,可以变到△ECD 的位置.如图5,以BC 为轴把△ABC 翻折180°,可以变到△DBC 的位置.(图4) (图5) (图6) (图7) 如图6,以A 点为中心,把△ABC 旋转90°,可以变到△AED 的位置,像这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置,不改变形状和大小的图形变换,叫做三角形的全等变换.回答下列问题如图7,在正方形ABCD 中,E 是AD 的中点,F 是BA 延长线上一点,AF= 12AB .(1)在如图7 所示,可以通过平行移动、翻折、旋转中的哪一种方法,使△ABE 移到△ADF 的位置?(2)指出如图7 所示中的线段BE 与DF 之间的关系.2.一块等边三角形木块,边长为1,如图,现将木块沿水平线翻滚五个三角形,那么 B 点从开始至结束所走过的路径长是多少?旋转基础练习二一、选择题1.△ABC 绕着 A 点旋转后得到△AB′C,′若∠BAC′=130,°∠BAC=80°,则旋转角等于()A.50°B.210°C.50°或210°D.130°2.在图形旋转中,下列说法错误的是()A.在图形上的每一点到旋转中心的距离相等B.图形上每一点转动的角度相同C.图形上可能存在不动的点D.图形上任意两点的连线与其对应两点的连线长度相等3.如图,下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是()二、填空题1.在作旋转图形中,各对应点与旋转中心的距离________.2.如图,△ABC 和△ADE 均是顶角为42°的等腰三角形,BC、DE 分别是底边,图中的△ABD 绕A 旋转42°后得到的图形是________,它们之间的关系是______,其中BD CE(填“>”,“<”或“=”).3.如图,自正方形ABCD的顶点A引两条射线分别交BC、CD于E、F,∠EAF=45°,在保持∠EAF=45°的前提下,当点E、F分别在边BC、CD上移动时,BE+DF与EF的关系是________.三、解答题1.如图,正方形ABCD的中心为O,M为边上任意一点,过OM随意连一条曲线,将所画的曲线绕O点按同一方向连续旋转3次,每次旋转角度都是90°,这四个部分之间有何关系?2.如图,以△ABC的三顶点为圆心,半径为1,作两两不相交的扇形,则图中三个扇形面积之和是多少?旋转基础练习四一、选择题1.在英文字母VWXYZ中,是中心对称的英文字母的个数有()A.1个B.2个C.3个D.4个2.下面的图案中,是中心对称图形的个数有()A.1个B.2个C.3个D.4个3.如图,把一张长方形ABCD的纸片,沿EF折叠后,ED′与BC的交点为G,点D、C分别落在D′、C′的位置上,若∠EFG=55°,则∠1=()A.55°B.125°C.70°D.110°二、填空题1.关于某一点成中心对称的两个图形,对称点连线必通过_________.2.把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形是_________图形.3.用两个全等的直角非等腰三角形可以拼成下面图形中的哪几种:_______(填序号)(1)长方形;(2)菱形;(3)正方形;(4)一般的平行四边形;(5)等腰三角形;(6)梯形.三、解答题1.仔细观察所列的26 个英文字母,将相应的字母填入下表中适当的空格内.A B C D E F G H I J K L M N O P Q R S T U V W X Y Z对称中心轴对称旋转形式只有一条对称轴有两条对称轴对称对称2.如图,在正方形ABCD 中,作出关于P 点的中心对称图形,并写出作法.3.如图,是由两个半圆组成的图形,已知点 B 是AC 的中点,画出此图形关于点 B 成中心对称的图形.旋转基础练习六一、选择题1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.等腰梯形C.平行四边形D.正六边形2.下列图形中,是中心对称图形,但不是轴对称图形的是()21085 A.正方形B.矩形C.菱形D.平行四边形3.如图所示,平放在正立镜子前的桌面上的数码“21085在”镜子中的像是()A.21085 B.28015 C.58012 D.51082二、填空题1.把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做__________.2.请你写出你所熟悉的三个中心对称图形_________.3.中心对称图形具有什么特点(至少写出两个)_____________.三、解答题1.在平面内,如果一个图形绕一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角称为这个图形的一个旋转角,例如:正方形绕着它的对角线的交点旋转90°后能与自身重合,所以正方形是旋转对称图形,应有一个旋转角为90°.(1)判断下列命题的真假(在相应括号内填上“真”或“假”)②矩形是旋转对称图形,它有一个旋转角为180°;()(2)填空:下列图形中是旋转对称图形,且有一个旋转角为120°是_____.(写出所有正确结论的序号)①正三角形;②正方形;③正六边形;④正八边形.(3)写出两个多边形,它们都是旋转对称图形,却有一个旋转角为72°,并且分别满足下列条件:①是轴对称图形,但不是中心对称图形;②既是轴对称图形,又是中心对称图形.2.如图,将矩形A1B1C1D1沿EF折叠,使B1点落在A1D1边上的B处;沿BG折叠,使D1点落在D处且BD过F点.(1)求证:四边形BEFG是平行四边形;(2)连接BB,判断△B1BG的形状,并写出判断过程.D1ABAEF GB1C1DC3.如图,直线y=2x+2与x轴、y轴分别交于A、B两点,将△AOB绕点O顺时针旋转90°得到△A1OB1.(1)在图中画出△A1OB1;(2)设过A、A1、B三点的函数解析式为y=ax2+bx+c,求这个解析式.y2BA-1Ox学而思韩春成老师题库资料分享第5页答案:一、1.D 2.D 3. D二、1.中心对称图形2.答案不唯一3.答案不唯一三、1.(1)①假②真(2)①③(3)①例如正五边形正十五边形? ②例如正十边正二十边形2.(1)证明:∵A1D1∥B1C1,∴∠A 1BD= ∠C1FB又∵四边形ABEF 是由四边形 A 1B1EF 翻折的,∴∠B1FE=∠EFB,同理可得:∠FBG=∠D1BG, 初中数学资源网∴∠EFB=90°- 12∠C1FB ,∠FBG=90° -12∠A1BD ,∴∠EFB=∠FBG∴EF∥BG,∵EB∥FG∴四边形BEFG 是平行四边形.(2)直角三角形,理由:连结BB ,∵BD1∥FC1,∴∠BGF= ∠D1BG,∴∠FGB=∠FBG 同理可得:∠B1BF=∠FB1B.∴∠B1BG=90°,∴△B1BG 是直角三角形3.解:(1)如右图所示y2 1 B A1AB1-2 -1 1O-12 x(2)由题意知 A 、A1、B1 三点的坐标分别是(-1,0),(0,1),(2,0)∴0a b cc10 4a 2b c解这个方程组得abc12112∴所求五数解析式为y=- 12x2+2+12x+1.旋转基础练习七一、选择题1.下列函数中,图象一定关于原点对称的图象是()A.y= 1xB.y=2x+1 C.y=-2x+1 D.以上三种都不可能2.如图,已知矩形ABCD 周长为56cm,O 是对称线交点,A D 点O 到矩形两条邻边的距离之差等于8cm,则矩形边长中较长的一边等于()OA.8cm B.22cm C.24cm D.11cmB C 二、填空题1.如果点P(-3,1),那么点P(-3,1)关于原点的对称点P′的坐标是P′______._2.写出函数y=- 三、解答题3x与y=3x具有的一个共同性质________(用对称的观点写).y1.如图,在平面直角坐标系中,A(-3,1),B(-2,3),C(0,2),画出△ABC 关于x 轴对称的△A′B′,C再′画出△A′B′关C′于y 轴对称的△A″B″C,″那么△A″B″C″B 43与△ABC 有什么关系,请说明理由.A 21CO x-1y -2-34A 32 2.如图,直线AB 与x 轴、y 轴分别相交于A、B 两点,1B-4 学而思韩春成老师题库资料分享第7 页O x -3 2 3 -2-1 1-1-2-3且A(0,3),B(3,0),现将直线AB 绕点O 顺时针旋转90°得到直线A1B1.(1)在图中画出直线A1B1;(2)求出过线段 A 1B1 中点的反比例函数解析式;(3)是否存在另一条与直线A1B1 平行的直线y=kx+b (我们发现互相平行的两条直线斜率k 相等)它与双曲线只有一个交点,若存在,求此直线的解析式;若不存在,请说明不存在的理由.答案:一、1.A 2.B二、1.(3,-1)2.答案不唯一参考答案:关于原点的中心对称图形.三、1.画图略,△A″B″C″与△ABC 的关系是关于原点对称.2.(1)如右图所示,连结A1B1;(2)A 1B1 中点P(1.5,-1.5),设反比例函数解析式为y= kx,则y=-2.25x.(3)A 1B1:设y=k 1x+b1 b310 3k 31k1b113∴y=x+3∵与A 1B1 直线平行且与y= 2.25x相切的直线是A1B1? 旋转而得到的.∴所求的直线是y=x+3 ,2.25 下面证明y=x+3 与y=-x 相切,43yAy x 3212.25 B(A) y 初中数学资源网O x -4 -32 3-2 -1 1 x-1x2+3x+2.25=0 ,b2-4ac=9-4 1××2.25=0,2+3x+2.25=0 ,b2-4ac=9-4 1××2.25=0,-2∴y=x+3 与y=- 2.25x相切.-3 B学而思韩春成老师题库资料分享第8 页***旋转基础练习八一、选择题1.在图所示的4个图案中既包含图形的旋转,还有图形轴对称是()2.将三角形绕直线L旋转一周,可以得到如图所示的立体图形的是()二、填空题1.基本图案在轴对称、平移、旋转变化的过程中,图形的______和______都保持不变.2.如上右图,是由________关系得到的图形.三、解答题1.(1)图案设计人员在进行图设计时,常常用一个模具板来设计一幅幅美丽漂亮的图案,你能说出用同一模具板设计出的两个图案之间是什么关系吗?(2)现利用同一模具板经过平移、旋转、轴对称设计一个图案,并说明你所表达的意义.2.如图,你能利用平移、旋转或轴对称这样的变化过程来分析它的形成过程吗?学而思韩春成老师题库资料分享第9页******学而思韩春成老师题库资料分享第10页***。
【20寒】初二数学直播目标班(全国版)讲义

解直角三角形 / 第 02 讲
011
例7
第
如图,在海面上产生了一股强台风,台风中心 (记为点 M) 位于滨海市 (记作点 A) 的南
偏西
15◦,距离为
√ 61 2
千米,且位于临海市
(记作点
B)
正西方向
√ 60 3
千米处.台风
02
中心正以 72 千米/时的速度沿北偏东 60◦ 的方向移动 (假设台风在移动过程中的风力
2
016
学而思数学目标班·初二(全国版)「寒」
( 2 ) 已知二次函数解析式为 y = mx2 − (m − 1) x − 2m + 3,当 x > 2 时,函数值随着 x 的
增大而减小,求 m 的取值范围.
第
03
讲
( 3 ) 已知抛物线 y = ax2 + 2ax + 4 (0 < a < 3),A (x1, y1)、B (x2, y2) 是抛物线上两点,若
第 04 讲
p.023
二次函数的解析式和图象变换
模块 01 二次函数的解析式 模块 02 二次函数的图象变换 模块 03 函数中的绝对值变换
第 05 讲
p.031
二次函数的应用
模块 01 用函数观点看方程与不等式 模块 02 实际应用问题
第 06 讲
p.039
一元二次方程区间根的分布
模块 01 一元二次方程区间根的分布
i(i
=
h );坡面与水平面的夹角叫做坡角,记作
l
α
(tan α
=
i
=
h ).
l
二、解直角三角形实际问题的一般解法
1. 将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题); 2. 适当选用锐角三角比去解直角三角形; 3. 得到数学问题的答案; 4. 得到实际问题的答案.
学而思寒假八年级尖子班讲义第1讲平行四边形性质、判定

1 平行四边形性质、判定目标1 掌握平行四边形的性质掌握平行四边形的性质目标2 掌握平行四边形的判定掌握平行四边形的判定目标3 应用平行四边形的性质、判定、三角形全等解决综合问题应用平行四边形的性质、判定、三角形全等解决综合问题【专题简介】【专题简介】与三角形一样,平行四边形也是一种基本的几何图形,宏观的建筑物、开关自如的栅拦门、别具一格的灵柩••••••现实世界中很多物体都有平行四边形的形象。
从本讲开始,我们将依次学习平行四边形、举行、菱形、正方形的概念,并在理解她们的基础上,利用已有的几何知识和方法,搜索并证明他们的性质定理和判定定理:进一步体会研究图形的几何性质的思路和方法,进一步体会研究图形的几何性质的思路和方法,即通过观、即通过观、即通过观、类比、类比、类比、特殊化等途径和方法发特殊化等途径和方法发现图形的几何性质,在通过逻辑推理证明他们现图形的几何性质,在通过逻辑推理证明他们模块一 平行四边形的性质 知识导航知识导航 定义定义示例剖析示例剖析平行四边形:两组对边分别平行的四边形叫做平行四边形(如图):平行四边形的表示:一般按照一定的方向依次表示各项点:如右图的平行四边形不能表示平行四边形ACBD ,也不能表示平行四边形ADBC叫做平行四边形四边形ABCD ÞþýüBC // AD CD // AB 记作□ABCD性质性质示例剖析示例剖析①平行四边形的对边平行;①平行四边形的对边平行;四边形ABCD 为平行四边形ÞAB ∥DC , AD ∥ BC .②平行四边形的对边相等:②平行四边形的对边相等:四边形ABCD 为平行四边形ÞAB ∥DC , AD ∥ BC .③平行四边形的对角相等③平行四边形的对角相等四边形ABCD 为平行四边形Þ∠A=∠C ,∠B=∠D④平行四边形的对角线互相平分④平行四边形的对角线互相平分四边形ABCD 为平行四边形ÞOA=OC ,OB=OD【例1】如图,D 为平行四边形ABCD 的对角线的交点:过O 点作直线EF 分别交CD 、AB 于点E 、F . (1)求证:OE= OF ;(2)若AB =5,BC =4,OE= 1.5,求四边形EFBC 的周长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 4
a2b2
a2
b2 2
c2
2
.②
其实“海伦公式”与“秦九韶公式”实质上是同一个公式,所以我们也称①为“海伦—秦九韶公
式”.同学们,你会用因式分解的知识,对公式②进行变形,一步步推出公式①吗?试一试!
7. (全等三角形、30°角定理)如图,在 △ABC 中, AC BC , ACB 90 , D 为
△ABC 内一点,BAD 15 ,AD AC ,CE AD
于 E ,且 CE 5 . (1)求 BC 的长; (2)求证: BD CD .
解:(1)
A
E D
B
C
(2)证明:
韩春成老师题库资源
越付出越富有
8. 我们知道,假分数可以化为带分数. 例如: 8 = 2+ 2 = 2 2 . 在分式中,对于只含有一 3 33
A
D
B
C
E
F
⑵当我们把 △DEF 的顶点 E 与 A 点重合时,使 ED 、 EF 与 BC 相交,设交点为 P 、G (点 பைடு நூலகம் 在点 G 的左侧),你能证明 BP CG 与 PG 的关系,请你完成自己的证明。
A(E)
B D
C F
10. 如图,等腰直角三角形 ABC 中, BAC 90 , D 、 E 分别为 AB 、 AC 边上的点,
AD AE , AF BE 交 BC 于点 F ,过点 FG CD 交 BE 的延长线于点 G ,交 AC 于点
M。 ⑴求证: △EGM 为等腰三角形; ⑵判断线段 BG 、 AF 与 FG 的数量关系并证明你的结论。
A G
E D
M
A G
E D
M
C
F
BC
F
B
韩春成老师题库资源
越付出越富有
例如: x 1 = (x 1) 2 1 2 ;
x 1 x 1
x 1
x2
x2 11 (x 1)(x 1) 1
x 1
1
.
x 1 x 1
x 1
x 1
(1)将分式 x 1 化为带分式; x2
(2)若分式 2x 1 的值为整数,求 x 的整数值; x 1
S p p a p b p c .①
古希腊的几何学家海伦(Heron,约公元 50 年),在数学史上以解决几何测量问题而闻名,
在他的著作《度量》一书中,给出了这一公式和它的证明.
我国南宋时期数学家秦九韶(约 1202——1261),曾提出利用三角形的三边求面积的“秦九韶
公式” S
⑥
⑤
④
③
②
①
(1)当内空格点多边形边上的格点数为 10 时,此多边形的面积为
;
(2)设内空格点多边形边上的格点数为 L,面积为 S,请写出用 L 表示 S 的关系式
韩春成老师题库资源
越付出越富有
6. 如果一个三角形的三边长分别为 a , b , c ,设 p a b c ,则三角形的面积为 2
11. 王一复习时看到这样一道题:如图 1, △ABC 中, BAC 2ACB ,点 D 是 △ABC 内 一点,且 DC DA , BD BA , BAC 90 ,探究 DBC 与 ABC 度数的比值。
王一的解题思路是:注意到 DC DA , △DCA 是等腰三角形,以 AC 为边的中垂线为轴, 将 △ABD 翻折,就可以得到 △KCD ,题目从而得到解决。 王一的解法如下:作 KCA BAC ,过点 B 作 BK ∥ AC 交 CK 于点 K ,连结 DK 。进而 得到一个等腰梯形 KCAB , KC AB 。 如图 2 在题目条件和王一推得的条件下试完成下面的证明 ⑴证明: KD DB ; ⑵求 KBD 的度数; ⑶探究 DBC 与 ABC 度数的比值。
)
A. 24°
B. 25°
C. 30°
D. 35°
A
2
B' 1
F
E
B
C
4. 若 关 于 x 的 二 次 三 项 式 x2 + k x b因 式 分 解 为 (x 1) x( 3,) 则 k + b 的 值 为
__________.
5. 如图,图中的方格均是边长为 1 的正方形,每一个正方形的顶点都称为格点. 图①~⑥⑥ 这些多边形的顶点都在格点上,且其内部没有格点,象这样的多边形我们称为“内空格 点多边形”.
(3)(函数)求函数 y 2x2 1 图象上所有横纵坐标均为整数的点的坐标. x 1
韩春成老师题库资源
越付出越富有
9. 已知:如图, △ABC 和 △DEF 都是等腰直角三角板, BAC 90 , EDF 90 。 ⑴请你利用这两块三角板画出 BC 的中点(用示意图表示);
个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分
子的次数小于分母的次数时,我们称之为“真分式”. 例如: x 1 , x2 这样的分式 x 1 x 1
就是假分式; 3 , 2x 这样的分式就是真分式 . x 1 x2 1
带分式(即:整式与真分式和的形式).
类似的,假分式也可以化为
A. 2x2 4x
B. x2 x 1 4
C. x2 9 y2
2. 已知整数 m 满足 m 38 m 1,则 m 的值为(
D.1 m2
)
A.4
B. 5
C.6
D.7
3. 如图,把△ ABC 沿 EF 对折,叠合后的图形如图所示.若
C'
A 60 , 1 95 ,则∠2 的度数为(
AC 10 .
越付出越富有
初二期末复习精品资源 命题人:学而思网校韩春成老师
简 介:学而思初中数学教研主任、学而思五佳教师、状元教师、杯赛命题人
代表作:《几何辅助线秘籍》 、 《培优辅导跟踪练习》等系列书籍
网校课程:/t/hanchuncheng
1. 下列各式不能分解因式的是
韩春成老师题库资源
越付出越富有
【答案】
1. C
2. C
3. B
4. 1
5.
4, S 1 L 1 2
6. 略(提示:运用公式法进行因式分解)
7. 解:(1)在△ ABC 中,
AC BC , ACB 90 ,
BAC 45.
BAD 15 ,
CAD 30 .
CE AD , CE 5 ,