鲁教版五四制七年级数学上册期末练习题二(扫描版,无答案)

合集下载

【鲁教版】初一数学上期末试题附答案(2)

【鲁教版】初一数学上期末试题附答案(2)

一、选择题1.如图,在ABC 中,90BAC ∠=︒,点D ,E 分别在BC ,CA 边的延长线上,EH BC ⊥于点H ,EH 与AB 交于点F .则1∠与2∠的数量关系是( ).A .12∠=∠B .1∠与2∠互余C .1∠与2∠互补D .12100∠+∠=°2.如图,点A 、B 、C 是直线l 上的三个定点,点B 是线段AC 的三等分点,AB =BC +4m ,其中m 为大于0的常数,若点D 是直线l 上的一动点,M 、N 分别是AD 、CD 的中点,则MN 与BC 的数量关系是( )A .MN =2BCB .MN =BC C .2MN =3BCD .不确定 3.下列平面图形中不能围成正方体的是( )A .B .C .D .4.用一个平面去截一个圆锥,截面的形状不可能是( )A .B .C .D . 5.已知,每本练习本比每根水性笔便宜2元,小刚买了6本练习本和4根水性笔正好用去18元,设水性笔的单价为x 元,下列方程正确的是( )A .6(x+2)+4x =18B .6(x ﹣2)+4x =18C .6x+4(x+2)=18D .6x+4(x ﹣2)=186.宜宾某机械厂加工车间有34名工人,平均每名工人每天加工小齿轮20个或大齿轮15个.已知3个小齿轮和2个大齿轮配成一套,问分别安排多少名工人加工大、小齿轮,才能使每天生产的齿轮刚好配套?若设加工小齿轮的工人有x 名,则可列方程为( ) A .2015(34)x x =-B .220315(34)x x ⨯=⨯-C .320215(34)x x ⨯=⨯-D .320(34)215x x ⨯-=⨯7.已知代数式2x-6与3+4x 的值互为相反数,那么x 的值等于( )A .2B .12C .-2D .1-28.某工厂一、二月份共完成生产任务吨,其中二月份比一月份的多吨,设一月份完成吨,则下列所列方程正确的是( )A .B .C .D .9.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则,,a b c 的值分别为( )1111211464115101051331151161a b c A .1,6,15a b c === B .6,15,20a b c ===C .15,20,15a b c ===D .20,15,6a b c ===10.一个多项式与221a a -+的和是32a -,则这个多项式为( )A .253a a -+B .253a a -+-C .2513a a --D .21a a -+- 11.下列计算中,错误的是( )A .(2)(3)236-⨯-=⨯=B .()144282⎛⎫÷-=⨯-=- ⎪⎝⎭C .363(6)3--=-++=D .()()2399--=--=12.计算-3-1的结果是( )A .2B .-2C .4D .-4 二、填空题13.如图,若AOB ∠是直角,OM 平分AOC ∠,ON 平分COB ∠,则MON ∠=________.14.如图,OC AB ⊥于点O ,OE 为COB ∠的平分线,则AOE ∠的度数为______.15.对于数a ,b 定义这样一种运算:*2a b b a =-,例如1*3231=⨯-,若()3*11x +=,则x 的值为______.16.已知21535a x y -和2547a x y +是同类项,则可得关于a 的方程为________. 17.有一列数:12,1,54,75,…,依照此规律,则第n 个数表示为____. 18.求值: (1)()()22232223a a a a a -++-=______,其中2a =-;(2)()()222291257127a ab ba ab b -+-++=______,其中12a =,12b =-; (3)()()222222122a b ab a b ab +----=______,其中2a =-,2b =.19.33278.5 4.5 1.67--=____(精确到千分位) 20.若2(1)20a b -+-=,则2015()a b -= _______________. 三、解答题21.如图所示,已知射线OC 将∠AOB 分成1∶3的两部分,射线OD 将∠AOB 分成5∶7的两部分,若∠COD =15°,求∠AOB 的度数.22.如图,已知线段a 和b ,直线AB 和CD 相交于点O.利用尺规,按下列要求作图(只保留作图痕迹即可):(1)在射线OA ,OB ,OC 上作线段,,,使它们分别与线段a 相等; (2)在射线OD 上作线段,使与线段b 相等;(3)连接,,,.23.运用等式的性质解下列方程:(1)112x +=; (2)212x -=;(3)185x =-;(4)3212x x =+;(5)352x -=(需检验); (6)2153x +=-(需检验); (7)23257m m -=(需检验) 24.一种商品每件成本a 元,按成本增加22%标价.(1)每件标价多少元?(2)由于库存积压,实际按标价的九折出售,每件是盈利还是亏损?盈利或亏损多少元? 25.计算(1)2125824(3)3-+-+÷-⨯ (2)71113()2461224-+-⨯ 26.如图,已知等腰直角三角形ACB 的边AC BC a ==,等腰直角三角形BED 的边BE DE b ==,且a b <,点C 、B 、E 放置在一条直线上,联结AD .(1)求三角形ABD 的面积;(2)如果点P 是线段CE 的中点,联结AP 、DP 得到三角形APD ,求三角形APD 的面积;(3)第(2)小题中的三角形APD 与三角形ABD 面积哪个较大?大多少?(结果都可用a 、b 代数式表示,并化简)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先根据同角的余角相等得出∠1=∠BCE ,再根据∠BCE+∠2=180°,得出∠1+∠2=180°即可.【详解】∵EH ⊥BC ,∴∠1+∠B=90°,∵∠BAC=90°,∴∠BCE+∠B=90°,∴∠1=∠BCE .∵∠BCE+∠2=180°,∴∠1+∠2=180°,即∠1与∠2互补,故选:C .【点睛】本题考查了余角和补角.解题的关键是掌握余角和补角的定义,同角的余角相等的性质. 2.C解析:C【分析】可用特殊值法,设坐标轴上的点A 为0,C 为12m ,求出B 的值,得出BC 的长度,设D 为x ,则M 为2x ,N 为122m x +,即可求出MN 的长度为6m ,可算出MN 与BC 的关系. 【详解】设坐标轴上的点A 为0,C 为12m ,∵AB =BC+4m ,∴B 为8m ,∴BC =4m ,设D 为x ,则M 为2x ,N 为122m x +, ∴MN 为6m ,∴2MN =3BC ,故选:C .【点睛】本题考查了两点间的距离,解题关键是注意特殊值法的运用及方程思想的运用.3.C解析:C【分析】根据常见的正方体展开图的11种形式以及不能围成正方体的展开图解答即可.【详解】根据常见的不能围成正方体的展开图的形式是“一线不过四,田、凹应弃之”,只有C选项不能围成正方体.故选C.【点睛】此题考查展开图折叠成几何体,解题关键在于掌握正方体展开图的11种形式即可.4.D解析:D【解析】【分析】圆锥是由圆和扇形围成的几何体,圆锥的底面是圆,侧面是曲面,截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关,据此对所给选项一一进行判断.【详解】圆锥的轴截面是B,平行于底面的截面是C,当截面与轴截面斜交时截面是A;无论如何截,截面都不可能是D.故选D.【点睛】此题考查截一个几何体,解题关键是掌握圆锥的特点进行求解.5.B解析:B【分析】等量关系为:6本练习本总价+4支水性笔总价钱=18.【详解】解:水性笔的单价为x元,那么练习本的单价为(x﹣2)元,则6(x﹣2)+4x=18,故选B.【点睛】本题主要考查了由实际问题抽象出一元一次方程,列方程解应用题的关键是找出题目中的相等关系.6.B解析:B【分析】名,根据生产的小齿轮的数设加工小齿轮的工人有x名,则加工大齿轮的工人有(34)x量:生产的大齿轮的数量=3:2即可列出方程,进而可得答案.【详解】解:设加工小齿轮的工人有x 名,则加工大齿轮的工人有(34)x -名.根据题意,得220315(34)x x ⨯=⨯-.故选:B .【点睛】本题考查了一元一次方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.7.B解析:B【分析】根据题意列出方程,求出方程的解即可得到x 的值.【详解】解:根据题意得:2x-6+3+4x=0移项合并得:6x=3,解得:x=12 , 故选:B .【点睛】 本题考查解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.8.B解析:B【解析】【分析】由题意可知:一月份完成吨,二月份完成()吨,一、二月份共完成生产任务吨,列出方程解答即可.【详解】由题意可知:. 故选:B【点睛】此题考查从实际问题中抽象出一元一次方程,找出题目蕴含的数量关系是解决问题的关键. 9.B解析:B【分析】由数字排列规律可得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和,据此解答即可.【详解】解:根据图形得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和, 所以156a =+=,51015,101020b c =+==+=.故选:B .【点睛】本题以“杨辉三角”为载体,主要考查了与整式有关的数字类规律探索,找准规律是关键. 10.B解析:B【分析】根据加数=和-另一个加数可知这个多项式为:(3a-2)-(a 2-2a+1),根据整式的加减法法则,去括号、合并同类项即可得出答案.【详解】∵一个多项式与221a a -+的和是32a -,∴这个多项式为:(3a-2)-(a 2-2a+1)=3a-2-a 2+2a-1=-a 2+5a-3,故选B.【点睛】题考查了整式的加减,熟记去括号法则,熟练运用合并同类项的法则是解题关键. 11.C解析:C【分析】根据有理数的运算法则逐一判断即可.【详解】(2)(3)236-⨯-=⨯=,故A 选项正确;()144282⎛⎫÷-=⨯-=- ⎪⎝⎭,故B 选项正确; 363(6)9--=-+-=-,故C 选项错误;()()2399--=--=,故D 选项正确;故选C .【点睛】本题考查了有理数的运算,重点是去括号时要注意符号的变化. 12.D解析:D【解析】试题-3-1=-3+(-1)=-(3+1)=-4.故选D.二、填空题13.45°【分析】结合图形根据角的和差以及角平分线的定义找到∠MON与∠AOB的关系即可求出∠MON的度数【详解】解:∵OM平分∠AOCON平分∠BOC∴∠MOC=∠AOC∠NOC=∠BOC∴∠MON=解析:45°【分析】结合图形,根据角的和差,以及角平分线的定义,找到∠MON与∠AOB的关系,即可求出∠MON的度数.【详解】解:∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12∠AOC,∠NOC=12∠BOC,∴∠MON=∠MOC-∠NOC=12(∠AOC-∠BOC)=12(∠AOB+∠B0C-∠BOC)=12∠AOB=45°.故选答案为45°.【点睛】本题考查了角的计算,属于基础题,此类问题,注意结合图形,运用角的和差和角平分线的定义求解.14.135°【解析】【分析】先根据垂直的定义求得∠AOC∠BOC的度数是90°然后由角平分线的定义可知∠COE=∠BOC最后根据∠AOE=∠COE+∠AOC从而可求得∠AOE【详解】因为于点O所以∠AO解析:135°【解析】【分析】先根据垂直的定义求得∠AOC、∠BOC的度数是90°,然后由角平分线的定义可知∠COE=12∠BOC,最后根据∠AOE=∠COE+∠AOC从而可求得∠AOE.【详解】因为OC AB⊥于点O,所以∠AOC=∠BOC=90°,因为OE为COB∠的平分线,所以∠COE=12∠BOC=45°,又因为∠AOE=∠COE+∠AOC,所以∠AOE =90°+45°=135°.故答案为:135°.【点睛】本题主要考查垂直的定义和角平分线的定义,解决本题的关键是要熟练掌握垂直定义,角平分线的定义.15.1【分析】根据新定义的运算法则代入计算即可得到答案【详解】解:∵∴∴∴;故答案为:1【点睛】本题考查了新定义的运算法则解题的关键是熟练掌握新定义的运算法则进行运算解析:1【分析】根据新定义的运算法则,代入计算即可得到答案.【详解】解:∵*2a b b a =-,∴()3*12(1)31x x +=+-=,∴211x -=,∴1x =;故答案为:1.【点睛】本题考查了新定义的运算法则,解题的关键是熟练掌握新定义的运算法则进行运算. 16.2a-1=a+2【解析】【分析】根据同类项的定义:所含字母相同并且相同字母的指数也相同可得出关于a 的一元一次方程【详解】∵和是同类项∴2a-1=a+2故答案为:2a-1=a+2【点睛】本题考查了由实解析:2a-1=a+2【解析】【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,可得出关于a 的一元一次方程.【详解】 ∵21535a x y -和2547a x y +是同类项, ∴2a-1=a+2.故答案为:2a-1=a+2.【点睛】 本题考查了由实际问题抽象出元一次方程的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同,据此列方程.17.【分析】根据分母是从2开始连续的自然数分子是从1开始连续的奇数解答即可【详解】这列数可以写为因此分母为从2开始的连续正整数分子为从1开始的奇数故第n 个数为故答案为:【点睛】本题考查了数字的变化规律找 解析:211n n -+. 【分析】 根据分母是从2开始连续的自然数,分子是从1开始连续的奇数解答即可.【详解】 这列数可以写为12,33,54,75, 因此,分母为从2开始的连续正整数,分子为从1开始的奇数,故第n 个数为211n n -+. 故答案为:211n n -+. 【点睛】本题考查了数字的变化规律,找出分子分母的联系,得出运算规律是解决问题的关键. 18.60【分析】先根据去括号合并同类项法则进行化简然后再代入求值即可【详解】(1)原式=当时原式=;(2)原式=当时原式=;(3)原式=【点睛】本题考查整式的化简求值掌握去括号合并同类项法则是解题的关键解析:6 0【分析】先根据去括号、合并同类项法则进行化简,然后再代入求值即可.【详解】(1)原式= 2222342268a a a a a a a --+-=-,当2a =-时,原式=()()228241620--⨯-=+=;(2)原式=222222912571272242a ab b a ab b a ab b -+---=--, 当12a =,12b =-时,原式=22111111224266222222⎛⎫⎛⎫⎛⎫⨯-⨯⨯--⨯-=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (3)原式=22222222220a b ab a b ab +-+--=.【点睛】本题考查整式的化简求值,掌握去括号、合并同类项法则是解题的关键. 19.【分析】根据有理数的运算法则进行运算再精确到精确到千分位【详解】故答案为【点睛】此题主要考查近似数解题的关键是熟知有理数的运算法则 解析: 2.559-【分析】根据有理数的运算法则进行运算,再精确到精确到千分位.【详解】33278.5 4.55231.6 2.56 2.5597823543--=-≈- 故答案为 2.559-.【点睛】此题主要考查近似数,解题的关键是熟知有理数的运算法则.20.-1【分析】直接利用偶次方的性质以及绝对值的性质得出ab 的值进而得出答案【详解】由题意得:a -1=0b ﹣2=0解得:a =1b =2故=(1﹣2)2015=-1故答案为-1【点睛】本题考查了非负数的性质解析:-1【分析】直接利用偶次方的性质以及绝对值的性质得出a ,b 的值,进而得出答案.【详解】由题意得:a -1=0,b ﹣2=0,解得:a =1,b =2,故2015()a b -=(1﹣2)2015=-1.故答案为-1.【点睛】本题考查了非负数的性质,正确得出a ,b 的值是解题的关键.三、解答题21.90°【分析】设∠AOB 的度数为x ,根据题意用含x 的式子表示出∠AOC ,∠AOD ,根据角的关键列出方程即可求解.【详解】解:设∠AOB 的度数为x .因为射线OC 将∠AOB 分成1∶3两部分,所以∠AOC =14x . 因为射线OD 将∠AOB 分成5∶7两部分, 所以∠AOD =512x . 又因为∠COD =∠AOD -∠AOC ,∠COD =15°,所以15°=512x -14x . 解得x =90°, 即∠AOB 的度数为90°.【点睛】本题考查了角的和差,设出未知数,表示出∠AOC ,∠AOD ,列出方程是解题关键. 22.详见解析【解析】【分析】(1)以点O 为圆心,a 为半径作圆,分别交射线OA ,OB ,OC 于A′、B′、C′;、 (2)以点O 为圆心,b 为半径作圆,分别交射线OD ,于D′.(3)依次连接A′C′B′D′,即可解答.【详解】解:(1)如图所示OA′、OB′、OC′.(2)如图所示OD′.(3)如图所示A′C′B′D′.【点睛】此题考查作图—复杂作图,解题关键在于掌握尺规作图.23.(1)12x =-;(2)32x =;(3)13x =-;(4)12x =;(5)16x =;(6)9x =-;(7)70m =-【分析】(1)两边同时减1即可求解;(2)两边同时加1,再同时除以2即可求解;(3)两边同时减5,然后两边同时除以-1即可求解;(4)两边同时减去2x ,即可求解;(5)两边同时减1,然后两边同时乘2即可求解,注意检验;(6)两边同时减去3,然后两边同时除以23即可求解,注意检验; (7)两边同时加327m ⎛⎫- ⎪⎝⎭,得1235m -=.两边除以135-,即可求解,注意检验. 【详解】(1)两边减1,得12x =-. (2)两边加1,得23x =,两边除以2,得32x =. (3)两边减5,得13x =-,两边除以-1,得13x =-.(4)两边减2x ,得12x =.(5)两边加3,得82x =,两边乘2,得16x =. 检验:当16x =时,左边=5=右边,故16x =是原方程的解. (6)两边减1,得263x =-,两边除以23,得9x =-. 检验:当9x =-时,左边=-5=右边,故9x =-是原方程的解. (7)两边同时加327m ⎛⎫-⎪⎝⎭,得1235m -=. 两边除以135-,得70m =-. 检验:当70m =-时,左边=-30=右边,故70m =-是原方程的解.【点睛】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立. 24.(1)1.22a ;(2)盈利0.098a【分析】(1)根据:标价=成本()122%⨯+,列出代数式,再进行整理即可;(2)根据:售价=标价0.9⨯,利润=售价-成本,列出代数式,即可得出答案.【详解】(1)∵每件成本a 元,原来按成本增加22%定出价格,∴每件售价为()122% 1.22a a +=(元);(2)现在售价:1.220.9 1.098a a ⨯=(元);每件还能盈利:1.0980.098a a a -=(元);∴实际按标价的九折出售,盈利0.098a (元)【点睛】本题考查了列代数式,解决问题的关键是读懂题意,找到等量关系,注意把列出的式子进行整理.25.(1)113-;(2)-19 【分析】(1)有理数的混合运算,先算乘方,然后算乘除,最后算加减,如果有小括号先算小括号里面的;(2)使用乘法分配律使得计算简便.【详解】解:(1)2125824(3)3-+-+÷-⨯=114324()33-++⨯-⨯=8433-+- =113- (2)71113()2461224-+-⨯ =7111324242461224-⨯+⨯-⨯ =-28+22-13=-19【点睛】 本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.26.(1)ab (2)()24a b +(3)三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【分析】(1)由题意知//AC DE (同旁内角互补,两条直线平行),所以四边形ACED 是梯形,再由梯形面积减去两个等腰直角三角形面积即可求得;(2)与题(1)思路完全一样,由梯形面积减去两个直角三角形面积即可求得; (3)将所求的两个面积作差,化简并与0比较大小即可.【详解】(1)()()22111222ABD ABC BDE ACED S S S S a b a b a b ab ∆∆∆=--=++--=四边形 (2)()()()2111222224APD APC PDE ACED a b a b a b S S S S a b a b a b ∆∆∆+++=--=++-⨯-⨯=四边形(3)()()2244APD ABDa b b a S S ab ∆∆+--=-=,∵b a >,∴()204APD ABD b a S S ∆∆--=>,即三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【点睛】 本题是一道综合题,考查了三角形的面积公式12S =⨯底⨯高,多项式的化简.。

【鲁教版】七年级数学上期末试题及答案(2)

【鲁教版】七年级数学上期末试题及答案(2)

一、选择题1.如图,∠AOB =120°,OC 是∠AOB 内部任意一条射线,OD ,OE 分别是∠AOC ,∠BOC 的角平分线,下列叙述正确的是( )A .∠AOD+∠BOE=60°B .∠AOD=12∠EOC C .∠BOE=2∠CODD .∠DOE 的度数不能确定 2.计算:135333030306︒︒''''⨯-÷的值为( ) A .335355︒''' B .363355︒''' C .63533︒''' D .53533︒''' 3.如图所示,在∠AOB 的内部有3条射线,则图中角的个数为( ).A .10B .15C .5D .20 4.已知线段AB=5,C 是直线AB 上一点,BC=2,则线段AC 长为( ) A .7B .3C .3或7D .以上都不对 5.解方程-3x=2时,应在方程两边( ) A .同乘以-3B .同除以-3C .同乘以3D .同除以3 6.方程6x+12x-9x=10-12-16的解为( )A .x=2B .x=1C .x=3D .x=-2 7.某种商品的标价为120元,若以九折降价出售,相对于进价仍获利20%,则该商品的进价是( ).A .95元B .90元C .85元D .80元8.两年前,李叔叔在银行存了一笔两年的定期存款,年利率是2.75%.到期后取出,得到本金和利息总共21100元.设李叔叔存入的本金为x 元,则下列方程正确的是( ) A .2 2.75%21100x ⨯=B . 2.75%21100x x +=C .2 2.75%21100x x +⨯=D .2( 2.75%)21100x x += 9.下面用数学语言叙述代数式1a ﹣b ,其中表达正确的是( ) A .a 与b 差的倒数B .b 与a 的倒数的差C .a 的倒数与b 的差D .1除以a 与b 的差10.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值等于1,则()2a b cd m +-+的值是( ).A .0B .-2C .0或-2D .任意有理数 11.若b<0,刚a ,a+b ,a-b 的大小关系是( ) A .a<a <+b -b aB .<a<a-b a+bC .a<<a-b a+bD .<a<a+b a-b 12.计算112123123412542334445555555555⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+++---+++++⋯++⋯+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭的值( )A .54B .27C .272D .0二、填空题13.线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =__________. 14.如图所示,O 是直线AB 上一点,OD 平分∠BOC, ∠COE =90°,若∠AOC =40°,则∠DOE =_________.15.一个圆柱形铁块,底面半径是20cm ,高16cm .若将其锻造成为长、宽分别是20cm 、8cm 的长方体,如果设长方体的高为cm x .根据题意,列出方程为___________. 16.一群学生参加夏令营活动,男生戴白色帽子,女生戴红色帽子,休息时他们坐在一起,大家发现了一个有趣的现象:每位男生看到的白色与红色的帽子一样多,而每位女生看到的白色帽子数量是红色的2倍.根据信息,这群学生共有______人.17.将一个正方形纸片剪成如图中的四个小正方形,用同样的方法,每个小正方形又被剪成四个更小的正方形,这样连续5次后共得到______个小正方形.18.观察下列各式,你会发现什么规律:3515⨯=,而21541=-;5735⨯=,而23561=-;1113143⨯=,而2143121=-……请将你猜想到的规律用只含一个字母的式子表示出来:______.19.若a 、b 、c 、d 、e 都是大于1、且是不全相等的五个整数,它们的乘积2000abcde =,则它们的和a b c d e ++++的最小值为__.20.计算-32+5-8×(-2)时,应该先算_____,再算_____,最后算_____.正确的结果为_____.三、解答题21.线段12cm AB =点C 在线段AB 上,点D ,E 分别是AC 和BC 的中点. (1)若点C 恰好是AB 中点,求DE 的长;(2)若4cm AC =,求DE 的长;(3)若点C 为线段AB 上的一个动点(点C 不与A ,B 重合),求DE 的长. 22.如图,C ,D ,E 为直线AB 上的三点.(1)图中有多少条线段,多少条射线?能用大写字母表示的线段、射线有哪些?请表示出来;(2)若一条直线上有n 个点,则这条直线上共有多少条线段,多少条射线?23.解方程:(1)5(8)6(27)22m m m +--=-+(2)2(3)7636x x x --+=- 24.解下列方程: (1)51784a -=; (2)22146y y +--=1; (3)2131683x x x -+-= -1 25.计算:2202013(1)(2)4(1)2-÷-⨯---+-.26.已知单项式﹣2x 2y 的系数和次数分别是a ,b .(1)求a b ﹣ab 的值;(2)若|m|+m=0,求|b ﹣m|﹣|a+m|的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】本题是对角的平分线的性质的考查,角平分线将角分成相等的两部分.结合选项得出正确【详解】A 、∵OD 、OE 分别是∠AOC 、∠BOC 的平分线,∴∠BOE+∠AOD=∠EOC+∠DOC=∠DOE=12(∠BOC+∠AOC )=12∠AOB=60°. 故本选项叙述正确;B 、∵OD 是∠AOC 的角平分线,∴∠AOD=12∠AOC . 又∵OC 是∠AOB 内部任意一条射线,∴∠AOC=∠EOC 不一定成立.故本选项叙述错误;C 、∵OC 是∠AOB 内部任意一条射线,∴∠BOE=∠AOC 不一定成立,∴∠BOE=2∠COD 不一定成立.故本选项叙述错误;D 、∵OD 、OE 分别是∠AOC 、∠BOC 的平分线,∴∠DOE=12(∠BOC+∠AOC )=12∠AOB=60°. 故本选项叙述错误;故选A .【点睛】本题是对角平分线的性质的考查.然后根据角平分线定义得出所求角与已知角的关系转化求解.2.B解析:B【分析】先进行度、分、秒的乘法除法计算,再算减法.【详解】135333030306︒︒''''⨯-÷4139555︒︒''''=-386415055︒︒''''-''='''363355︒=. 故选:B .【点睛】本题考查了度、分、秒的四则混合运算,是角度计算中的一个难点,注意以60为进制即可.3.A解析:A根据图形写出各角即可求解.【详解】图中的角有∠AOB、∠AOD、∠AOC、∠AOE、∠EOB、∠EOD、∠EOC、∠COB、∠COD、∠DOB,共10个.故选A.【点睛】此题主要考查角的个数,解题的关键是依次写出各角.4.C解析:C【分析】由点C在直线AB上,分别讨论点C在点B左侧和右侧两种情况,根据线段的和差关系求出AC的长即可.【详解】∵点C在直线AB上,BC=2,AB=5,∴当点C在点B左侧时,AC=AB-BC=3,当点C在点B右侧时,AC=AB+BC=7,∴AC的长为3或7,故选C.【点睛】本题考查线段的和与差,注意点C在直线AB上,要分几种情况讨论是解题关键.5.B解析:B【分析】利用等式的性质判断即可.【详解】解:利用等式的性质解方程-3x=2时,应在方程的两边同除以-3,故选:B.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.6.D解析:D【分析】根据合并同类项,系数化为1可得方程的解.【详解】合并同类项,得9x=-18,系数化为1,得x=-2,故选D.【点睛】此题主要考查了解一元一次方程,熟练掌握运算法则解答此题的关键.7.B解析:B【解析】解:设商品的进价为x 元,则:x (1+20%)=120×0.9,解得:x =90.故选B .点睛:本题考查了一元一次方程的实际应用,解决本题的关键是根据题目给出的条件,找出合适的等量关系,列出方程,再求解.亦可根据利润=售价一进价列方程求解. 8.C解析:C【分析】根据“利息=本金×利率×时间”(利率和时间应对应),列出方程,即可得出结论.【详解】解:根据题意得:x+2×2.75%x=21100;故选:C .【点睛】此题主要考查了一元一次方程的应用,计算的关键是掌握根据利息、利率、时间和本金的等量关系,列出方程.9.C解析:C【分析】根据代数式的意义,可得答案.【详解】 用数学语言叙述代数式1a﹣b 为a 的倒数与b 的差, 故选:C .【点睛】此题考查了代数式,解决问题的关键是结合实际,根据代数式的特点解答. 10.A解析:A【分析】根据相反数的定义得到0a b +=,由倒数的定义得到cd=1,根据绝对值的定义得到|m|=1,将其代入()2a b cd m +-+进行求值. 【详解】∵a ,b 互为相反数,∴0a b +=,∵c ,d 互为倒数,∴cd =1,∵m 的绝对值等于1,∴m =±1,∴原式=0110-+=故选:A.【点睛】本题考查代数式求值,相反数,绝对值,倒数.能根据相反数,绝对值,倒数的定义求出+a b ,cd 和m 的值是解决此题的关键.11.D解析:D【分析】根据有理数减法法则,两两做差即可求解.【详解】∵b<0∴()0a a b b -+=->,()0a b a b --=->∴()a a b >+,()a b a ->∴()()a b a a b ->>+故选D .【点睛】本题考查了有理数减法运算,减去一个负数等于加上这个数的相反数.12.C解析:C【分析】根据有理数的加减混合运算先算括号内的,进而即可求解.【详解】 解:原式=﹣12+1﹣32+2﹣52+3﹣72+…+27 =27×12 =272. 故选:C .【点睛】本题考查了有理数的加减混合运算,解决本题的关键是寻找规律.二、填空题13.4【分析】根据线段的和差关系即可求解【详解】∵线段在线段的延长线上截取则AB+BC=4cm 故填:4【点睛】此题主要考查线段的长度解题的关键是熟知线段的和差关系解析:4【分析】根据线段的和差关系即可求解.【详解】∵线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =AB+BC=4cm ,故填:4.【点睛】此题主要考查线段的长度,解题的关键是熟知线段的和差关系.14.20【解析】【分析】求出∠BOC=140°根据OD 平分∠BOC 得出∠COD=∠BOC 求出∠COD=70°根据∠DOE=∠COE-∠COD 求出即可【详解】∵O 是直线AB 上一点∴∠AOC+∠BOC=18解析:20【解析】【分析】求出∠BOC=140°,根据OD 平分∠BOC 得出∠COD=12∠BOC ,求出∠COD=70°,根据∠DOE=∠COE-∠COD 求出即可.【详解】∵O 是直线AB 上一点,∴∠AOC+∠BOC=180°,∵∠AOC=40°,∴∠BOC=140°,∵OD 平分∠BOC ,∴∠COD=12∠BOC=70°, ∵∠DOE=∠COE-∠COD ,∠COE=90°,∴∠DOE=20°,故答案为20°.【点睛】本题考查了角的计算、角平分线的定义,解题的关键是能求出各个角的度数. 15.【解析】【分析】等量关系为:圆柱体的体积=长方体的体积把相关数值代入即可求解【详解】设长方体的高为xcm 故答案为:【点睛】此题考查一元一次方程的应用解题关键在于找到等量关系解析:2π2016208x ⨯⨯=⨯【解析】【分析】等量关系为:圆柱体的体积=长方体的体积,把相关数值代入即可求解.【详解】设长方体的高为xcm ,2π2016208x ⨯⨯=⨯,故答案为:2π2016208x ⨯⨯=⨯.【点睛】此题考查一元一次方程的应用,解题关键在于找到等量关系.16.7【解析】【分析】设其中的男生有x 人根据每位男生看到白色与红色的安全帽一样多可以表示出女生有(x-1)人再根据每位女生看到白色的安全帽是红色的2倍列方程求解【详解】设男生有x 人则女生有(x−1)人根解析:7【解析】【分析】设其中的男生有x 人,根据每位男生看到白色与红色的安全帽一样多,可以表示出女生有(x-1)人.再根据每位女生看到白色的安全帽是红色的2倍列方程求解.【详解】设男生有x 人,则女生有(x−1)人,根据题意得x=2(x−1−1)解得x=4x−1=3.4+3=7人.故答案为:7.【点睛】此题考查一元一次方程的应用,解题关键在于列出方程.17.1024【分析】先写出前3次分割得到的正方形的个数找到规律即可得出答案【详解】由图可知分割1次得到正方形的个数为4;分割2次得到正方形的个数为个;分割3次得到正方形的个数为个;…以此类推分割5次得到 解析:1024【分析】先写出前3次分割得到的正方形的个数,找到规律即可得出答案.【详解】由图可知分割1次得到正方形的个数为4;分割2次得到正方形的个数为216=4个;分割3次得到正方形的个数为364=4个;…以此类推,分割5次得到正方形的个数为:54=1024个,故答案为:1024.【点睛】本题考查了图形规律题,仔细观察图形找到规律是解题的关键.18.【分析】观察各式的特点找出关于n 的式子用2n+1和2n-1表示奇数用2n 表示偶数即可得出答案【详解】根据题意可得:当n≥1时可归纳出故答案为:【点睛】本题考查的是找规律这类题型在中考中经常出现对于找解析:()()()2212121n n n -+=-【分析】观察各式的特点,找出关于n 的式子,用2n+1和2n-1表示奇数,用2n 表示偶数,即可得出答案.【详解】根据题意可得:当n≥1时,可归纳出()()()2212121n n n -+=-故答案为:()()()2212121n n n -+=-.【点睛】本题考查的是找规律,这类题型在中考中经常出现,对于找规律的题目首先应该找出哪些部分发生了变化,是按照什么规律变化的. 19.【分析】先把abcde=2000化为abcde=2000=24×53的形式再根据整数abcde 都大于1得到使a+b+c+d+e 尽可能小时各未知数的取值求出最小值即可【详解】解:abcde=2000=解析:【分析】先把abcde=2000化为abcde=2000=24×53的形式,再根据整数a ,b ,c ,d ,e 都大于1,得到使a+b+c+d+e 尽可能小时各未知数的取值,求出最小值即可.【详解】解:abcde=2000=24×53,为使a+b+c+d+e 尽可能小,显然应取a=23,b=2,c=d=e=5或a=22,b=22,c=d=e=5,前者S=8+2+15=25,后者S=4+4+15=23,故最小值S=23.故答案为:23.【点睛】本题考查的是质因数分解,能把原式化为abcde=2000=24×53的形式是解答此题的关键. 20.乘方乘法加法12【分析】按照有理数混合运算的运算顺序进行计算解答即可【详解】解:原式=-9+5+16=12故答案为:乘方乘法加法12【点睛】本题主要考查了有理数混合运算的运算顺序先算乘方再算乘除最后解析:乘方 乘法 加法12【分析】按照有理数混合运算的运算顺序进行计算解答即可.【详解】解:原式=-9+5+16=12.故答案为:乘方,乘法,加法,12【点睛】本题主要考查了有理数混合运算的运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的.三、解答题21.(1)6cm ;(2)6cm ;(3)6cm【分析】(1)根据中点的定义,进行计算即可求出答案;(2)由中点的定义,先求出DC 和CE 的长度,然后求出DE 即可;(3)利用中点的定义,即可得到结论.【详解】解:(1)因为点C 是AB 中点, 所以16cm 2AC BC AB ===. 又因为D ,E 分别是AC 和BC 的中点, 所以1116cm 222DE DC CE AC BC AB =+=+==, 故DE 的长为6cm .(2)因为12cm AB =,4cm AC =,所以8cm BC =.因为点D ,E 分别是AC 和BC 的中点, 所以12cm 2DC AC ==,14cm 2CE BC ==, 所以6cm DE =. (3)因为111222DE DC CE AC BC AB =+=+=, 且12cm AB =,所以6cm DE =.【点睛】本题考查了线段中点的定义,解题的关键是熟练掌握线段之间的数量关系进行解题. 22.(1)有10条线段,10条射线.能用大写字母表示的线段:线段AC 、线段AD 、线段AE 、线段AB 、线段CD 、线段CE 、线段CB 、线段DE 、线段DB 、线段EB.(2)(1)2n n -条线段,2n 条射线.【解析】【分析】对于(1),这条直线上共5个点,求直线上的线段条数,相当于求从5个点中任取两个点的不同取法有多少种,可从点A 开始,用划曲线的方法从左向右依次连接其它各点,再从点C 开始,用同样的划曲线方法,直到将线段EB 画出为止,即可找到所有的线段,由于每个点对应两条射线,由直线上的5个点即可知有多少条射线;对于(2),和(1)类似,当一条直线上有n 个点时,其中任意1个点与剩余的(n-1)个点都能组成(n-1)条线段,结合其中有一半重合的线段,则可计算出n 个点所组成的线段条数;一个点对应延伸方向相反的两条射线,可表示出当一条直线上有n 个点时的射线条数.【详解】解:(1)图中有10条线段,10条射线.如图所示.能用大写字母表示的线段:线段AC 、线段AD 、线段AE 、线段AB 、线段CD 、线段CE 、线段CB 、线段DE 、线段DB 、线段EB.能用大写字母表示的射线:射线AC 、射线CD 、射线DE 、射线EB 、射线CA 、射线DC 、射线ED 、射线BE.(2)因为n 个点,其中任意1个点与剩余的(n-1)个点都能组成(n-1)条线段, 所以n 个点就组成n(n-1)条线段.因为其中有一半重合的线段,如线段AC 与线段CA , 所以这条直线上共有(1)2n n -条线段. 因为一个端点对应延伸方向相反的两条射线,所以当一条直线上有n 个点时,共有2n 条射线.【点睛】此题考查直线、射线、线段,解题关键在于掌握直线上射线、线段条数的求法. 23.(1)10m =;(2)5x =【分析】(1)直接去括号、移项、合并同类项、化系数为1即可求解;(2)直接去分母、去括号、移项、合并同类项、化系数为1即可求解.【详解】解:(1)5(8)6(27)22m m m +--=-+5m 4012m 42m 22+-+=-+6m 60-=-m 10=(2)2(3)7636x x x --+=- ()6x 4x 336(x 7+-=--)6x 4x 1236x 7+-=-+11x 55=x 5=【点睛】此题主要考查解一元一次方程,解题的关键是熟练掌握解题步骤.24.(1)3a =;(2)4y =-;(3)179x =. 【分析】 (1)先方程两边同乘以8去分母,再按照移项、合并同类项、系数化为1的步骤解方程即可得;(2)先方程两边同乘以12去分母,再按照去括号、移项、合并同类项、系数化为1的步骤解方程即可得;(3)先方程两边同乘以24去分母,再按照去括号、移项、合并同类项、系数化为1的步骤解方程即可得.【详解】(1)方程两边同乘以8去分母,得5114a -=,移项,得5141a =+,合并同类项,得515a =,系数化为1,得3a =;(2)方程两边同乘以12去分母,得3(2)2(21)12y y +--=,去括号,得364212y y +-+=,移项,得341262y y -=--,合并同类项,得4y -=,系数化为1,得4y =-;(3)方程两边同乘以24去分母,得4(21)3(31)824x x x --+=-,去括号,得8493824x x x ---=-,移项,得8982443x x x --=-++,合并同类项,得917x -=-,系数化为1,得179x =. 【点睛】本题考查了解一元一次方程,熟练掌握解方程的步骤是解题关键.25.33【分析】有理数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】 解:2202013(1)(2)4(1)2-÷-⨯---+- =1(2)4192-÷⨯--+ =192(2)4-⨯⨯--+ =3641-+=33.【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.26.(1)﹣2;(2)1.【分析】(1)根据单项式的系数是数字因数,次数是字母指数的和,可得a、b的值,根据代数式求值,可得答案;(2)非正数的绝对值是它的相反数,可得m的取值范围,根据差的绝对值是大数减小数,可得答案.【详解】解:由题意,得a=﹣2,b=2+1=3.a b﹣ab=(﹣2)3﹣(﹣2)×3=﹣8+6=﹣2;(2)由|m|+m=0,得m≤0.|b﹣m|﹣|a+m|=b﹣m+(a+m)=b+a=3+(﹣2)=1;【点睛】本题考查了单项式的系数和次数的性质,掌握单项式中数字因数叫做单项式的系数,所有的字母的指数之和为次数是解决本题的关键.。

最新鲁教版(五四学制)七年级数学上学期期末复习检测题及解析(精品试卷)

最新鲁教版(五四学制)七年级数学上学期期末复习检测题及解析(精品试卷)

鲁教版五四制上学期期末模拟七年级数学试卷(时间:120分钟,满分:120分)一、选择题(每小题3分,共36分)1.若2-4与3-1是同一个数的两个平方根,则为( ) A. -3 B. 1 C. -3或1 D. -12. 小丰的妈妈买了一台29英寸(约74 cm )的电视机,下列对29英寸的说法中正确的 是( )A.29英寸指的是屏幕的长度B.29英寸指的是屏幕的宽度C.29英寸指的是屏幕的周长D.29英寸指的是屏幕对角线的长度3. 如图所示,把一个正方形对折两次后沿虚线剪下,展开后所得的图形是( )A B C D第3题图上折右折 沿虚线剪下 展开4. 有一个正方体,6个面上分别标有1到6这6个整数,投掷这个正方体一次,则出现向上一面的数字是偶数的概率为( )A.13 B.16 C.12 D.145. 下列说法错误的是( ) A.若=-,则是非正实数B.若 =,则≥0C. 是实数,若<,则<D.“4的平方根是±2”,用数学式子表示=±26. 方程72=+y x 在自然数范围内的解( )A.有无数对B.只有1对C.只有3对D.以上都不对7. 点在轴的上侧,距离轴5个单位长度,距离轴3个单位长度,则点的坐标为( ) A.(5,3)B.(-5,3)或(5,3)C.(3,5)D.(-3,5)或(3,5)8. 下列函数:①;②;③;④;⑤中,是一次函数的有( )A.4个B.3个C.2个D.1个9.矩形的顶点按顺时针方向排列,若在平面直角坐标系内,两点对应的坐标分别是(2, 0)、(0, 0),且两点关于轴对称.则点对应的坐标是( ) A.(1, -2)B.(1, -1)C.(1, 1)D.(2, -2)10.若方程组的解中的的值比的值的相反数大1,则为( )A.3B.-3C.2D.-211.若甲、乙两弹簧的长度 cm 与所挂物体质量 kg 之间的函数解析式分别为=k 1+1和=k 2+2,如图所示,所挂物体质量均为2kg 时,甲弹簧长为1,乙弹簧长为2,则1与2的大小关系为()A.1>2B.1=2C.1<2D.不能确定 12.设两镇相距千米,甲从镇、乙从镇同时出发,相向而行,甲、乙行驶的速度分别为千米/时、千米/时,①出发后30分钟相遇;②甲到镇后立即返回,追上乙时又经过了30分钟;③当甲追上乙时他俩离镇还有4千米.求.根据题意,由条件③,有四位同学各得到第3个方程如下,其中错误的一个是()A.B.C. D.二、填空题(每小题3分,共24分)13. 若5+的小数部分是,5-的小数部分是b ,则+5b=.14.袋子里装有红、黄、蓝三种小球,其形状、大小、质量、质地等完全相同,每种颜色的小球各5个,且分别标有数字1,2,3,4,5.现从中摸出一球: (1)摸出的球是蓝色球的概率为多少?答: ;第11题图(2)摸出的球是红色1号球的概率为多少?答:;(3)摸出的球是5号球的概率为多少?答:.15.对实数、b,定义运算☆如下:☆b=例如2☆3=.计算[2☆(-4)]×[(-4)☆(-2)]=.16.线段的端点坐标为,,其坐标的横坐标不变,纵坐标分别加上,得到相应的点的坐标为_______,_______ .则线段与相比的变化为:其长度_______,位置_______ .17.若一次函数的图象经过第一、二、四象限,则的取值范围是.18. 根据指令,机器人在平面上能完成下列动作:先原地逆时针旋转角度,再朝其面对的方向沿直线行走距离,现机器人在直角坐标系的坐标原点,且面对轴正方向,若下指令[4,90°],则机器人应移动到点 .19.如图所示,直线(k>0)与轴的交点为(-2,0),则关于的不等式k+b<0的解集是.20. 已知和是方程的解,则代数式的值为_____.三、解答题(共60分)21.如图所示,有一个转盘,转盘分成4个相同的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指第19题图第24题图向两个扇形的交线时,当做指向右边的扇形),求下列事件的概率: (1)指针指向绿色;(2)指针指向红色或黄色;(3)指针不指向红色.22. 如图所示,将矩形纸片ABCD 按如下的顺序进行折叠:对折,展平,得折痕EF (如图①);沿CG 折叠,使点B 落在EF 上的点B ′处,(如图②);展平,得折痕GC (如图③);沿GH 折叠,使点C 落在DH 上的点C ′处,(如图④);沿GC ′折叠(如图⑤);展平,得折痕GC ′,GH (如图 ⑥). (1)求图 ②中∠BCB ′的大小.(2)图⑥中的△GCC ′是正三角形吗?请说明理由.23. 等腰梯形的上底,下底,底角∠,建立适当的直角坐标系,求各顶点的坐标.24. 如图所示,在雷达探测区内,可以建立平面直角坐标系表示位置.某次行动中,当我方两架飞机在A (-1,2)与B (3,2)位置时,可疑飞机在(-1,6)位置,你能找到这个直第22题图第23题图角坐标系的横,纵坐标轴的位置吗?把它们表示出来并确定可疑飞机的所处方位?25.如图,长方体中,,,一只蚂蚁从点出发,沿长方体表面爬到点,求蚂蚁怎样走路径最短,最短路径是多少? 26. 细心观察图,认真分析各式,然后解答问题.(1)2+1=2, S 1=21; (2)2+1=3, S 2=22 ; (3)2+1=4, S 3=23; …… (1) 请用含有(是正整数)的等式表示上述变化规律; (2) 推算出10的长;(3) 推算出S 12 +S 22+ S 32+…+S 102 的值.27. 小明同学骑自行车去郊外春游,图中表示的是他离家的距离y (千米)与所用的时间(小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?(2)求小明出发两个半小时离家多远?(3)求小明出发多长时间距家12千米?28. 已知某服装厂现有A 种布料70米,B 种布料52米,•现计划用这两种布料生产M 、N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料1.1米,B 种布料0.4第25题图第27题图米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.9米,可获利45元.设生产M型号的时装套数为,用这批布料生产两种型号的时装所获得的总利润为y 元.(1)求y(元)与(套)之间的函数关系式,并求出自变量的取值范围.(2)当M型号的时装为多少套时,能使该厂所获利润最大?最大利润是多少?29. 一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.期末检测题参考答案1.B 解析:因为2-4与3-1是同一个数的两个平方根,所以2-4=-(3-1),所以2-4=-3+1,所以=1.2.D3.B 解析:按照题意,动手操作一下,可知展开后所得的图形是选项B .4.C 解析:出现向上一面的数字有6种,其中是偶数的有3种,故概率为12. 5.D 解析:“4的平方根是±2”,用数学式子表示=±2.故选D.6.D 解析:方程72=+y x 在自然数范围内的解有⎩⎨⎧==,3,1y x ⎩⎨⎧==,2,3y x ⎩⎨⎧==,1,5y x ⎩⎨⎧==,0,7y x 4对,故选D.7.D 解析:∵ 点距离轴5个单位长度,∴ 点的纵坐标是±5.又∵ 点在轴的上侧,∴ 点的纵坐标是5;∵ 点距离轴3个单位长度,即横坐标是±3,∴ 点的坐标为(-3,5)或(3,5),故选D .8.B 解析:①②④是一次函数,其余的都不是,故选B.9.B 解析:已知、两点的坐标分别是(2,0)、(0,0),则可知、两点的横坐标一定是1,且关于轴对称,则、两点的纵坐标互为相反数,设点坐标为(1,),则有:,解得,所以点坐标为(1,1),点坐标为(1,-1),故选B.10.A 解析:因为的值比的值的相反数大1,所以.将代入方程组得解得11.A 解析:∵点(0,4)和点(1,12)在上,∴得到方程组解得∴.∵点(0,8)和点(1,12)在上,∴得到方程组解得∴.当时,,,∴.故选A.12.A 解析:总距离乙行驶一个小时的路程4千米,所以B、D正确;两倍的总距离甲行驶一个小时的路程4千米,所以C正确,所以错误的为A.13.2 解析:∵2<<3,∴7<5+<8,∴=-2;又可得2<5-<3,∴b=3-.将、b的值,代入可得+5b=2.故答案为:2.14(1)13,(2)115,(3)1515.1 解析:[2☆(-4)]×[(-4)☆(-2)]=2-4×(-4)2=×16=1.16.,;不变,向上移动个单位17.<解析:∵的图象经过第一、二、四象限,∴<0,>0,∴解不等式得:<,<,∴的取值范围是<.故答案为:<.18.(0,4)解析:∵指令为[4,90°],∴机器人应逆时针旋转90°,再向那个方向走4个单位长度.∵机器人在直角坐标系的坐标原点,且面对轴正方向,∴机器人旋转后将面对轴的正方向,向轴正半轴走4个单位,∴机器人应移动到点(0,4).19.解析:∵直线(k>0)与轴的交点为(-2,0),∴随的增大而增大,当<-2时,y<0,即k+b<0.20.1 解析:由题意可得解这个方程组可得所以21.解:转一次转盘,它的可能结果有四种:红、红、绿、黄,并且各种结果发生的可能性相等.(1)(指针指向绿色)14;(2)(指针指向红色或黄色)34;(3)(指针不指向红色)1 2 .22.分析:(1)由折叠的性质知:=BC,然后在Rt△中,求得cos∠的值,利用特殊角的三角函数值的知识即可求得∠BCB′的度数;(2)首先根据题意得:GC平分∠BCB′,即可求得∠GCC′的度数,然后由折叠的性质知:GH是线段CC′的对称轴,可得GC′=GC,即可得△GCC′是正三角形.解:(1)由折叠的性质知:=BC,在Rt △中,∵cos ∠=,∴∠=60°,即∠BCB′=60°.(2)根据题意得:GC平分∠BCB′,∴∠GCB=∠GCB′=∠BCB′=30°,∴∠GCC′=∠BCD-∠BCG=60°.由折叠的性质知:GH是线段CC′的垂直平分线,∴GC′=GC,∴△GCC′是正三角形23.解:如图,作⊥,⊥,则,.在直角△中,∠°,则其为等腰直角三角形,因而,.第23题答图以所在的直线为轴,由向的方向为正方向,所在的直线为轴,由向的方向为正方向建立坐标系,则(0,1),(,0),(3,0),(2,1).24.解:如图所示,AB相距4个单位,构建坐标系.知可疑飞机在第二象限C点.25. 分析:要求蚂蚁爬行的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.解:如图(1),把长方体沿虚线剪开,则成长方形,宽为,长为,连接,则构成直角三角形,由勾股定理得.如图(2),把长方体沿虚线剪开,则成长方形,宽为,长为,连接,则构成直角三角形,同理,由勾股定理得.∴蚂蚁从点出发穿过到达点路径最短,最短路径是5.26.解:(1)(2)(3)S12 +S22+ S32+…+S102第24题答图第25题答图27.分析:(1)根据分段函数的图象上点的坐标的意义可知:小明到达离家最远的地方需3小时,此时,他离家30千米;(2)因为C(2,15)、D(3,30)在直线上,利用待定系数法求出解析式后,把=2.5代入解析式即可;(3)分别利用待定系数法求得过E、F两点所在直线解析式,以及A、B两点所在直线解析式.分别令y=12,求解.解:(1)由图象可知小明到达离家最远的地方需3小时;此时,他离家30千米.(2)设直线CD的解析式为y=k1+b1,由C(2,15)、D(3,30),代入得解得=15-15(2≤≤3).当=2.5时,y=22.5(千米).答:出发两个半小时,小明离家22.5千米.(3)设过E、F两点的直线解析式为y=k2+b2,由E(4,30),F(6,0),代入得解得=-15+90(4≤≤6),设过A、B两点的直线解析式为y=k3,∵B(1,15),∴∴y=15(0≤≤1),•分别令y=12,得=265(小时),=45(小时).答:小明出发265和45小时时距家12千米.28.解:(1).∵两种型号的时装共用A种布料[1.1+0.•6(80-)]米,共用B种布料[0.4+0.9(80-)]米,∴解之得40≤≤44,而为整数,∴=40,41,42,43,44,∴y与的函数关系式是y=5+3 600(=40,41,42,43,44).(2)∵y随的增大而增大,∴当=44时,最大=3 820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3 820元.29.解:设这个两位数十位上的数为,个位上的数为,则这个两位数及新两位数及其之间的关系可用下表表示:解方程组得因此,所求的两位数是14.。

(完整word版)鲁教版七年级数学上册期末测试题(2)

(完整word版)鲁教版七年级数学上册期末测试题(2)

七年级数学上册期末测试题一、选择题:1、下列图案是轴对称图形的有( ) (A )1个 (B )2个 (C )3个 (D )4个2、下列说法中正确的是( )(A )9是一个无理数 (B )函数x y +=12的自变量x 的取值范围是x >-1 (C )若点P (2,a )和点Q (b ,-3)关于x 轴对称,则a b -的值为1 (D )-8的立方根是2 3、点P (m ,1)在第二象限内,则点Q (m -,0)在( )(A )x 轴负半轴上 (B )x 轴正半轴上 (C )y 轴负半轴上 (D )y 轴正半轴上 4、如果三角形的两边分别为3和5,那么这个三角形的周长可能是( ) (A )15 (B )16 (C )8 (D )7 5、如图,∠=∠12,∠=∠34,则下列结论错误的是( )(A )ADC ∆≌BCD ∆(B )ABD ∆≌BAC ∆(C )ABO ∆≌COD ∆(D )AOD ∆≌BOC ∆ 6、如图,在ABC ∆中,AC AD BD ==,DAC ∠=︒80,则B ∠的度数是( ) (A )︒40 (B )︒35 (C )︒25 (D )︒207、如图,一直角三角形纸片,两直角边AC cm =6,BC cm =8,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与线段AE 重合,则CD 等于( ) (A )cm 2 (B )cm 3 (C )cm 4 (D )cm 58、若实数a ,b ,c 满足a b c ++=0,且a b c <<,则函数y ax c =+的图象可能是( )9、将直线y x =2向右平移1个单位后所得图象对应的函数表达式为( )(A )y x =-21 (B )y x =-22 (C )y x =+21 (D )y x =+22 10、甲、乙两队举行一年一度的赛龙舟比赛,两队在比赛时的路 程s (米)与时间t (分)之间的函数关系如图所示,根据图 象判断,下列说法正确的是( )(A )甲队率先到达终点 (B )乙队比甲队少用.02分钟(C )甲队比乙队多走了200米路程(D )比赛中两队从出发到.22分钟时间段,乙队的速度比甲队的速度大二、填空题: 11、3125的平方根是__________________。

鲁教版五四制七年级上册数学期末测试卷

鲁教版五四制七年级上册数学期末测试卷

))D.30°3.下列各数为无理数的是()11①-3.14159;②2.5;③2π;④0.9;⑤5A.①②③B.②③④C.①④⑤D.③④4.下列各等式中,正确的是()A.-(-3)=-3B.±3=3C.(-3)=-3 D.3=±32222)))()则直线y=ax+b与y=-cx+d的交点坐标)A.(1,2)B.(-1,2)C.(1,-2)D.(-1,-2))题12分,共66 分)19.计算:3(1)(2) 1-2+2-3+2- 3(2)请作出△ABC关于y轴对称的△A′B′C′;21.实数a,b互为相反数,c,d互为倒数,x的绝对值为6.求x2+(a+b+cd)x(4)这位水果零售商一共赚了多少钱?(1)你认为AE和BE有什么位置关系?请说明理由;(2)当点F运动到离点A多远时,△ADE才能和△AFE全等?为什么?(3)在(2)的情况下,BF=B C吗?为什么?并求出AB的长.1 2 3 4 5 6三、19.解:(1)原式=+0.5-2=-1.(2)原式=2-1+3-2+2-3=1.20.解:(1)如图.(2)如图.(3)(2,1)(4)422.解:∠BEC是直角.证明如下:因为AE:E D=9:16,所以设AE=9x,E D=16x,则有9x+16x=50,所以x=2,所以AE=9x=18,E D=16x=32.在Rt△BAE中,BE=AB+AE=24+18=900,2 2 2 2 2在Rt△CDE中,CE=C D+D E=24 +32=1600,2 2 2 2 2而BC=50=2500.在△BEC中,2 2因为BE+CE=900+1600=2500=BC,2 2 2所以△BE C是直角三角形,∠BE C是直角.23.解:因为∠C=90°,所以∠BA C+∠B=180°-90°=90°.又DE⊥AB,D E平分∠A D B,所以∠B=∠BA D.而∠BA C=2∠BA D.所以∠BAC=2∠B.所以3∠B=90°.所以∠B=30°.24.解:(1)零售商自带的零钱是50元.(2)(330-50)÷80=280÷80=3.5(元).所以降价前他每千克西瓜出售的价格是3.5元.(3)(450-330)÷(3.5-0.5)=120÷3=40(kg).80+40=120(kg).所以他一共批发了120 kg的西瓜.(4)450-120×1.8-50=184(元).所以这位水果零售商一共赚了184元.25.解:(1)AE⊥BE.因为A D∥B C,所以∠DAB+∠CBA=180°.因为AE,BE分别平分∠DAB,∠CBA,1 2 1 2所以∠EAB=∠DAB,∠EBA=∠CBA.1 2 1 2所以∠EAB+∠EBA=(∠DAB+∠CBA)=×180°=90°.所以∠AEB=180°-(∠EAB+∠EBA)=90°,即AE⊥BE.(2)当点F运动到离点A4 cm,即AF=4 cm 时,△ADE≌△AFE.理由如下:因为A D=4 cm,AF=4 cm,所以A D=AF.因为AE平分∠D A B,所以∠DAE=∠FAE.又AE=AE,所以△ADE≌△AFE.(3)BF=B C.理由如下:因为△A D E≌△AFE,所以∠D=∠AFE.因为A D∥B C,所以∠C+∠D=180°.因为∠AFE+∠BFE=180°,所以∠C=∠BFE.因为BE平分∠C BA,所以∠CBE=∠FBE.又BE=BE,所以△BCE≌△BFE.所以BF=BC.所以AB=AF+BF=A D+B C=4+3=7(cm).4k+b=2,26.解:(1)设直线AB对应的函数表达式是y=kx+b ,根据题意得解6k+b=0,k=-1,得则直线AB对应的函数表达式是y=-x+6.=b6,(2)在y=-x+6 中,令x=0,解得y=6,所以C点的坐标为(0,6).所以S△OAC1=×6×4=12.212(3)存在.设直线OA对应的函数表达式是y=mx,则4m=2,解得m=,则直12线OA对应的函数表达式是y=x.当点M在第一象限时,因为△O M C的面积1 4 1412是△OAC的面积的,所以点M的横坐标是×4=1.在y=x中,当x=1时,1 2 1y=,则点M的坐标是1,;在=-+6中,当=1时,=5,则点y x x y M2的坐标是(1,5).当点M在第二象限时,点M的横坐标是-1.在y=-x+6 中,当x=-1时,y=7,则点M的坐标是(-1,7).综上所述,点M的坐1标是1,或(1,5)或(-1,7).222.解:∠BEC是直角.证明如下:因为AE:E D=9:16,所以设AE=9x,E D=16x,则有9x+16x=50,所以x=2,所以AE=9x=18,E D=16x=32.在Rt△BAE中,BE=AB+AE=24+18=900,2 2 2 2 2在Rt△CDE中,CE=C D+D E=24 +32=1600,2 2 2 2 2而BC=50=2500.在△BEC中,2 2因为BE+CE=900+1600=2500=BC,2 2 2所以△BE C是直角三角形,∠BE C是直角.23.解:因为∠C=90°,所以∠BA C+∠B=180°-90°=90°.又DE⊥AB,D E平分∠A D B,所以∠B=∠BA D.而∠BA C=2∠BA D.所以∠BAC=2∠B.所以3∠B=90°.所以∠B=30°.24.解:(1)零售商自带的零钱是50元.(2)(330-50)÷80=280÷80=3.5(元).所以降价前他每千克西瓜出售的价格是3.5元.(3)(450-330)÷(3.5-0.5)=120÷3=40(kg).80+40=120(kg).所以他一共批发了120 kg的西瓜.(4)450-120×1.8-50=184(元).所以这位水果零售商一共赚了184元.25.解:(1)AE⊥BE.因为A D∥B C,所以∠DAB+∠CBA=180°.因为AE,BE分别平分∠DAB,∠CBA,1 2 1 2所以∠EAB=∠DAB,∠EBA=∠CBA.1 2 1 2所以∠EAB+∠EBA=(∠DAB+∠CBA)=×180°=90°.所以∠AEB=180°-(∠EAB+∠EBA)=90°,即AE⊥BE.(2)当点F运动到离点A4 cm,即AF=4 cm 时,△ADE≌△AFE.理由如下:因为A D=4 cm,AF=4 cm,所以A D=AF.因为AE平分∠D A B,所以∠DAE=∠FAE.又AE=AE,所以△ADE≌△AFE.(3)BF=B C.理由如下:因为△A D E≌△AFE,所以∠D=∠AFE.因为A D∥B C,所以∠C+∠D=180°.因为∠AFE+∠BFE=180°,所以∠C=∠BFE.因为BE平分∠C BA,所以∠CBE=∠FBE.又BE=BE,所以△BCE≌△BFE.所以BF=BC.所以AB=AF+BF=A D+B C=4+3=7(cm).4k+b=2,26.解:(1)设直线AB对应的函数表达式是y=kx+b ,根据题意得解6k+b=0,k=-1,得则直线AB对应的函数表达式是y=-x+6.=b6,(2)在y=-x+6 中,令x=0,解得y=6,所以C点的坐标为(0,6).所以S△OAC1=×6×4=12.212(3)存在.设直线OA对应的函数表达式是y=mx,则4m=2,解得m=,则直12线OA对应的函数表达式是y=x.当点M在第一象限时,因为△O M C的面积1 4 1412是△OAC的面积的,所以点M的横坐标是×4=1.在y=x中,当x=1时,1 2 1y=,则点M的坐标是1,;在=-+6中,当=1时,=5,则点y x x y M2的坐标是(1,5).当点M在第二象限时,点M的横坐标是-1.在y=-x+6 中,当x=-1时,y=7,则点M的坐标是(-1,7).综上所述,点M的坐1标是1,或(1,5)或(-1,7).2。

【鲁教版】七年级数学上期末试卷及答案(2)

【鲁教版】七年级数学上期末试卷及答案(2)

一、选择题1.如图,O 是直线AC 上一点,OB 是一条射线,OD 平分∠AOB ,OE 在∠BOC 内,且∠DOE =60°,∠BOE =13∠EOC ,则下列四个结论正确的个数有( ) ①∠BOD =30°;②射线OE 平分∠AOC ;③图中与∠BOE 互余的角有2个;④图中互补的角有6对.A .1个B .2个C .3个D .4个2.如图∠AOC=∠BOD=90︒,4位同学观察图形后分别说了自己的观点.甲:∠AOB=∠COD ;乙:图中小于平角的角有6个;丙:∠AOB+∠COD =90︒;丁:∠BOC+∠AOD = 180︒ .其中正确的结论有( ).A .4个B .3个C .2个D .1个3.如图,90AOB ∠=︒,AOC ∠为AOB ∠外的一个锐角,且40AOC ∠=︒,射线OM 平分BOC ∠,ON 平分AOC ∠,则MON ∠的度数为( ).A .45︒B .65︒C .50︒D .25︒4.已知柱体的体积V =S•h ,其中S 表示柱体的底面面积,h 表示柱体的高.现将矩形ABCD 绕轴l 旋转一周,则形成的几何体的体积等于( )A .2 r h πB .22?r h πC .23?r h πD .24?r h π 5.如图,相同形状的物体的重量是相等的,其中最左边天平是平衡的,则右边三个天平中仍然平衡的是( )A .①②③B .①③C .①②D .②③ 6.下列各题正确的是( )A .由743x x =-移项得743x x -=B .由213132x x --=+去分母得()()221133x x -=+- C .由()()221331x x ---=去括号得42391x x ---=D .由()217x x +=+去括号、移项、合并同类项得5x =7.下列方程变形一定正确的是( )A .由x +3=-1,得x =-1+3B .由7x =-2,得x =-74C .由12x =0,得x =2D .由2=x -1,得x =1+28.某工厂一、二月份共完成生产任务吨,其中二月份比一月份的多吨,设一月份完成吨,则下列所列方程正确的是( )A .B .C .D .9.单项式21412n a b --与83m ab 是同类项,则57(1)(1)n m +-=( ) A .14 B .14- C .4 D .-410.下列各式中,去括号正确的是( )A .2(1)21x y x y +-=+-B .2(1)22x y x y --=++C .2(1)22x y x y --=-+D .2(1)22x y x y --=--11.按如图所示的运算程序,能使输出的结果为12的是( )A .x=-4,y=-2B .x=3, y=3C .x=2,y=4D .x=4,y=0 12.下列正确的是( )A .5465-<-B .()()2121--<+-C .1210823-->D .227733⎛⎫--=-- ⎪⎝⎭二、填空题13.长为4,宽为2的矩形绕其一边旋转构成一个圆柱的最大体积为___ (结果保留π). 14.(1)比较两条线段的长短,常用的方法有_________,_________.(2)比较两条线段a 和b 的大小,结果可能有 种情况,它们是_______________. 15.5个人用5天完成了某项工程的14,如果再增加工作效率相同的10个人,那么完成这项工作前后共用_____天.16.某中学组织学生为“希望工程”捐款,甲、乙两班一共捐款425元,已知甲班有50人,乙班比甲班少5人,而乙班比甲班平均每人多捐1元,则乙班平均每人捐款______元. 17.已知5a b -=,3c d +=,则()()b c a d +--的值等于______. 18.如果13k x y 与213x y -是同类项,则k =______,21133k x y x y ⎛⎫+-= ⎪⎝⎭______. 19.截至2020年7月2日,全球新冠肺炎确诊病例已超过1051万例,其中数据1051万用科学记数法表示为_____.20.点A ,B 表示数轴上互为相反数的两个数,且点A 向左平移8个单位长度到达点B ,则这两点所表示的数分别是____________和___________.三、解答题21.已知:如图,18cm AB =,点M 是线段AB 的中点,点C 把线段MB 分成:2:1MC CB =的两部分,求线段AC 的长.请补充下列解答过程:解:因为M 是线段AB 的中点,且18cm AB =,所以AM MB ==________AB =________cm .因为:2:1MC CB =,所以MC =________MB =________cm .所以AC AM =+________=________+________=________(cm).22.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且22AB =,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为()0t t >秒.(1)数轴上点B 表示的数是___________;点P 表示的数是___________(用含t 的代数式表示)(2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P Q 、同时出发,问多少秒时P Q 、之间的距离恰好等于2?(3)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.23.a ※b 是新规定的这样一种运算法则:a ※b=a 2+2ab ,例如3※(-2)=32+2×3×(-2)=-3 (1)试求(-2)※3的值(2)若1※x=3,求x 的值(3)若(-2)※x=-2+x ,求x 的值.24.已知方程3210x a +-=的解与方程20x a -=的解互为相反数,求a 的值. 25.计算:329(1)4(2)34⎛⎫--÷-+-⨯ ⎪⎝⎭. 26.某校利用二维码进行学生学号统一编排.黑色小正方形表示1,白色小正方形表示0,将每一行数字从左到右依次记为a ,b ,c ,d ,那么利用公式 321222a b c d ⨯+⨯+⨯+计算出每一行的数据.第一行表示年级,第二行表示班级,第三行表示班级学号的十位数,第四行表示班级学号的个位数.如图1所示,第一行数字从左往右依次是1,0,0,1,则表示的数据为1×23+0×22+0×21+1=9,计作09,第二行数字从左往右依次是1,0,1,0,则表示的数据为1×23+0×22+1×21=10,计作10,以此类推,图1代表的统一学号为091034,表示9年级10班34号.小明所对应的二维码如图2所示,则他的统一学号为________.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据题意首先计算出∠AOD 的度数,再计算出∠AOE 、∠EOC 、∠BOE 、∠BOD 的度数,然后再分析即可.【详解】解:由题意设∠BOE=x,∠EOC=3x,∵∠DOE=60°,OD平分∠AOB,∴∠AOD=∠BOD =60°-x,根据题意得:2(60°-x)+4x=180°,解得x=30°,∴∠EOC=∠AOE=90°,∠BOE=30°,∴∠BOD=∠AOD=30°,故①正确;∵∠BOD=∠AOD=30°,∴射线OE平分∠AOC,故②正确;∵∠BOE=30°,∠AOB=60°,∠DOE=60°,∴∠AOB+∠BOE=90°,∠BOE+∠DOE=90°,∴图中与∠BOE互余的角有2个,故③正确;∵∠AOE=∠EOC=90°,∴∠AOE+∠EOC=180°,∵∠EOC=90°,∠DOB=30°,∠BOE=30°,∠AOD=30°,∴∠COD+∠AOD=180°,∠COD+∠BOD=180°,∠COD+∠BOE=180°,∠COB+∠AOB=180°,∠COB+∠DOE=180°,∴图中互补的角有6对,故④正确,正确的有4个,故选:D.【点睛】本题主要考查角平分线以及补角和余角,解答的关键是正确计算出图中各角的度数.2.B解析:B【分析】根据余角的性质,补角的性质,可得答案.【详解】解:甲∠AOB+∠BOC=∠BOC+∠COD=90°,∠AOB=∠COD,故甲正确;乙∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠COD,故乙正确;丙∠AOB=∠COD,故丙错误;丁:∠BOC+∠AOD=∠BOC+∠AOB+∠BOD=∠AOC+∠BOD=180°,故丁正确;故选:B.【点睛】本题考查了余角、补角的定义和角的有关推理的应用,能正确进行推理是解此题的关键,难度适中.3.A解析:A【分析】根据题意,先求得∠COB的值;OM平分∠BOC,ON平分∠AOC,则可求得∠AOM、∠AON的值;∠MON=∠AOM+∠AON,计算得出结果.【详解】∵∠AOB=90°,且∠AOC=40°,∴∠COB=∠AOB+∠AOC=90°+40°=130°,∵OM平分∠BOC,∠BOC=65°,∴∠BOM=12∴∠AOM=∠AOB-∠BOM=25°,∵ON平分∠AOC,∠AOC=20°,∴∠AON=12∴∠MON=∠AOM+∠AON=45°.∴∠MON的度数是45°.故选:A.【点睛】本题考查了余角的计算,角的计算,角平分线的定义.首先确立各角之间的关系,根据角平分线定义得出所求角与已知角的关系转化是解题的关键.4.C解析:C【分析】根据柱体的体积V=S•h,求出形成的几何体的底面积,即可得出体积.【详解】∵柱体的体积V=S•h,其中S表示柱体的底面面积,h表示柱体的高,现将矩形ABCD绕轴l旋转一周,∴柱体的底面圆环面积为:π(2r)2-πr2=3πr2,∴形成的几何体的体积等于:3πr2h.故选:C.【点睛】此题考查圆柱体体积公式,根据已知得出柱体的底面面积是解题的关键.5.B解析:B【分析】根据等式的性质,可得答案.【详解】因为最左边天平是平衡的,所以2个球的重量=4个圆柱的重量;①中一个球的重量=两个圆柱的重量,根据等式的性质,此选项正确;②中,一个球的重量=1个圆柱的重量,错误;③中,2个球的重量=4个圆柱的重量,正确;故选B .【点睛】本题的实质是考查等式的性质,先根据①判断出2个球的重量=4个圆柱的重量,再据此解答.6.D解析:D【分析】根据解一元一次方程的步骤计算,并判断.【详解】A 、由743x x =-移项得743x x -=-,故错误;B 、由213132x x --=+去分母得()()221633x x -=+-,故错误; C 、由()()221331x x ---=去括号得42391x x --+=,故错误;D 、由()217x x +=+去括号得:227x x +=+,移项、合并同类项得5x =,故正确.故选:D .【点睛】本题主要考查了一元一次方程的解法,注意移项要变号,但没移的不变;去分母时,常数项也要乘以分母的最小公倍数;去括号时,括号前是“-”号的,括号里各项都要变号. 7.D解析:D【分析】根据等式的性质,可得答案.【详解】解:由x +3=-1,得x =-1-3,所以A 选项错误;由7x =-2,得x =-27,所以B 选项错误; 由12x =0,得x =0,所以C 选项错误; 由2=x -1,得x =1+2,所以D 选项正确.故选D .【点睛】本题考查了等式的性质,熟记等式的性质是解题关键.8.B解析:B【解析】【分析】由题意可知:一月份完成吨,二月份完成()吨,一、二月份共完成生产任务吨,列出方程解答即可.【详解】 由题意可知:. 故选:B【点睛】 此题考查从实际问题中抽象出一元一次方程,找出题目蕴含的数量关系是解决问题的关键.9.B解析:B【分析】直接利用同类项的概念得出n ,m 的值,即可求出答案.【详解】21412n a b --与83m ab 是同类项, ∴21184n m -=⎧⎨=⎩解得:121m n ⎧=⎪⎨⎪=⎩ 则()()5711n m +-=14- 故答案选B.【点睛】本题考查的知识点是同类项,解题的关键是熟练的掌握数轴同类项. 10.C解析:C【分析】各式去括号得到结果,即可作出判断.【详解】解:2(1)22x y x y +-=+-,故A 错误;2(1)22x y x y --=-+,故B,D 错误,C 正确.故选:C .【点睛】此题考查了去括号与添括号,熟练掌握去括号法则是解本题的关键.11.C【分析】根据y 的正负然后代入两个式子内分别求解,看清条件逐一排除即可.【详解】当x=-4,y=-2时,-2<0,故代入x 2-2y ,结果得20,故不选A ;当x=3,y=3时,3>0,故代入x 2+2y ,结果得15,故不选B ;当x=2,y=4时,4>0,故代入x 2+2y ,结果得12,C 正确;当x=4,y=0时,00≥,故代入x 2+2y ,结果得16,故不选D ;故选C .【点睛】此题考查了整式的运算,重点是看清楚程序图中的条件,分别代入两个条件式中进行求解.12.A解析:A【分析】根据不等式的性质对各选项进行判断即可.【详解】解:(1)∵5465>,∴5465-<-,故选项A 符合题意; (2)∵-(-21)=21,+(-21)=-21,21>-21,∴()()2121--+->,故选项B 错误; (3)∵11210=108223---<,故选项C 错误; (4)∵227=-733--,227=733⎛⎫-- ⎪⎝⎭,∴227733⎛⎫---- ⎪⎝⎭<; 故选:A .【点睛】此题主要考查了有理数的大小比较,熟练掌握有理数比较大小的方法是解答此题的关键. 二、填空题13.32π【分析】分情况讨论分绕长为2或是4的边旋转再根据圆柱的体积公式即可解【详解】由题意旋转构成一个圆柱的体积为π××4=16π或π××2=32π故答案为:32π【点睛】圆柱的体积公式是底面积与高的积解析:32π【分析】分情况讨论,分绕长为2或是4的边旋转,再根据圆柱的体积公式即可解【详解】由题意,旋转构成一个圆柱的体积为π×22×4=16π或π×24×2=32π,故答案为:32π圆柱的体积公式是底面积与高的积.14.(1)度量比较法叠合比较法;(2)3a>ba=ba<b【分析】(1)比较两条线段长短的方法有两种:度量比较法叠合比较法依此即可求解;(2)两条线段a和b的大小有三种情况【详解】(1)比较两条线段的大解析:(1)度量比较法,叠合比较法;(2)3,a>b、a=b、a<b【分析】(1)比较两条线段长短的方法有两种:度量比较法、叠合比较法.依此即可求解;(2)两条线段a和b的大小有三种情况.【详解】(1)比较两条线段的大小通常有两种方法,分别是度量比较法、重合比较法.(2)比较两条线段a和b的大小,结果可能有3种情况,它们是a>b、a=b、a<b.故答案为度量比较法,重合比较法;3,a>b、a=b、a<b.【点睛】本题考查了比较线段的长短,是基础题型,是需要识记的知识.15.10【分析】由已知5个人用5天完成了某项工程的那么1个人用的天数为5×5再增加工作效率相同的10个人完成剩下的设用x天则1个人用(5+10)x因为工作效率相同根据题意列方程求解【详解】设增加10人再解析:10【分析】由已知5个人用5天完成了某项工程的14,那么1个人用的天数为5×5,再增加工作效率相同的10个人完成剩下的34,设用x天,则1个人用(5+10)x,因为工作效率相同,根据题意列方程求解.【详解】设增加10人再完成剩余的34为x天,根据题意列方程得:(5+10)x=3×5×5,解得:x=5,5+5=10(天).故答案为:10.【点睛】本题考查的是一元一次方程的应用,解答此题的关键是根据已知找出等量关系,其等量关系是后面的工作量是前面的工作量的3倍.16.5【解析】【分析】首先设乙班平均每人捐款x元则甲班平均每人捐款(x-1)元根据题意可得等量关系:甲班的捐款+乙班的捐款=425元由等量关系列出方程即可【详解】解:设乙班平均每人捐款x元由题意得:50解析:5【解析】【分析】首先设乙班平均每人捐款x 元,则甲班平均每人捐款(x-1)元,根据题意可得等量关系:甲班的捐款+乙班的捐款=425元,由等量关系列出方程即可.【详解】解:设乙班平均每人捐款x 元,由题意得:50(x-1)+(50-5)x=425,解得:x=5,答:乙班平均每人捐款5元.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,表示出甲乙两班的捐款人数和人均捐款数,再根据捐款总数列出方程即可.17.-2【分析】把原式去括号转化为含有(a-b)和(c+d)的式子然后代入求值即可【详解】故答案为:-2【点睛】本题考查了整式的化简求值把原式转化为含有(a-b)和(c+d)的式子是解决此题的关键解析:-2【分析】把原式去括号转化为含有(a -b )和(c +d )的式子,然后代入求值即可.【详解】()()()()532b c a d b c a d b a c d +--=+-+=-++=-+=-.故答案为:-2.【点睛】本题考查了整式的化简求值,把原式转化为含有(a -b )和(c +d )的式子是解决此题的关键. 18.0【分析】根据同类项的定义先得到k 的值再代入代数式中计算即可【详解】解:与是同类项k=2∴故答案为:2;0【点睛】本题考查了同类项的定义和合并同类项比较基础解析:0【分析】根据同类项的定义先得到k 的值,再代入代数式中计算即可.【详解】 解:13k x y 与213x y -是同类项, ∴k=2,∴222111103333k x y x y x y x y ⎛⎫⎛⎫+-=+-= ⎪ ⎪⎝⎭⎝⎭故答案为:2;0【点睛】本题考查了同类项的定义和合并同类项,比较基础.19.051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10nn 为整数位数减1【详解】解:1051万=10510000=1051×107故答案为:1051×107【点睛】本题考查了科学解析:051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10n ,n 为整数位数减1.【详解】解:1051万=10510000=1.051×107.故答案为:1.051×107.【点睛】本题考查了科学记数法-表示较大的数,科学记数法中a 的要求和10的指数n 的表示规律为关键,20.-4【解析】试题解析:-4【解析】试题两点的距离为8,则点A 、B 距离原点的距离是4,∵点A ,B 互为相反数,A 在B 的右侧,∴A 、B 表示的数是4,-4.三、解答题21.12,9,23,6,MC ,9,6,15. 【分析】根据线段中点的性质,可得AM ,根据线段的比,可得MC ,根据线段的和差,可得答案.【详解】解:∵M 是线段AB 的中点,且18cm AB =, ∴19cm 2AM MB AB ===. ∵:2:1MC CB =, ∴26cm 3MC MB ==. ∴9615(cm)AC AM MC =+=+=. 故答案为:12,9,23,6,MC ,9,6,15. 【点睛】本题考查了两点间的距离,利用线段中点的性质得出AM ,线段的比得出MC 是解题关键.22.(1)14-,85t -;(2)2.5秒或3秒;(3)线段MN 的长度不发生变化,其值为11,图形见解析.【分析】(1)根据点B 和点P 的运动轨迹列式即可.(2)分两种情况:①点P Q 、相遇之前;②点P Q 、相遇之后,分别列式求解即可. (3)分两种情况:①当点P 在点A B 、两点之间运动时;②当点P 运动到点B 的左侧时, 分别列式求解即可.【详解】(1)14-,85t -;(2)分两种情况:①点P Q 、相遇之前,由题意得32522t t ++=,解得 2.5t =.②点P Q 、相遇之后,由题意得32522t t -+=,解得3t =.答:若点P Q 、同时出发,2.5或3秒时P Q 、之间的距离恰好等于2;(3)线段MN 的长度不发生变化,其值为11,理由如下:①当点P 在点A B 、两点之间运动时:11111()221122222MN MP NP AP BP AP BP AB =+=+=+==⨯=; ②当点P 运动到点B 的左侧时,1111()112222MN MP NP AP BP AP BP AB =-=-=-==; ∴线段MN 的长度不发生变化,其值为11.【点睛】本题考查了数轴动点的问题,掌握数轴的性质是解题的关键.23.(1)-8;(2)1;(3)65. 【分析】(1)根据规定的运算法则求解即可.(2)(3)将规定的运算法则代入,然后对等式进行整理从而求得未知数的值即可.【详解】(1)(-2)※3=(-2)2+2×(-2)×3=4-12=-8;(2)∵1※x=3,∴12+2x=3,∴2x=3-1,∴x=1;(3)-2※x=-2+x,(-2)2+2×(-2)x=-2+x,4-4x=-2+x,-4x-x=-2-4,-5x=-6,x=65.【点睛】此题考查有理数的混合运算,解一元一次方程,解题关键在于掌握运算法则.24.14 a=-【分析】先分别求出两个方程的解,再根据解互为相反数列方程计算即可.【详解】3210x a+-=,解得123ax-=;20x a-=,解得2x a=.由题意得,1220 3aa-+=,解得14 a=-.【点睛】本题考查一元一次方程的解法,解题的关键是根据两个方程的解互为相反数列方程求解.25.12 -.【分析】根据有理数的四则混合运算顺序:“先算乘方,再算乘除,然后算加减”进行计算即可.【详解】原式311222⎛⎫=-++-=-⎪⎝⎭.【点睛】本题考查了有理数的混合运算,掌握运算法则是解题的关键.26.070629【分析】利用公式求出图2中每行表示的数据,将其组合起来即可得出结论.【详解】解:∵第一行:0×23+1×22+1×21+1=7,计作07,第二行:0×23+1×22+1×21+0=6,计作06,第三行:0×23+0×22+1×21+0=2,计作2,第四行:1×23+0×22+0×21+1=9,计作9,∴他的统一学号为070629.故答案为:070629.【点睛】本题考查了规律型:图形的变化类以及尾数特征,读懂题意,利用公式求出图2中每行表示的数据是解题的关键.。

初中数学鲁教版七年级上册第二章期末复习练习题-普通用卷

初中数学鲁教版七年级上册第二章期末复习练习题-普通用卷

初中数学鲁教版七年级上册第二章期末复习练习题一、选择题1.如图是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.若一个球按图中所示的方向被击出(球可以经过多次反射),则该球最后将落入的球袋是()A. 1号袋B. 2号袋C. 3号袋D. 4号袋2.如图所示是一台球桌面的示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是()A. ①B. ②C. ⑤D. ⑥3.数学在我们的生活中无处不在,就连小小的台球桌上都有数学问题.如图所示,∠1=∠2.若∠3=25°,为了使白球反弹后能将黑球直接撞入底袋中,那么击打白球时,必须保证∠1为()A. 65°B. 75°C. 55°D. 85°4.如图所示,在2×2的方格纸中有一个以格点为顶点的△ABC,则与△ABC成轴对称且以格点为顶点的三角形共有()A. 3个B. 4个C. 5个D. 6个5.如图是一个经过改造的规则为3×5的台球桌面示意图,图中四个角上的阴影部分分别表示四个入球孔,如果一个球按图中所示的方向被击出(球可以经过台球边缘多次反弹),那么球最后将落入的球袋是()A. 1号袋B. 2号袋C. 3号袋D. 4号袋6.如图,在∠MON内有一点P,点P关于OM的对称点是点G,点P关于ON的对称点是点H,连接GH分别交OM,ON于点A,B.若GH的长是12cm,则△PAB的周长为()A. 12B. 13C. 14D. 157.如图,△ABC中,∠B=60°,∠C=50°,点D是BC上任一点,点E和点F分别是点D关于AB和AC的对称点,连接AE和AF,则∠EAF的度数是()A. 140°B. 135°C. 120°D. 100°8.大自然中存在很多对称现象,下列植物叶子的图案中不是轴对称图形的是()A. B. C. D.9.如图的图形中,是轴对称图形的是()A. B. C. D.10.下列图形中的五边形ABCDE都是正五边形,则这些图形中的轴对称图形有()A. 1个B. 2个C. 3个D. 4个11.自新冠肺炎疫情发生以来,全国人民共同抗疫,兰溪市积极普及科学防控知识,下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是()A. B. C. D.12.下列图形中不一定是轴对称图形的是()A. 等腰三角形B. 直角三角形C. 角D. 线段13.如下图所示,将一圆形纸片对折后再对折,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是()A. B. C. D.14.剪纸是我国传统的民间艺术.将一张纸片按图中①,②的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是()A. B. C. D.二、填空题15.如图,在矩形ABCD中,AB=8,BC=4,一发光电子开始置于AB边的点P处,并设定此时为发光电子第一次与矩形的边碰撞,将发光电子沿着PR方向发射,碰撞到矩形的边时均反射,每次反射的反射角和入射角都等于45°,当发光电子与矩形的边碰撞2020次后,它与AB边的碰撞次数是______.16.如图,桌面上有M、N两球,若要将M球射向桌面的任意一边,使一次反弹后击中N球,则4个点中,可以瞄准的是____点.17.如图,把一张长方形的纸按图那样折叠后,B、D两点落在B’、D’点处,若得∠AOB’=70°,则∠B’OG的度数为____.18.如图,∠BAC=90°,点B是射线AM上的一个动点.点C是射线AN上一个动点,且线段BC的长度不变,点D是点A关于直线BC的对称点,连接AD,若2AD=BC,则∠ABD的度数是__________19.在几何图形:等边三角形、正方形、正六边形和圆中,对称轴条数最多的是______.20.如图,将一张正方形纸片,第1次剪成四个大小形状一样的小正方形,第2次将其中的一个小正方形再按同样的方法剪成四个小正方形,然后再将其中的一个小正方形剪成四个小正方形,如此循环进行下去,如果共剪n次,则可剪出______个正方形.三、解答题21.如图,△ABC和△A1B1C1关于直线PQ对称,△A1B1C1和△A2B2C2关于直线MN对称.(1)用无刻度直尺画出直线MN;(2)直线MN和PQ相交于点O,试探究∠AOA2与直线MN,PQ所夹锐角α的数量关系.22.如图,在由长度为1个单位长度的小正方形组成的网格中,△ABC的三个顶点A,B,C都在格点上,分别按下列要求在网格中作图:(1)画出与△ABC关于直线l成轴对称的△A1B1C1;(2)在直线l上找出一点Q,使得QA+QC1的值最小.(保留作图痕迹,并标上字母Q)(3)在直线l上找出一点P,使得|PA−PC|的值最大;(保留作图痕迹,并标上字母P)23.观察设计:(1)观察如图①、②中阴影部分构成的图案,请写出这2个图案都具有的2个共同特征;(2)借助后面的空白网格,请设计2个新的图案,使该图案同时具有你在解答(1)中所写出的2个共同特征.(注意:新图案与已有的2个图案不能重合)24.如图,是由四个全等且两直角边长分别为2和1的直角三角形组成的图案,请你仅用无刻度的直尺完成以下作图(保留作图痕迹,不写做法):(1)在图①中画一个面积为8的正方形;(2)在图②中画出(1)中所画正方形除对角线外的一条对称轴.答案和解析1.【答案】B【解析】【分析】此题考查了生活中的轴对称现象,注意一个常识,即入射角等于反射角,能够准确画图是解题的关键.根据入射角等于反射角进行画图确定该球最后将落入的球袋.【解答】解:如图:该球最后将落入2号球袋.故选B.2.【答案】A【解析】【分析】本题主要考查了生活中的轴对称现象;结合轴对称的知识画出图形是解答本题的关键.入射光线与水平线的夹角等于反射光线与水平线的夹角,动手操作即可.【解答】解:如图,求最后落入①球洞;故选:A.3.【答案】A【解析】解:∵由题意可得:∠2+∠3=90°,∠3=25°,∴∠2=65°,∵∠1=∠2,∴∠1=65°.故选:A.利用∠2+∠3=90°,进而求出∠2的度数,再利用∠1=∠2即可得出答案.此题主要考查了生活中的轴对称现象,得出∠2的度数是解题关键.4.【答案】C【解析】【分析】本题主要考查轴对称的性质;找着对称轴后画图是正确解答本题的关键.解答此题首先找到△ABC的对称轴,EH、GC、AD,BF等都可以是它的对称轴,然后依据对称找出相应的三角形即可.【解答】解:与△ABC成轴对称且以格点为顶点三角形有△ABG、△CDF、△AEF、△DBH,△BCG 共5个,故选:C.5.【答案】A【解析】【试题解析】【分析】本题主要考查了轴对称的性质有关知识,根据题意,画出图形,由轴对称的性质判定正确选项.【解答】解:根据轴对称的性质可知,台球走过的路径为:所以球最后将落入的球袋是1号袋,故选A.6.【答案】A【解析】解:∵点P关于OM的对称点是点G,点P关于ON的对称点是点H,∴PA=AG,PB=BH,∵GH=AG+AB+BH=PA+AB+PB=12cm,∴△PAB的周长为12cm.故选:A.根据轴对称的性质证明△PAB的周长=GH即可.本题考查轴对称的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.7.【答案】A【解析】【分析】本题主要考查了三角形内角和定理,轴对称的性质,根据轴对称的性质得出∠EAB=∠BAD,∠FAC=∠CAD,根据三角形的内角和得出∠BAC=∠BAD+∠DAC=70°,根据角的和差及等量代换得出∠EAF=2∠BAC=140°.【解答】解:∵点E和点F分别是点D关于AB和AC的对称点,∴∠EAB=∠BAD,∠FAC=∠CAD,∵∠B=60°,∠C=50°,∴∠BAC=∠BAD+∠DAC=180∘−60°−50°=70°,∴∠EAF=2∠BAC=140°,故选A.8.【答案】C【解析】解:A.是轴对称图形,故本选项不符合题意;B.是轴对称图形,故本选项不符合题意;C.不是轴对称图形,故本选项符合题意;D.是轴对称图形,故本选项不符合题意.故选C.根据轴对称图形的概念对各选项分析判断即可得解.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9.【答案】D【解析】【分析】本题考查了轴对称的概念.轴对称的关键是寻找对称轴,图象沿某一直线折叠后可以重合.根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此依次进行判断即可.【解答】解:A.不是轴对称图形,不符合题意;B.不是轴对称图形,不符合题意;C.不是轴对称图形,不符合题意;D.是轴对称图形,符合题意.10.【答案】D【解析】解:如图所示:直线l即为各图形的对称轴.,故选:D.直接利用轴对称图形的性质画出对称轴得出答案.此题主要考查了轴对称图形,正确把握轴对称图形的定义是解题关键.11.【答案】B【解析】【分析】此题主要考查了轴对称图形有关知识,根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可.【解答】解:A.不是轴对称图形;B.是轴对称图形;C.不是轴对称图形;D.不是轴对称图形.故选B.12.【答案】B【解析】【分析】本题主要考查轴对称图形有关知识,根据轴对称图形的定义判断即可.【解答】解:A.等腰三角形一定是轴对称图形,故本选项不符合题意;B.直角三角形不一定是轴对称图形,故本选项符合题意;C.角一定是轴对称图形,故本选项不符合题意;D.线段一定是轴对称图形,故本选项不符合题意.故选B.13.【答案】C【解析】【试题解析】【分析】本题主要考查的是剪纸问题,考查学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来.【解答】解:根据题意知,剪去的纸片一定是一个四边形,且对角线互相垂直.故选C.14.【答案】A【解析】【分析】本题主要考查了剪纸问题,解决这类问题要熟知轴对称图形的特点,关键是准确的找到对称轴.一般方法是动手操作,拿张纸按照题目的要求剪出图案,展开即可得到正确的图案.对于此类问题,只要依据翻折变换,将图(4)中的纸片按顺序打开铺平,即可得到一个图案.【解答】解:按照图中的顺序,向右对折,向上对折,从斜边处剪去一个直角三角形,从直角顶点处剪去一个等腰直角三角形,展开后实际是从原菱形的四边处各剪去一个直角三角形,从菱形的中心剪去一个正方形,可得:.故选:A.15.【答案】674【解析】解:如图以AB为x轴,AD为y轴,建立平面直角坐标系,根据图形可以得到:每6次反弹为一个循环组依次循环,经过6次反弹后动点回到出发点(6,0),且每次循环它与AB边的碰撞有2次,∵2012÷6=336…4,当点P第2010次碰到矩形的边时为第337个循环组的第4次反弹,点P的坐标为(2,0),∴它与AB边的碰撞次数是=336×2+2=674次,故答案为:674.如图,以AB为x轴,AD为y轴,建立平面直角坐标系,根据反射角与入射角的定义可以在格点中作出图形,可以发现,在经过6次反射后,发光电子回到起始的位置,即可求解.本题主要考查了矩形的性质,点的坐标的规律,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.16.【答案】D【解析】【分析】此题主要考查了生活中轴对称现象,正确利用对称的性质是解题关键.利用对称的性质得出M经过的路径,进而得出答案.【解答】解:如图所示:要将M球射向桌面的任意一边,使一次反弹后击中N球,则4个点中,可以瞄准的是:D.故答案为D.17.【答案】55°【解析】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=70°,可得∠B′OG+∠BOG=110°×110°=55°.∴∠B′OG=12根据轴对称的性质可得∠B′OG=∠BOG,再根据∠AOB′=70°,可得出∠B′OG的度数.本题考查轴对称的性质,在解答此类问题时要注意数形结合的应用.18.【答案】30°或150°【解析】解:分两种情况:如图,当AB>AC时,取BC的中点E,连接AE,DE,BC,则AE=DE=12即BC=2AE=2DE,又∵BC=2AD,∴AD=AE=DE,∴△ADE是等边三角形,∴∠AED=60°,又∵BC垂直平分AD,∴∠AEC=30°,又∵BE=AE,∴∠ABC=1∠AEC=15°,2∴∠ABD=2∠ABC=30°;如图,当AB<AC时,同理可得∠ACD=30°,又∵∠BAC=∠BDC=90°,∴∠ABD=150°,故答案为:30°或150°.分两种情况,取BC的中点E,连接AE,DE,依据直角三角形斜边上中线的性质,即可得到△ADE是等边三角形,进而依据轴对称的性质得出∠ABD的度数.本题主要考查了轴对称的性质的运用,如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.19.【答案】圆【解析】【分析】本题主要考查的是轴对称图形的定义,确定出选项中各图形的对称轴的条数是解题的关键.分别确定出各图形的对称轴的条数,然后进行比较即可.【解答】解:圆有无数条对称轴;等边三角形有3条对称轴;正方形有四条对称轴,正六边形有6条对称轴,故对称轴条数最多的是圆.故答案为圆.20.【答案】3n+1【解析】解:根据题意可知:后一个图形中的个数总比前一个图形中的个数多3个,即剪第1次时,可剪出4个正方形;剪第2次时,可剪出7个正方形;剪第3次时,可剪出10个正方形;剪第4次时,可剪出13个正方形;…剪n次时,共剪出小正方形的个数为:4+3(n−1)=3n+1.故答案为:3n+1.根据题意可以发现:每一次剪的时候,都是把上一次的图形中的一个进行剪.所以在4的基础上,依次多3个,继而解答各题即可.本题考查剪纸问题,同时考查规律型中的图形变化问题,同时考查学生观察、分析、归纳和应用规律的能力.21.【答案】解:(1)如图,直线MN即为所求;(2)如图,由轴对称可得:∠AOP=∠A1OP,∠A2OM=∠A1OM,∴∠AOA2=2∠POM,即∠AOA2=2α.【解析】(1)连接A1C2,A2C1,A1B2,A2B1,过两个交点作直线即可得到MN;(2)根据轴对称的性质,即可得到∠AOP=∠A1OP,∠A2OM=∠A1OM,进而得出∠AOA2与直线MN,PQ所夹锐角α的数量关系.本题考查了作图−轴对称变换:在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,一般的方法是:先由已知点出发向所给直线作垂线,并确定垂足;再直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;然后连接这些对称点,就得到原图形的轴对称图形.22.【答案】解:(1)如图,△A1B1C1即为所求.(2)如图,Q即为所求.∵点C1点C关于直线l对称,∴QA+QC1=QA+QC=AC,∴直线AC与直线l的交点Q,即点Q为所求.(3)如图,点P即为所求;∵点C1点C关于直线l对称,∴|PA−PC|=AC1,∴连接AC1并延长,交直线l于点P,点P即为所求.【解析】本题考查作图−轴对称变换,轴对称最短问题等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.(1)分别作出A,B,C的对应点A1,B1,C1,再依次连接即可;(2)直线AC与直线l的交点Q即为所求;(3)连接AC1,延长AC1交直线l于点P,点P即为所求.23.【答案】解:(1)都是轴对称图形,面积都是4个小正方形的面积和.(2)符合题意他图案如图所示:【解析】(1)根据轴对称图形的定义以及图形的面积解答即可.(2)根据条件画出图形即可.本题考查利用轴对称设计图案,解题的关键是理解题意,灵活运用所学知识解决问题.24.【答案】解:(1)如图①所示,正方形ABCD即为所求;(2)如图②,直线l即为所求.【解析】(1)根据正方形的判定,将图案中外围四个顶点顺次连接即可得;(2)根据轴对称图形的定义作图可得.本题主要考查利用轴对称设计图案,解题的关键是掌握全等三角形的性质与正方形的性质及轴对称图形的定义.。

鲁教版五四制七年级上册数学期末测试卷

鲁教版五四制七年级上册数学期末测试卷

鲁教版五四制七年级上册数学期末测试卷精品文档用心整理期末测试卷一、选择题 (每题 3 分,共 30 分)1.下列图形不是轴对称图形的是()2.如图,AB ∥ CD,FE ⊥ DB,垂足为 E,∠1 = 50°,则∠2 的度数是()3.下列各数为无理数的是()4.下列各等式中,正确的是()5.如图,在△ABC 中,AB = AC,D 是 BC 的中点,AC 的垂直平分线分别交 AC,AD,AB 于点 E,O,F,则图中全等三角形有()6.四根小棒的长分别是 5,9,12,13,从中选择三根小棒首尾相接,搭成边长如下的四个三角形,其中是直角三角形的是()7.已知点 P(0,m) 在 y 轴的负半轴上,则点 M(-m,-m+1) 在()8.若式子 k-1+(k-1) 有意义,则一次函数 y=(1-k)x+k-1 的图象可能是()9.已知的解为,则直线 y=ax+b 与 y=-cx+d 的交点坐标为()10.一天,XXX看到家中的塑料桶中有一个竖直放置的玻璃杯,桶与杯子的形状都是圆柱形,桶口的半径是杯口半径的2 倍,XXX决定做个实验:把塑料桶和玻璃杯看成一个,对准杯口均匀注水,注水过程中杯子始终竖直放置,则下列能反映最高水位 h 与注水时间 t 之间关系的大致图象是()二、填空题 (每题 3 分,共 24 分)11.如图,点 D,E 分别在线段 AB,AC 上,且 AD = AE,不添加新的线段和字母,要使△ABE ≌△ACD,需添加的一个条件是:12.已知点 P(a+3b,3) 与点 Q(-5,a+2b) 关于 x 轴对称,则a=________,b=________。

13.在三角形ABC中,如果∠A+∠B+∠C=180°,那么这个三角形中最大的角是∠C,按角分,这是一个锐角三角形。

14.如图,在直角三角形ABC中,∠ACB=90°,BC=6,正方形ABDE的面积为100,则正方形ACFG的面积是64.15.经测量,人在运动时所能承受的每分钟心跳的最高次数通常和人的年龄有关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档