2020衡水名师原创理科数学专题卷:专题05《导数及其应用》【教师版】
专题05 应用导数研究不等式恒成立问题(解析版)

专题05 应用导数研究不等式恒成立问题【压轴综述】纵观近几年的高考命题,应用导数研究函数的单调性、极(最)值问题,证明不等式、研究函数的零点等,是高考考查的“高频点”问题,常常出现在“压轴题”的位置.其中,应用导数研究不等式恒成立问题的主要命题角度有:证明不等式恒成立、由不等式恒(能)成立求参数的范围、不等式存在性问题.本专题就应用导数研究不等式恒成立问题,进行专题探讨,通过例题说明此类问题解答规律与方法---参变分离、数形结合、最值分析等.一、利用导数证明不等式f(x)>g(x)的基本方法(1)若f(x)与g(x)的最值易求出,可直接转化为证明f(x)min>g(x)max;(2)若f(x)与g(x)的最值不易求出,可构造函数h(x)=f(x)-g(x),然后根据函数h(x)的单调性或最值,证明h(x)>0.二、不等式恒成立问题的求解策略(1)已知不等式f(x,λ)≥0(λ为实参数)对任意的x∈D恒成立,求参数λ的取值范围.利用导数解决此类问题可以运用分离参数法,其一般步骤如下:(2)如果无法分离参数,可以考虑对参数或自变量进行分类讨论求解,如果是二次不等式恒成立的问题,可以考虑二次项系数与判别式的方法(a>0,Δ<0或a<0,Δ<0)求解.三、不等式存在性问题的求解策略“恒成立”与“存在性”问题的求解是“互补”关系,即f(x)≥g(a)对于x∈D恒成立,应求f(x)的最小值;若存在x∈D,使得f(x)≥g(a)成立,应求f(x)的最大值.在具体问题中究竟是求最大值还是最小值,可以先联想“恒成立”是求最大值还是最小值,这样也就可以解决相应的“存在性”问题是求最大值还是最小值.特别需要关注等号是否成立,以免细节出错.【压轴典例】例1.(2021·全国高三其他模拟)已知数列{}n a 满足11a =,()1ln 1n n a a +=+.若11n n a a λ++≥恒成立,则实数λ的最大值是( )(选项中e 为自然对数的底数,大约为2.71828)A .21e -B .2e 1- CD .e【答案】D【详解】由()1ln 1n n a a +=+得()111ln 1n n n n a a a a +++-=-+,设()ln(1),1f x x x x =-+>-, ()1x f x x '=+,()f x 在(1,0)-单调递减,在(0,+∞)单调递增,故min ()(0)0f x f ==,则10n n a a +->,所以1n n a a +≤, 1n a ≥,由11n n a a λ++≥得111ln(1)n n a a λ++++≥易得11ln(11)n n a a λ++≤++,记110n t a ++=>,所以111ln(1ln )n n a t a t ++=++,记()ln t f t t=,()2ln 1()ln t f t t -'=,当ln 10t ->即()0f t '>得t e >时()f t 单调递增,当ln 10t -<即()0f t '<得0t e <<时()f t 单调递减,所以min ()()f t f e e ==,得e λ≤,例2.(2021·浙江嘉兴市·高三)已知函数()()()1x f x e a tax =-+,其中0t ≠.若对于某个t ∈R ,有且仅有3个不同取值的a ,使得关于x 的不等式()0f x ≥在R 上恒成立,则t 的取值范围为( )A .()1,eB .(),2e eC .(),e +∞D .()2,e +∞ 【答案】C【详解】显然0a ≥,否则0x e a ->,于是()()()10x f x e a tax =-+≥,即10tax +≥,这与不等式的解集为R 矛盾.又易知0a =时,不等式()0f x >恒成立.于是仅需再分析0a >的情形.易知0t >,由()()()10x f x e a tax =-+=知ln x a =或1x ta=-,所以11ln ln a a a ta t =-⇔-=.所以原问题等价于关于a 的方程1ln a a t-=有两解,设()ln h a a a =,则()ln 1h a a '=+,10a e <<时,()0h a '<,()h a 递减,1a e>时,()0'>h a ,()h a 递增,所以min 11()h a h e e ⎛⎫==- ⎪⎝⎭,0x →时,()0h a →,a →+∞时,()h a →+∞,所以由关于a 的方程1ln a a t -=有两解,得110e t-<-<,所以t e >. 例3.(2020·新高考全国Ⅰ卷)已知函数f(x)=ae x-1-ln x+ln a.(1)当a=e 时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积;(2)若f(x)≥1,求a 的取值范围.【解析】f(x)的定义域为(0,+∞),f'(x)=ae x-1-.(1)当a=e 时,f(x)=e x -ln x+1,f'(1)=e-1,曲线y=f(x)在点(1,f(1))处的切线方程为y-(e+1)=(e-1)(x-1),即y=(e-1)x+2.直线y=(e-1)x+2在x 轴,y 轴上的截距分别为,2,因此所求三角形的面积为.(2)当0<a<1时,f(1)=a+ln a<1不满足条件;当a=1时,f(x)=e x-1-ln x,f'(x)=e x-1-.当x ∈(0,1)时,f'(x)<0;当x ∈(1,+∞)时,f'(x)>0.所以f(x)在(0,1)上是减函数,在(1,+∞)上是增函数,所以当x=1时,f(x)取得最小值,最小值为f(1)=1,从而f(x)≥1.所以a=1满足条件;当a>1时,f(x)=ae x-1-ln x+ln a ≥e x-1-ln x ≥1.综上,a 的取值范围是[1,+∞).例4.(2020·全国卷Ⅰ高考理科·T21)已知函数f(x)=e x +ax 2-x.(1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥x 3+1,求a 的取值范围. 【解析】(1)当a =1时,f=e x +x 2-x ,f'=e x +2x -1,由于f″=e x +2>0, 故f'单调递增,注意到f'=0, 故当x ∈时,f'<0,f 单调递减,当x ∈时,f'>0,f 单调递增.(2)由f ≥x 3+1得,e x +ax 2-x ≥x 3+1,其中x ≥0, ①当x =0时,不等式为:1≥1,显然成立,符合题意;②当x>0时,分离参数a得,a≥-,记g =-,g'=-,令h=e x -x2-x -1,则h'=e x-x-1,h″=e x-1≥0,故h'单调递增,h'≥h'=0,故函数h单调递增,h≥h=0,由h≥0可得:e x -x2-x-1≥0恒成立,故当x ∈时,g'>0,g单调递增;当x ∈时,g'<0,g单调递减,因此,=g =,综上可得,实数a 的取值范围是.例5.(2020·天津高考·T20)已知函数f(x)=x3+k ln x(k∈R),f'(x)为f(x)的导函数.(1)当k=6时,①求曲线y=f(x)在点(1,f(1))处的切线方程;②求函数g(x)=f(x)-f'(x )+的单调区间和极值;(2)当k≥-3时,求证:对任意的x1,x2∈[1,+∞),且x1>x2,有>.【解析】(1)①当k=6时,f(x)=x3+6ln x,f'(x)=3x2+.可得f(1)=1,f'(1)=9,所以曲线y=f(x)在点(1,f(1))处的切线方程为y-1=9(x-1),即y=9x-8.②依题意,g(x)=x3-3x2+6ln x +,x∈(0,+∞).从而可得g'(x)=3x2-6x +-,整理可得:g'(x )=,令g'(x)=0,解得x=1.当x变化时,g'(x),g(x)的变化情况如表:x(0,1) 1 (1,+∞)g'(x) - 0 +g(x) 单调递减极小值单调递增所以,g(x)的减区间为(0,1),单调递增区间为(1,+∞);g(x)的极小值为g(1)=1,无极大值.(2)由f (x )=x 3+k ln x ,得f'(x )=3x 2+.对任意的x 1,x 2∈[1,+∞),且x 1>x 2,令=t (t >1), 则(x 1-x 2)[f'(x 1)+f'(x 2)]-2(f (x 1)-f (x 2))=(x 1-x 2)-2 =--3x 2+3x 1+k -2k ln =(t 3-3t 2+3t -1)+k .(ⅰ)令h (x )=x --2ln x ,x ∈(1,+∞).当x >1时,h'(x )=1+-=>0,由此可得h (x )在(1,+∞)上单调递增,所以当t >1时,h (t )>h (1),即t --2ln t >0. 因为x 2≥1,t 3-3t 2+3t -1=(t -1)3>0,k ≥-3, 所以(t 3-3t 2+3t -1)+k ≥(t 3-3t 2+3t -1)-3=t 3-3t 2+6ln t +-1.(ⅱ) 由(1)②可知,当t >1时,g (t )>g (1),即t 3-3t 2+6ln t +>1,故t 3-3t 2+6ln t +-1>0.(ⅲ) 由(ⅰ)(ⅱ)(ⅲ)可得(x 1-x 2)[f'(x 1)+f'(x 2)]-2(f (x 1)-f (x 2))>0.所以,当k ≥-3时,对任意的x 1,x 2∈[1,+∞),且x 1>x 2,有>.例6.(2021·江苏苏州市·高三)已知函数()e ln ax f x x x =-,其中e 是自然对数的底数,0a >.(1)若曲线()y f x =在点(1,(1))f 处的切线斜率为21e -,求a 的值;(2)对于给定的常数a ,若()1f x bx ≥+对(0,)x ∈+∞恒成立,求证:b a ≤.【答案】(1)1a =;(2)证明见解析.【详解】(1)因为1()(1)ax f x ax e x'=+-,所以切线斜率为(1)(1)121a k f a e e '==+-=-,即(1)20a a ee +-=.设()(1)2x h x x e e =+-, 由于()(2)0x h x x e '=+>,所以()h x 在(0,)+∞上单调递增,又(1)0h =,由(1)()02a a e h a e +-==可得1a =.(2)设()1t u t e t =--,则()1t u t e '=-,当0t >时,()0u t '>,当0t <时,()0u t '<,所以()u t 在(,0)-∞上单调递减,在(0,)+∞上单调递增,所以min()(0)0u t u ==,即()0u t ≥,所以1(*)t e t ≥+.若()1f x bx ≥+对(0,)x ∈+∞恒成立,即ln 1ax xe x bx --≥对(0,)x ∈+∞恒成立,即ln 1ln 1ax ax x xe x b e x x x --≤--=对(0,)x ∈+∞恒成立.设ln 1()ax xe x g x x --=,由(*)可知ln ln 1ln 1ln 1ln 1()ax ax x xe x e x ax x x g x a x x x+----++--==≥=, 当且仅当()ln 0x ax x ϕ=+=时等号成立.由()1()00x a x xϕ'=+>>,所以()ϕx 在()0+∞,上单调递增,又()()1a a a e ae a a e ϕ---=-=-,由0a >,所以10a e --<,即()0a e ϕ-<()10a ϕ=>,则存在唯一()0,1a x e -∈使得0()=0x ϕ,即方程()ln 0x ax x ϕ=+=有唯一解()0,1a x e -∈,即()g x a ≥(对于给定的常数a ,当0x x =,()0,1a x e -∈时取等号)由ln 1ln 1ax axx xe x b e x x x --≤--=对(0,)x ∈+∞恒成立,所以b a ≤. 例7.(2020·江苏高考·T19)已知关于x 的函数y=f(x),y=g(x)与h(x)=kx+b(k,b ∈R)在区间D 上恒有f(x)≥h(x)≥g(x).(1)若f(x)=x 2+2x,g(x)=-x 2+2x,D=(-∞,+∞).求h(x)的表达式;(2)若f(x)=x 2-x+1,g(x)=kln x,h(x)=kx-k,D=(0,+∞).求k 的取值范围;(3)若f(x)=x 4-2x 2,g(x)=4x 2-8,h(x)=4(t 3-t)x-3t 4+2t 2(0<|t|≤),D=[m,n]⊆[-,],求证:n-m ≤. 【解析】(1)由f(x)=g(x)得x=0.又f'(x)=2x+2,g'(x)=-2x+2,所以f'(0)=g'(0)=2,所以,函数h(x)的图象为过原点,斜率为2的直线,所以h(x)=2x.经检验:h(x)=2x 符合题意.(2)h(x)-g(x)=k(x-1-ln x),设φ(x)=x -1-ln x,则φ'(x)=1-=,φ(x)≥φ(1)=0,所以当h(x)-g(x)≥0时,k ≥0.设m(x)=f(x)-h(x)=x 2-x+1-(kx-k)=x 2-(k+1)x+(1+k)≥0,当x=≤0时,m(x)在(0,+∞)上递增,所以m(x)>m(0)=1+k ≥0,所以k=-1.当x=>0时,Δ≤0,即(k+1)2-4(k+1)≤0,(k+1)(k-3)≤0,-1≤k≤3.综上,k∈[0,3].(3)①当1≤t≤时,由g(x)≤h(x),得4x2-8≤4(t3-t)x-3t4+2t2,整理得x2-(t3-t)x+≤0.(*)令Δ=(t3-t)2-(3t4-2t2-8),则Δ=t6-5t4+3t2+8.记φ(t)=t6-5t4+3t2+8(1≤t≤),则φ'(t)=6t5-20t3+6t=2t(3t2-1)(t2-3)<0恒成立, 所以φ(t)在[1,]上是减函数,则φ()≤φ(t)≤φ(1),即2≤φ(t)≤7所以不等式(*)有解,设解集为,因此n-m≤x2-x1=≤.②当0<t<1时,f(-1)-h(-1)=3t4+4t3-2t2-4t-1.设v(t)=3t4+4t3-2t2-4t-1,v'(t)=12t3+12t2-4t-4=4(t+1)(3t2-1),令v'(t)=0,得t=.当t∈时,v'(t)<0,v(t)是减函数;当t∈时,v'(t)>0,v(t)是增函数;v(0)=-1,v(1)=0,则当0<t<1时,v(t)<0,(或证:v(t)=(t+1)2(3t+1)(t-1)<0)则f(-1)-h(-1)<0,因此-1∉(m,n).因为[m,n]⊆[-,],所以n-m≤+1<.③当-≤t<0时,因为f(x),g(x)均为偶函数,因此n-m≤也成立.综上所述,n-m≤.例8.(2020届安徽省马鞍山市高三)已知函数.(1)若在定义域内无极值点,求实数的取值范围;(2)求证:当时,恒成立.【答案】(1);(2)见解析【解析】(1)由题意知,令,则,当时,在上单调递减, 当时,在上单调递增, 又,∵在定义域内无极值点,∴ 又当时,在和上都单调递增也满足题意,所以(2),令,由(1)可知在上单调递増,又,所以存在唯一的零点,故在上单调递减,在上单调递増,∴由知 即当时,恒成立.例9.(2021·安徽高三)已知函数()2ln ,f x x ax x =+-其中0.a ≥(1)讨论()f x 的单调性;(2)若当2x >时()31,12f x x <+恒成立,求a 的取值范围. 【答案】(1)当18a ≥时,函数()f x 在()0,∞+内单增;当108a <<,()f x 在1181180,,4,4a a a a -⎛--+⎛⎫ ⎪ ⎪⎝⎭⎝⎭∞内单增,在11811844a a a a -+-⎛ ⎝⎭内单减;当0a =时,()f x 在(0,1)内单增,在()1,+∞内单减; (2)7ln20,4-⎡⎤⎢⎥⎣⎦. 【详解】(1)()212121,0ax x f x ax x x x-+=+'-=> 若()()110,21,x a f x ax f x x x-==+-=-在(0,1)内单增,在()1,+∞内单减. 若0,a >由2210ax x -+=知, 18a ∆=-.当Δ180,a =-≤即18a ≥时,2210,ax x -+≥此时()f x 在()0,∞+内单增. 当1Δ180,08a a =-><<时,1184a x a-=,此时()f x 在1181180,,4,4a a a a -⎛-+-+⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭∞内单增,在118118,44a a a a --+-⎛⎫ ⎪ ⎪⎝⎭内单减. 综上所述:当18a ≥时,函数()f x 在()0,∞+内单增. 当108a <<,()f x 在1181180,,4,4a a a a -⎛-+-+⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭∞内单增,在118118,44a a a a --+-⎛⎫ ⎪ ⎪⎝⎭内单减. 当0a =时,()f x 在(0,1)内单增,在()1,+∞内单减.(2)()3112f x x <+即231ln 1,2x ax x x +-<+ 即2311ln 2ax x x x <++- 即22111ln 2x a x x x x <++-,2x >,令()22111ln ,2,2x g x x x x x x=++-> 则()23311212ln 2x g x x x x -=---'33264ln ,22x x x x x--+=> 令()()324264ln ,2,320h x x x x x h x x x=--+>=-+>'. 所以()h x 在2x >时单增,()()()24ln222ln410h x h >=-=->,因此()0g x '>, ()g x 在2x >时单增,()()7ln224g x g ->=,于是7ln2.4a -≤ 故a 的取值范围是7ln20,.4-⎡⎤⎢⎥⎣⎦例10.(2020届山西省孝义市一模)已知函数. (1)讨论函数的单调性; (2)当时,曲线总在曲线的下方,求实数的取值范围.【答案】(1)当时,函数在上单调递增;当时,在上单调递增,在上单调递减;(2).【解析】(1)由可得的定义域为,且, 若,则,函数在上单调递增; 若,则当时,,在上单调递增, 当时,,在上单调递减. 综上,当时,函数在上单调递增; 当时,在上单调递增,在上单调递减.(2)原命题等价于不等式在上恒成立, 即,不等式恒成立.∵当时,,∴, 即证当时,大于的最大值.又∵当时,,∴,综上所述,.【总结提升】不等式恒成立问题常见方法:① 分离参数恒成立(即可)或恒成立(即可);② 数形结合( 图象在 上方即可);③ 讨论最值或恒成立;④ 讨论参数.本题是利用方法 ① 求得的范围. 【压轴训练】1.(2021·长宁区·上海市延安中学高三)设函数()f x 的定义域为R ,满足()()22f x f x +=,且当(]0,2x ∈时,()194f x x x =+-.若对任意(],x m ∈-∞,都有()23f x ≥-,则m 的取值范围是( )A .215⎛⎤-∞ ⎥⎝⎦,B .163⎛⎤-∞ ⎥⎝⎦,C .184⎛⎤-∞ ⎥⎝⎦,D .194⎛⎤-∞ ⎥⎝⎦,【答案】D【详解】当(]0,2x ∈时,()194f x x x =+-的最小值是1,4-由()()22f x f x +=知,当(]2,4x ∈时,()()192224f x x x ⎡⎤=-+-⎢⎥-⎣⎦的最小值是1,2-当(]4,6x ∈时,()()194444f x x x ⎡⎤=-+-⎢⎥-⎣⎦的最小值是1,-要使()23f x ≥-,则()1924443x x -+-≥--,解得:194x ≤或16.3x ≥2.(2020·河津中学高三)若函数2()cos sin 3f x a x x x ⎛⎫=-+ ⎪⎝⎭(其中a 为参数)在R 上单调递增,则a 的取值范围是( ) A .10,3⎡⎤⎢⎥⎣⎦B .11,,33⎛⎫⎛⎫-∞-+∞ ⎪⎪⎝⎭⎝⎭C .11,33⎡⎤-⎢⎥⎣⎦D .1,03⎡⎤-⎢⎥⎣⎦【答案】C【详解】函数1()sin sin 23f x a x x x =-+在R 上单调递增,等价于2245()cos cos21cos cos 0333f x a x x x a x =-+=-++'在R 上恒成立.设cos x t =,则245()033g t t at =-++在[1,1]-上恒成立,所以45(1)0,3345(1)0,33g a g a ⎧=-++⎪⎪⎨⎪-=--+⎪⎩解得.3.(2021·全国高三专题练习)已知函数()ln f x x =,若对任意的12,(0,)x x ∈+∞,都有()()()()2221212122f x f x x x k x x x -->+⎡⎤⎣⎦恒成立,则实数k 的最大值是( )A .1-B .0C .1D .2【答案】B【详解】设12x x >,因为()()()()2221212122f x f x x x k x x x -->+⎡⎤⎣⎦,变形为()()()()121212212ln ln x x x x x x kx x x -+->+,即12212ln x kx x x x >-,等价于1221ln 1x kx x x >-,因为120x x >>,令12x t x =(1t >),则ln 1k t t >-,即(1)ln k t t <-.设()()1ln g t t t =-(1t >),则min ()k g t <.当1t >时1()ln 10g t t t'=+->恒成立,故()g t 在()1,+∞上单调递增,()(1)0g t g >=.所以0k ≤,k 的最大值为0.4.(2019·天津高考模拟)已知函数23ln ,1(),46,1x x f x x x x -≤⎧=⎨-+>⎩ 若不等式()|2|f x x a ≥-对任意(0,)x ∈+∞上恒成立,则实数a 的取值范围为( )A .13,3e ⎡⎤-⎢⎥⎣⎦ B .[3,3ln 5]+ C .[3,4ln 2]+D .13,5e ⎡⎤-⎢⎥⎣⎦【答案】C【解析】由题意得:设g(x)=|2|x a -,易得a >0,可得2,2g(x)=2,2a x a x a x a x ⎧-≥⎪⎪⎨⎪-+⎪⎩<,g(x)与x 轴的交点为(,0)2a,① 当2a x ≥,由不等式()|2|f x x a ≥-对任意(0,)x ∈+∞上恒成立,可得临界值时,()g()f x x 与相切,此时2()46,1f x x x x =-+>,()2,2ag x x a x =-≥,可得'()24f x x =-,可得切线斜率为2,242x -=,3x =,可得切点坐标(3,3), 可得切线方程:23y x =-,切线与x 轴的交点为3(,0)2,可得此时322a =,3a =, 综合函数图像可得3a ≥;② 同理,当2ax <,由()g()f x x 与相切, (1)当2()46,1f x x x x =-+>,()2,2a g x x a x =-+<,可得'()24f x x =-,可得切线斜率为-2,242x -=-,1x =,可得切点坐标(1,3),可得切线方程25y x =-+,可得5a =,综合函数图像可得5a ≤,(2)当()3ln ,1f x x x =-≤,()2,2a g x x a x =-+<,()g()f x x 与相切,可得'1()f x x, 此时可得可得切线斜率为-2,12x -=-,12x =,可得切点坐标1(,32)2In +, 可得切线方程:1(32)2()2y In x -+=--,242y x In =-++可得切线与x 轴的交点为2(2,0)2In +,可得此时2222a In =+,42a In =+, 综合函数图像可得42a In ≤+, 综上所述可得342a In ≤≤+,故选C.5.(2020·广东佛山市·高三)(多选)命题:p 已知ABC 为锐角三角形,不等式cos cos log 0sin CAB≥恒成立,命题2:2q x x ax +在[1,2]x ∈上恒成立,在[1,2]上恒成立,则真命题的为( ) A .p q ∨ B .p q ∧C .p q ⌝∨D .p q ∧⌝【答案】AD 【详解】因为为锐角三角形,所以0,0,0222A B C πππ<<<<<<,所以2A B π+>,则022A B ππ>>->,所以0cos cos()sin 12A B B π<<-=<,所以cos 01sin AB<<,又0cos 1C <<,所以不等式cos cos log 0sin CA B≥恒成立,故命题p 是真命题;命题2:2q x x ax +在[1,2]x ∈上恒成立()min2x a ⇔+,在[1,2]上恒成立,故命题q 是假命题所以p q ∨,p q ∧⌝是真命题.6.(2020·福清西山学校高三)(多选)记函数()f x 与()g x 的定义域的交集为I ,若存在0x I ∈,使得对任意x I ∈,不等式()()fx g x -⎡⎤⎣⎦()00x x -≥恒成立,则称()()(),f x g x 构成“相关函数对”.下列所给的两个函数构成“相关函数对”的有( ) A .()xf x e =,()1g x x =+B .()ln f x x =,()1g x x= C .()f x x =,()2g x x =D .()f x x =,【答案】BD【详解】根据函数的新定义,可得两个函数的图象有一个交点,且交点的两侧图象一侧满足()()f x g x >,另一侧满足()()f x g x <,对于A 中,令()()()1xx f x g x e x ϕ=-=--,可得()1xx e ϕ'=-,当0x >时,()10xx e ϕ'=->,函数单调递增;当0x <时,()10x x e ϕ'=-<,函数单调递减,所以当0x =时,函数()x ϕ 取得最小值,最小值为()00ϕ=,即()0x ϕ≥,所以()()f x g x ≥恒成立,不符合题意;对于B 中,令()()()1ln ,0x f x g x x x x ϕ=-=->,可得()2110x x xϕ'=+>,所以函数()x ϕ单调递增,又由()()11ln110,ln 0e e eϕϕ=-<=->,设0x x =满足()00x ϕ=,且01x e <<,则对任意(0,)x ∈+∞,不等式()()f x g x -⎡⎤⎣⎦()00x x -≥恒成立,符合题意;对于C 中,函数()f x x =,()2g x x =,根据一次函数和二次函数的性质,可得函数()y f x =的图象由两个交点,此时不满足题意;对于D 中,令()()()1()2x x f x g x x ϕ=-=,可得()1211()ln 2022x x x ϕ-'=+>,所以()x ϕ在定义域[0,)+∞单调递增,又由()()1010,102ϕϕ=-<=>,所以方程()0x ϕ=只有一个实数根,设为0x ,则满足对任意x I ∈,不等式()()f x g x -⎡⎤⎣⎦()00x x -≥恒成立,符合题意. 7.(2020·浙江高三月考)已知1a >,若对于任意的1[,)3x ∈+∞,不等式()4ln 3e ln x x x a a -≤-恒成立,则a 的最小值为______.【答案】3e【详解】()()4ln 3ln 3ln 3ln x x e x x a a x x ae a x -≤-⇔-≤--()()3ln 3ln x x x x ae ae ⇔-≤-令()ln f x x x =-,()111x f x x x-'=-=,∴()f x 在[)1,+∞上单调递增.∵1a >,1[,)3x ∈+∞,∴[)3,1,x e x a ∈+∞,∴33x x e ae x x a ⇔≤⇔≤恒成立,令()3x xg x e=,只需max ()a g x ≥,()33x xg x e -'=,∴1[,1),()0,()3x g x g x ∈'>单调递增,∴(1,),()0,()x g x g x ∈+∞'<单调递减,1x ∴=时,()g x 的最大值为3e ,∴3a e≥, ∴a 的最小值为3e. 8.(2020·全国高三月考)已知函数()()ln 202xaf x ae a x =+->+,若()0f x >恒成立,则实数a 的取值范围为______. 【答案】(),e +∞ 【详解】()ln202x af x ae x =+->+,则()ln ln ln 22x a e a x ++>++,两边加上x 得到()()()ln 2ln ln 2ln 2ln 2x x aex a x x ex ++++>+++=++,x y e x =+单调递增,()ln ln 2x a x ∴+>+,即()ln ln 2a x x >+-,令()()ln 2g x x x =+-,则()11121x g x x x --'=-=++,因为()f x 的定义域为()2,-+∞()2,1x ∴∈--时,()0g x '>,()g x 单调递增,()1,x ∈-+∞,()0g x '<,()g x 单调递减, ()()max ln 11a g x g ∴>=-=,a e ∴>.9.(2021·安徽高三开学考试)已知函数()()11ln f x a x x =+++. (1)讨论函数()f x 的单调性;(2)对任意0x >,求证:()()22e 11exa x f x x +++>.【答案】(1)答案见解析;(2)证明见解析.【详解】(1)由题意得,()f x 的定义域为()0,∞+,()()1111a x f x a x x++'=++=, 当1a ≥-时,()0f x '>恒成立,∴()f x 在()0,∞+上单调递增. 当1a <-时,令()0f x '>,解得11x a <-+;令()0f x '<,解得11x a >-+, ∴()f x 在10,1a ⎛⎫-⎪+⎝⎭上单调递增,在1,1a ⎛⎫-+∞⎪+⎝⎭上单调递减. (2)要证()()22e 11e x a x f x x +++>,即证22e ln 0e x x x ⋅->.令()22e ln e xg x x x =⋅-,则()()22221e e e x x x g x x--'=.令()()221e e x r x x x =--,则()22e e x r x x '=-, 易得()r x '在()0,∞+上单调递增,且()212e e 0r '=-<,()223e 0r '=>,∴存在唯一的实数()01,2x ∈,使得()00r x '=,∴()r x 在()00,x 上单调递减,在()0,x +∞上单调递增.∵()00r <,()20r =, ∴当()0r x >时,2x >;当()0r x <时,02x <<,∴()g x 在()0,2上单调递减,在()2,+∞上单调递增,∴()()21ln 20g x g ≥=->.综上,22e ln 0e x x x ⋅->,即()()22e 11exa x f x x +++>.10.(2020·山东高考模拟)已知函数2()ln 2()f x x a x x a R =+-∈.(1)求()f x 的单调递增区间;(2)若函数()f x 有两个极值点1212,()x x x x <且12()0f x mx -≥恒成立,求实数m 的取值范围.【答案】(1)12a ≥时,增区间为(0,)+∞;0a ≤时,增区间为1()2++∞;102a <<时,增区间为,)+∞;(2)3(,ln 2]2-∞--. 【解析】(1)函数()f x 的定义域为(0,)+∞,222'()22a x x af x x x x-+=+-=,令2220x x a -+=,484(12)a a ∆=-=-,1︒若12a ≥时,0∆≤,'()0f x ≥在(0,)+∞恒成立,函数()f x 在(0,)+∞上单调递增. 2︒若12a <,>0∆,方程2220x x a -+=,两根为1x =2x =,当0a ≤时,20x >,2(,)x x ∈+∞,'()0f x >,()f x 单调递增. 当102a <<时,1>0x ,20x >, 1(0,)x x ∈,'()0f x >,()f x 单调递增,2(,)x x ∈+∞,'()0f x >,()f x 单调递增.综上,12a ≥时,函数()f x 单调递增区间为(0,)+∞, 0a ≤时,函数()f x单调递增区间为1()2+∞, 102a <<时,函数()f x单调递增区间为1(0,2-,1()2++∞. (2)由(1)知,()f x 存在两个极值点1212,()x x x x <时,102a <<且121x x =+,122a x x ⋅=,则1112ax x +=,()1121a x x =-,且1102x <<,2112x <<. 此时()120f x mx ≥-恒成立,可化为()()21111112121ln 21f x x x x x x m x x +--≤=- ()()11111111121ln 11x x x x x x x -+-+--=-1111112ln 1x x x x =-++-恒成立, 设1()12ln 1g x x x x x =-++-,1(0,)2x ∈,2221(1)1'()122ln 2ln (1)(1)x g x x xx x --=-++-=+--2(2)2ln (1)x x x x -=+-, 因为102x <<,所以(2)0x x -<,2ln 0x <,所以)'(0g x <,故()g x 在1(0,)2单调递减,13()ln 222g x g ⎛⎫>=-- ⎪⎝⎭,所以实数m 的取值范围是3(,ln 2]2-∞--.11.(2021·黑龙江哈尔滨市·哈尔滨三中高三)已知()()ln 0f x x mx m =->. (1)若()y f x =在点()()1,1f 处的切线平行于x 轴,求其单调区间和极值;(2)若不等式()21112f x xmx ++≤对于任意的0x >恒成立,求整数m 的最小值. 【答案】(1)增区间为()0,1,减区间为()1,+∞,()f x 的极大值为1-,无极小值;(2)2. 【详解】(1)()1f x m x'=-,则()110f m '=-=,1m ∴=, ()ln f x x x ∴=-,定义域为(0,)+∞,()111xf x x x-'=-=令()0f x '>,得01x <<;令()0f x '<,得1x >()f x ∴的增区间为()0,1,减区间为()1,+∞,且()f x 的极大值为()11f =-,无极小值.(2)因为0m >,所以()21112f x xmx ++≤对于任意的0x >恒成立,可化为21ln 122x x m x x ++≥+,设()2ln 12x x h x x x++=+,则()()()()()()2222212(ln 1)(22)12ln 22x x x x x x x x x x h x x x x x ⎛⎫++-+++ ⎪-++⎝⎭'==++, 设()2ln g x x x =+,则()2ln g x x x =+单调增,且111112ln 2ln 2ln 4022222g ⎛⎫=+=-=-< ⎪⎝⎭,()10g >,01,12x ⎛⎫∴∃∈ ⎪⎝⎭使()00g x =,即 ()00h x '=,所以002ln 0x x +=,所以当012x x <<时,0()()0g x g x <=,()0h x '>, 当01x x <<时,0()()0g x g x >=,()0h x '<,()h x ∴在()00,x 单调递增,在()0,x +∞单调递减()()000022max000001ln 1112,12222x x x h x h x x x x x x +++⎛⎫∴====∈ ⎪++⎝⎭()()021,2m h x ∴≥∈,m ∴的最小整数值为2。
高考数学复习专题五导数及其应用专项练习理(2021学年)

河北省衡水市2018届高考数学复习专题五导数及其应用专项练习理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(河北省衡水市2018届高考数学复习专题五导数及其应用专项练习理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为河北省衡水市2018届高考数学复习专题五导数及其应用专项练习理的全部内容。
专题五《导数及其应用》数学试卷考试范围:xxx;考试时间:100分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上ﻫﻫ第1卷评卷人得分一、选择题1、已知,为的导函数,则的图像是( )ﻫ A.B.ﻫC.ﻫD.2、定义在上的函数满足:,,是的导函数,则不等式(其中为自然对数的底数)的解集为( )A。
ﻫB。
ﻫC。
D.3、已知函数有唯一零点,则( )A。
ﻫB。
C。
ﻫ D.4、若是函数的极值点,则的极小值为() A.ﻫB。
ﻫC。
D。
5、函数的导数是( )A.B。
ﻫC。
ﻫD。
6、若曲线的一条切线为,其中,为正实数,则的取值范围是( )A。
B.C。
ﻫD.7、已知函数的图象在点处的切线为,若也与函数,的图象相切,则必满足()A。
ﻫ B.C。
ﻫD.8、已知函数的导数为,且对恒成立,则下列函数在实数集内一定是增函数的为()ﻫA。
B。
ﻫC。
ﻫD.9、已知函数与的图象如图所示,则函数的递减区间为()A。
B。
,ﻫC。
ﻫ D.,10、已知函数的定义域为,为函数的导函数,当时,且,.则下列说法一定正确的是( )ﻫA。
高考数学真题分项汇编专题05 导数选择、填空(理科)(解析版)

十年(2014-2023)年高考真题分项汇编导数选择、填空目录题型一:导数的概念及其几何意义 ..................................... 1 题型二:导数与函数的单调性 ......................................... 8 题型三:导数与函数的极值、最值 ..................................... 9 题型四:导数与函数的零点 .......................................... 14 题型五:导数的综合应用 ............................................ 16 题型六:定积分 (20)题型一:导数的概念及其几何意义一、选择题1.(2021年新高考Ⅰ卷·第7题)若过点(),a b 可以作曲线e x y =的两条切线,则( )A .e b a <B .e a b <C .0e b a <<D .0e a b <<【答案】D解析:在曲线x y e =上任取一点(),tP t e ,对函数x y e =求导得e x y ′=,所以,曲线x y e =在点P 处的切线方程为()t t y e e x t −=−,即()1t ty e x t e +−, 由题意可知,点(),a b 在直线()1t t y e x t e +−上,可得()()11t tt b ae t e a t e =+−=+−,令()()1t f t a t e =+−,则()()t f t a t e ′=−.当t a <时,()0f t ′>,此时函数()f t 单调递增, 当t a >时,()0f t ′<,此时函数()f t 单调递减,所以,()()max a f t f a e ==, 由题意可知,直线y b =与曲线()y f t =的图象有两个交点,则()max a b f t e <=, 当1t a <+时,()0f t >,当1t a >+时,()0f t <,作出函数()f t 的图象如下图所示:由图可知,当0a b e <<时,直线y b =与曲线()y f t =的图象有两个交点,故选D .2.(2020年高考课标Ⅰ卷理科·第0题)函数43()2f xx x =−的图像在点(1(1))f ,处的切线方程为( )A .21y x =−− B .21y x =−+ C .23y x =− D .21y x =+ 【答案】B【解析】()432f x x x =− ,()3246f x x x ′∴=−,()11f ∴=−,()12f ′=−, 因此,所求切线的方程为()121y x +=−−,即21y x =−+. 故选:B .【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题 3.(2020年高考课标Ⅲ卷理科·第0题)若直线l 与曲线yx 2+y 2=15都相切,则l 的方程为( )A .y =2x +1B .y =2x +12C .y =12x +1 D .y =12x +12【答案】D解析:设直线l在曲线y =(0x ,则00x >,函数y =的导数为y ′=,则直线l的斜率k =,设直线l的方程为)0y x x −−,即00x x −+=, 由于直线l 与圆2215x y +==, 两边平方并整理得2005410x x −−=,解得01x =,015x =−(舍), 则直线l 的方程为210x y −+=,即1122y x =+. 故选:D .【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题.4.(2019·全国Ⅲ·理·第6题)已知曲线e ln x y a x x =+在点()1,ae 处的切线方程为2y x b =+,则( )A .,1a e b ==−B .,1a e b ==C .1,1a e b −==D .1,1a e b −==−【答案】D【解析】由/ln 1x y ae x =++,根据导数的几何意义易得/1|12x y ae ==+=,解得1a e −=,从而得到切点坐标为(1,1),将其代入切线方程2y x b =+,得21b +=,解得1b =−,故选D .【点评】准确求导是进一步计算的基础,本题易因为导数的运算法则掌握不熟,二导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求.另外对于导数的几何意义要注意给定的点是否为切点,若为切点,牢记三条:①切点处的导数即为切线的斜率;②切点在切线上;③切点在曲线上。
2019衡水名师原创理科数学专题卷:专题五《导数及其应用》

2019届高三一轮复习理科数学专题卷专题五 导数及其应用考点13:导数的概念及运算(1,2题)考点14:导数的应用(3-11题,13-15题,17-22题) 考点15:定积分的计算(12题,16题)考试时间:120分钟 满分:150分说明:请将选择题正确答案填写在答题卡上,主观题写在答题纸上第I 卷(选择题)一、选择题(本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是最符合题目要求的。
)1.【来源】2017-2018年河北武邑中学高二理周考 考点13 易 函数()2sin f x x =的导数是( )A.2sin xB.22sin xC.2cos xD.sin 2x 2.【来源】2017-2018年河北武邑中学高二理周考 考点13 易 已知()21cos 4f x x x =+,()'f x 为()f x 的导函数,则()'f x 的图像是( )3.【2017课标II ,理11】 考点14 易若2x =-是函数21()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( )A.1-B.32e --C.35e - D.1 4.【来源】2017届湖北孝感市高三理上学期第一次统考 考点14 中难 若曲线()ln y x a =+的一条切线为y ex b =+,其中,a b 为正实数,则2ea b ++的取值范围是( ) A.2,2e e ⎛⎫++∞⎪⎝⎭B.[),e +∞C.[)2,+∞D.[)2,e 5.【来源】2017届福建闽侯县三中高三上期中 考点14 难已知函数2x y =的图象在点),(200x x 处的切线为l ,若l 也与函数x y ln =,)1,0(∈x 的图象相切,则0x 必满足( )A .2100<<xB .1210<<x C .2220<<x D .320<<x 6.【来源】2017届河北磁县一中高三11月月考 考点14 易已知函数()f x 的导数为()f x ′,且()()()10x f x xf x ++>′对x R ∈恒成立,则下列函数在实数集内一定是增函数的为( )A.()f xB.()xf xC.()x e f xD.()x xe f x7.【来源】2017届江西抚州市七校高三上学期联考 考点14 易 已知函数()f x 与()'f x 的图象如图所示,则函数()()x f x g x e=的递减区间为( )A.()0,4B.()4,1,,43⎛⎫-∞ ⎪⎝⎭C.40,3⎛⎫⎪⎝⎭D.()()0,1,4,+∞ 8.【来源】2017届山东省青州市高三10月段测 考点14中难定义在R 上的函数()f x 满足:'()1()f x f x >-,(0)6f =,'()f x 是()f x 的导函数,则不等式()5xxe f x e >+(其中e 为自然对数的底数)的解集为( ) A .(0,)+∞ B .(,0)(3,)-∞+∞C .(,0)(1,)-∞+∞ D .(3,)+∞9.【2017课标3,理11】考点14 难已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a =( )A .12-B .13C .12D .110.【来源】2017届河南中原名校高三理上质检三 考点14 难 已知函数()f x 的定义域为R ,()'fx 为函数()f x 的导函数,当[)0,x ∈+∞时,()'2sin cos 0x x f x ->且x R ∀∈,()()cos21f x f x x -++=.则下列说法一定正确的是( ) A.15324643f f ππ⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭B.15344643f f ππ⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭C3134324f f ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭D.1332443f f ππ⎛⎫⎛⎫-->- ⎪ ⎪⎝⎭⎝⎭11.【来源】2017届辽宁沈阳二中高三理上学期期中 考点14 中难 已知函数 ()()()()2325ln ,26,2f x x ax a x a Rg x x x x g x =--∈=-++-在[]1,4上的最大值为 b ,当[)1,x ∈+∞时,()f x b ≥恒成立,则a 的取值范围是( ) A.2a ≤ B.1a ≤ C.1a ≤- D.0a ≤ 12.【来源】2017届辽宁盘锦高级中学高三11月月考 考点15 中难 已知0a >,0b >,'()f x 为()f x 的导函数,若()ln2xf x =,且31112'()12bb dx f a b x =+-⎰,则a b +的最小值为( )A .B ..92 D .92+第Ⅱ卷(非选择题)二.填空题(每题5分,共20分) 13.【来源】2017届广东省仲元中学高三9月月考 考点14易 已知函数ln 4()x f x x+=,求曲线)(x f 在点(1,(1))f 处的切线方程____________14.【来源】2017届广西陆川县中学高三8月月考 考点14 中难若函数2()xf x x e ax =--在R 上存在单调递增区间,则实数a 的取值范围是 . 15.【来源】2017届湖北襄阳四中高三七月周考二 考点14 中难若函数21()ln 12f x x x =-+在其定义域内的一个子区间(1,1)a a -+内存在极值,则实数a 的取值范围 . 16.【来源】2015-2016新疆哈密地区二中高二下期末考试 考点15易如图,阴影部分的面积是_________.三.解答题(共70分) 17.(本题满分10分)【来源】2017届四川遂宁等四市高三一诊联考 考点14 易已知函数()()x f x ae x a R =-∈,其中e 为自然对数的底数, 2.71828e =…. (Ⅰ)判断函数()f x 的单调性,并说明理由;(Ⅱ)若[]1,2x ∈,不等式()x f x e -≥恒成立,求a 的取值范围. 18.(本题满分12分)【来源】2017届河南百校联盟高三文11月质监 考点14 中难 已知函数()xf x e ax =-,(0a >).(Ⅰ)记()f x 的极小值为()g a ,求()g a 的最大值;(Ⅱ)若对任意实数x 恒有()0f x ≥,求()f a 的取值范围. 19.(本题满分12分)【来源】2017届河北唐山市高三理上学期期末 考点14中难 已知函数()()ln ,ln 12x ax f x g x x x x ⎛⎫==-- ⎪⎝⎭. (1)求()y f x =的最大值;(2)当10,a e ⎡⎤∈⎢⎥⎣⎦时,函数()(](),0,y g x x e =∈有最小值. 记()g x 的最小值为()h a ,求函数()h a 的值域.20.(本题满分12分)【来源】2017-2018学年江苏南通海安县实验中学高二上学期期中 考点14中难 已知函数22()()xf x x x cec R -=-+∈.(1)若()f x 是在定义域内的增函数,求c 的取值范围;(2)若函数5()()'()2F x f x f x =+-(其中'()f x 为()f x 的导函数)存在三个零点,求c 的取值范围. 21.(本题满分12分)【来源】2017届四川自贡市高三一诊考试 考点14中难已知函数()()()()()121'10'2x f x f e f x x f x -=-+是()f x 的导数,e 为自然对数的底数),()()212g x x ax b a R b R =++∈∈,.(Ⅰ)求()f x 的解析式及极值;(Ⅱ)若()()f x g x ≥,求()12b a +的最大值.22.(本题满分12分)【2017课标1,理21】已知函数2()(2)x xf x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x有两个零点,求a的取值范围.参考答案1.D 【解析】由题意得,函数的导数为()2(sin )2sin (sin )2sin cos sin 2f x x x x x x x '''==⋅==.2.A【解析】由题意得,()1sin 2f x xx '=-, 所以()11()sin()[sin ]()22f x x x x x f x ''-=---=--=-,所以函数()f x '为奇函数,即函数的图象关于原点对称,当2x π=时,1()1024f ππ'=-<,当2x >时,()0f x '>恒成立,故选A.3.【答案】A 【解析】4.C【解析】设切点为),(00y x ,则有2)ln(1000-=⇒⎪⎩⎪⎨⎧+=+=+ae b bex a x e e x ,e a b 2,0>∴> ,212≥+=++aa b e a ,故选C. 5.D【解析】函数2y x =的导数y'2x =,2y x =在点200(,)x x 处的切线斜率为02k x =,切线方程为()20002y x x x x -=-,设切线与ln y x =相交的切点为(),ln m m ,(01m <<),由ln y x =的导数为1'y x =可得012x m =,切线方程为()1ln y m x m m-=-,令0x =,可得20ln 1y m x =-=-,由01m <<可得012x >,且201x >,解得01x >由012m x =,可得()200,ln 210x x --=,令()()2ln 21,f x x x =--()()11,'20,x f x x f x x>=->在1x >递增,且2ln 10,3ln 10ff =-<=->,则有()200ln 210x x --=的根x ∈,故选D.6.D 【解析】设()()x F x xe f x =,则()()()()()()()11x x x F x x e f x xe f x e x f x xf x =++=++⎡⎤⎣⎦′′′. ()()()10x f x xf x ++>′对R x ∈恒成立,且0x e >.()()0,F x F x >∴′∴在R 上递增. 7.D【解析】()()()()()()xx xx ex f x f e e x f e x f x g -'=-'='2,令()0<'x g 即()()0<-'x f x f ,由图可得()()+∞∈,41,0 x ,故函数单调减区间为()()0,1,4,+∞,故选D. 8.A【解析】设x xg x e f x e x R =-∈()(),(),[]1'1x x x x g x e f x e f x e e f x f x f x f x '=+'-=+'--()()()()(),()>(),100f x f x g x y g x ∴+'-∴'∴=()()>,()>,()在定义域上单调递增, 55x x e f x e g x +∴()>,()>,又000061500g e f e g x g x =-=-=∴∴()(),()>(),>,∴不等式的解集为0+∞(,). 9.【答案】C【解析】函数的零点满足()2112x x xx a e e --+-=-+,设()11x x gx ee--+=+,则()()211111111x x x x x x e g x eeee e---+----'=-=-=, 当()0g x '=时,1x =,当1x <时,()0g x '<,函数()g x 单调递减,当1x >时,()0g x '>,函数()g x 单调递增,当1x =时,函数取得最小值()12g=,设()22h x x x =- ,当1x =时,函数取得最小值1- ,10.B【解析】令()()2sin F x x f x =-,则()()''sin 2F x x f x =-.因为当[)0,x ∈+∞时,()'2sin cos 0x x f x ->,即()'sin 2x f x >,所以()()''sin 20F x x f x =->,所以()()2sin F x x f x =-在[)0,x ∈+∞上单调递增.又x R ∀∈,()()cos21f x f x x -++=,所以()()22sin f x f x x -+=, 所以,,故()()2sin F x x f x =-为奇函数,所以()()2sin F x x f x =-在R 上单调递增,所以5463F F ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭.即15344643f f ππ⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭,故选B. 11.B【解析】)13)(2(253)(2'+--=++-=x x x x x g ,所以)(x g 在]2,1[上是增函数,]4,2[上是减函数0)(,0)2()(≥==x f g x g 在),1[+∞∈x 上恒成立, 由),1[+∞∈x 知,0ln >+x x ,所以0)(≥x f 恒成立等价于xx x a ln 2+≤在),1[+∞∈x ,时恒成立,令),1[,ln )(2+∞∈+=x x x x x h ,有0)ln (ln 2)1()(2'>++-=x x xx x x h ,所以)(x h 在),1[+∞上是增函数,有1)1()(=≥h x h ,所以1≤a . 12.C【解析】∵()x x f 1=',∴()a a f 1=',∵2212111213b b x b dx x b bb +-=⎪⎭⎫ ⎝⎛-=⎰,()1212113-+'=⎰b a f dx x b b,∴1212221-+=+-b a b b ,∴1212=+ba ,∵0a >,0b >,∴()()29222252225212=⋅+≥++=⎪⎭⎫ ⎝⎛++=+a b b a a b b a b a b a b a ,当a b b a 22=且1212=+b a ,即23,3==b a 时等号成立,故选C. 13.370x y +-= 【解析】()23ln xx xf +-=',所以(1)3,(1)4k f f '==-=,切线方程为43(1),y x -=--即370x y +-=14.2ln 22a ≤-【解析】因为函数2()xf x x e ax =--,所以()2xf x x e a '=--,因为2()xf x x e ax =--在R 上存在单调递增区间,所以()20xf x x e a '=-->,即2x a x e <-有解,令()2x g x x e =-,则()2x g x e '=-,则()20ln 2x g x e x '=-=⇒=,所以当ln 2x <时,()20x g x e '=->;当ln 2x >时,()20x g x e '=-<,当ln 2x =时,()max 2ln 22g x =-,所以2ln 22a <-. 15.)23,1[【解析】函数的定义域为),0(+∞,令0214212)(2=-=-='x x x x x f ,解得21=x 或21-=x (不在定义域内舍),所以要使函数在子区间)1,1(+-a a 内存在极值等价于),0()1,1(21+∞⊂+-∈a a ,即⎪⎪⎪⎩⎪⎪⎪⎨⎧>+<-≥-21121101a a a ,解得231<≤a ,答案为)23,1[.16.323【解析】由题意得,直线2y x =与抛物线23y x =-,解得交点分别为(3,6)--和(1,2),抛物线23y x =-与x 轴负半轴交点(,设阴影部分的面积为S ,则10220(32))S x x dx x dx =--+-⎰⎰2332)xdx x dx ---+-⎰532933=+-=. 17.(Ⅰ)理由见解析;(Ⅱ)⎪⎪⎭⎫⎢⎣⎡+∞+,112e e【解析】(Ⅰ)由题可知,()x f x ae x =-,则()1x f x ae '=-, (i )当0a ≤时,()0f x '<,函数()x f x ae x =-为R 上的减函数, (ii )当0a >时,令10x ae -=,得ln x a =-,② (),ln x a ∈-∞-,则()0f x '<,此时函数()f x 为单调递减函数;②若()ln ,x a ∈-+∞,则()0f x '>,此时函数()f x 为单调递增函数.………………(4分) (Ⅱ)由题意,问题等价于[]1,2x ∈,不等式x x ae x e --≥恒成立, 即[]1,2x ∈,21xx xe a e+≥恒成立,令()21xx xe g x e+=,则问题等价于a 不小于函数()g x 在[]1,2上的最大值.………………(6分)由()()()()221214212x xx xxe exe e x e xxx e g x e '+-+--'==,当[]1,2x ∈时,()0g x '<,所以函数()g x 在[]1,2上单调递减,……………………………(8分)所以函数()g x 在[]1,2x ∈的最大值为()2111g e e=+, 故[]1,2x ∈,不等式()x f x e -≥恒成立,实数a 的取值范围为⎪⎪⎭⎫⎢⎣⎡+∞+,112e e.…………(10分)18.(Ⅰ)()max 1g a =(Ⅱ)()f a 的取值范围是(21,e e e ⎤-⎦.【解析】(Ⅰ)函数()f x 的定义域是(),-∞+∞,()'xf x e a =-.在定义域上单调递增。
2020届河北衡水金卷新高考原创押题考试(五)理科数学

2020届河北衡水金卷新高考原创押题考试(五)理科数学一、单选题1.已知集合1|244x A x ⎧⎫=≤⎨⎬⎩⎭…,{|B y y ==,则A B =I ( ) A. {2} B. {0} C. [2.2]- D. [0.2]【答案】B 【解析】 【分析】分别计算集合[2,2]A =-,集合{0}B =,再求A B I .【详解】由1244x剟,得22x -剟,即[2,2]A =-,由y =,得2x =,所以0y =,所以{0}B =,所以{0}A B =I . 故答案选B【点睛】本题考查了集合的交集,属于简单题. 2.设a R ∈,若复数1ia i-+在复平面内对应的点位于实轴上,则a =( ) A. 2 B. 1C. -1D. -2【答案】C 【解析】 【分析】 化简1i a i -+得()2111a a i a --++,再根据条件求a . 【详解】由于()()()22111111i a i a a ii a i a a ----+-==+++ 由复数1ia i-+在复平面内对应的点位于实轴上. 所以10a +=,所以1a =-.故选:C.【点睛】本题考查复数的除法运算,和复数在复平面上对应的点,属于基础题.3.l 、m 、n 表示空间中三条不同的直线,α、β表示不同的平面,则下列四个命题中正确的是( ) A. 若m α⊂,n β⊂,//αβ,则//m n B. 若m α⊂,n β⊂,//m β,//n α,则//αβC. 若l αβ=I ,m α⊂,n β⊂,l m ⊥,l n ⊥,则αβ⊥D. 若m α⊂,n β⊂,m β⊥,n α⊥,则αβ⊥ 【答案】D 【解析】 【分析】逐一分析各选项中命题的正误,可得出合适的选项.【详解】对于A 选项,若m α⊂,n β⊂,//αβ,则m 与n 无公共点,所以m 与n 平行或异面,A 选项错误;对于B 选项,若m α⊂,n β⊂,//m β,//n α,则α与β平行或相交,B 选项错误;对于C 选项,若l αβ=I ,m α⊂,n β⊂,l m ⊥,l n ⊥,则α与β斜交或垂直,C 选项错误; 对于D 选项,若m α⊂,n β⊂,m β⊥,n α⊥,由平面与平面垂直的判定定理可得αβ⊥,D 选项正确. 故选:D.【点睛】本题考查线面关系、面面关系有关命题真假的判断,可以利用空间中平行、垂直的判定和性质定理进行判断,也可以利用几何体模型来进行判断,考查推理能力,属于中等题.4.已知a v ,b v 为互相垂直的单位向量,若c a b =-v v v,则cos ,b c =v v ( )A. 2-B.2C. D.【答案】A 【解析】【分析】利用向量夹角公式即可得到结果.【详解】代数法:cos ,b a b b c b c b c ⋅-⋅<>==⋅r r r r r r rr r22===-r r r ,故选A. 【点睛】本题考查向量夹角公式,考查向量的运算法则及几何意义,考查学生的运算能力与数形结合能力,属于基础题.5.设12,F F 分别为椭圆()222:11x E y a a+=>的左、右焦点,过2F 且垂直于x 轴的直线与E 相交于,A B 两点,若1F AB ∆为正三角形,则a = ()A.2C.32D. 2【答案】A 【解析】 【分析】由2F A x ⊥ 轴,可求出2AF ,在12Rt AF F ∆中可以建立关于a 的方程,求解出a . 【详解】设2(,0),F c 由2F A x ⊥ 轴,则(,)A c y ,则222222211c a c y a a a -=-==,1221F F AF a ==, 在12Rt AF F ∆中,122tan60F F AF =. 1a =,即424430a a --=,解得232a =, a =故选:A【点睛】本题考查椭圆的基本性质,求椭圆方程中的参数,属于基础题. 6.设x,y,z 是互不相等的正数,则下列不等式中不恒成立的是( )A. 2211x x x x++≥C. 12x y x y-+≥- D. x y x z y z -≤-+- 【答案】C 【解析】【详解】试题分析:x y x z z y x z z y x z y z -=-+-≤-+-=-+-,故D 恒成立; 由于函数()1f x x x=+,在(]0,1单调递减;在[)1,+∞单调递增, 当1x >时, ()()221,x x f x f x >>>即2211x x x x +>+,当01x <<,()()2201,x x f x f x <<即2211x x x x++≥正确,即A 正确;=<=,故B 恒成立,若1x y -=-,不等式12x y x y-+≥-不成立, 故C 不恒成立,故选C . 考点:1、基本不等式证明不等式;2、单调性证明不等式及放缩法证明不等式. 7.在ABC ∆中,A ,B ,C 所对的边分别为a ,b ,c ,若60A =︒,a =3b c +=,则ABC ∆的面积为( )D. 2【答案】B 【解析】 【分析】根据余弦定理求得bc ,再根据三角形面积公式即可求解.【详解】在ABC ∆中,60A =︒,a =3b c +=由余弦定理2222cos a b c bc A =+-代入可得223b c bc =+-,即()233b c bc =+-所以2bc =则ABC ∆的面积1133sin 22222ABC S bc A ∆==⨯⨯=故选:B【点睛】本题考查了余弦定理在解三角形中的应用,三角形面积公式的应用,属于基础题.8.在平面直角坐标系xOy 中,已知2111ln 0x x y --=,2220x y --=,则()()221212x x y y -+-的最小值为( ) A. 1 B. 2 C. 3 D. 4【答案】B 【解析】根据条件得到()()221212x x y y -+-表示的是曲线2111ln x x y -=,222x y -=上两点的距离的平方,∵y=x 2﹣lnx ,∴y′=2x﹣1x(x >0), 由2x ﹣1x=1,可得x=1,此时y=1, ∴曲线C 1:y=x 2﹣lnx 在(1,1)处的切线方程为y ﹣1=x ﹣1,即x ﹣y=0,与直线x ﹣y ﹣2=0的距离为2=2, ∴()()221212x x y y -+-的最小值为2. 故答案为B .点睛:本题考查两点间距离的计算,考查导数知识的运用,求出曲线C 1:y=x 2-lnx 与直线x-y-2=0平行的切线的方程是关键.注意做新颖的题目时,要学会将新颖的问题转化为学过的知识题型,再就是研究导数小题时注意结合函数的图像来寻找灵感,有助于解决题目.9.算筹是在珠算发明以前我国独创并且有效的计算工具,为我国古代数学的发展做出了很大贡献.在算筹计数法中,以“纵式”和“横式”两种方式来表示数字,如图:表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,遇零则置空,如图:如果把5根算筹以适当的方式全部放入 下面的表格中,那么可以表示的三位数的个数为( )A. 46B. 44C. 42D. 40 【答案】B 【解析】 【分析】先按每一位算筹的根数分类,再看每一位算筹的根数能组成几个数字. 【详解】按每一位算筹的根数分类一共有15种情况,如下(5,0,0),(4,1,0),(4,0,1),(3,2,0),(3,1,1),(3,0,2),(2,3,0), (2,2,1),(2,1,2),(2,3,0),(1,4,0),(1,3,1),(1,2,2),(1,1,3),(1,0,4),2根以上的算筹可以表示两个数字,运用分布乘法计数原理, 则上列情况能表示的三位数字个数分别为:2,2,2,4,2,4,4,4,4,4,2,2,4,2,2, 根据分布加法计数原理,5根算筹能表示的三位数字个数为:22242444442242244++++++++++++++=.故选B.【点睛】本题考查分类加法计数原理和分布乘法计数原理,考查分析问题解决问题的能力.10.设抛物线2:2(0)C y px p =>的焦点为F ,抛物线C 与圆22:(3)3C x y +='交于M ,N 两点,若||6MN =则MNF V 的面积为( )A.2 B.38C.32D.32【答案】B 【解析】 【分析】由圆C '过原点,知,M N 中有一点M 与原点重合,作出图形,由3C M C N ''==,6MN =,得C M C N ''⊥,从而直线MN 倾斜角为4π,写出N 点坐标,代入抛物线方程求出参数p ,可得F 点坐标,从而得三角形面积.【详解】由题意圆C '过原点,所以原点是圆与抛物线的一个交点,不妨设为M ,如图, 由于3C M C N ''==,6MN =,∴C M C N ''⊥,∴4C MN π'∠=,4NOx π∠=,∴点N 坐标为(3,3),代入抛物线方程得2(3)23p =⨯,32p =, ∴3(,0)4F ,113332248FMN N S MF y ∆=⨯=⨯⨯=. 故选:B.【点睛】本题考查抛物线与圆相交问题,解题关键是发现原点O 是其中一个交点,从而MNC '∆是等腰直角三角形,于是可得N 点坐标,问题可解,如果仅从方程组角度研究两曲线交点,恐怕难度会大大增加,甚至没法求解.11.在内接于球O 的四面体ABCD 中,有AB CD t ==,6AD BC ==,7AC BD ==,若球O 的最大截面的面积是554π,则t的值为( )A. 5B. 6C. 7D. 8【答案】A【解析】【分析】由题意将四面体放入长方体中,由长方体的对角线与外接球的直径相等可求出外接球的半径,球的最大截面既是过球心的圆,由题意求出外接球的半径,进而求出t的值.【详解】将四面体放入到长方体中,AB与CD,AD与BC,AC与BD相当于一个长方体的相对面的对角线,设长方体的长,宽,高分别是,,a b c则22222222276a b tb ca c⎧+=⎪+=⎨⎪+=⎩,∴()2222285a b c t++=+球O的最大截面的面积是554π,球的最大截面即是过球心的大圆,设球的半径为R则2554Rππ=,∴2222(2)55,2R R a b c==++∴2222(2)R a b c=++,255285t∴⨯=+,解得:5t=,故选:A.【点睛】考查三棱锥的外接球的半径的与长方体棱长的关系,考查了分析能力和计算能力,属于中档题.12.已知函数22()ln(1)f x x x a x=--(a∈R),若()0f x≥在x∈(0,1]时恒成立,则实数a的取值范围是 A.[4,+ ∞) B. [12,+∞) C. [2,+∞) D. [1,+∞)【答案】B 【解析】 【分析】首先将式子化简,将参数a 化为关于x 的函数,之后将问题转化为求最值问题来解决,之后应用导数研究函数的单调性,从而求得函数的最值,在求解的过程中,注意对函数进行简化,最后用洛必达法则,通过极限求得结果.【详解】根据题意,有22ln (1)0,((0,1])x x a x x --≥∈恒成立,当1a ≠时,将其变形为22ln 1x xa x ≥-恒成立,即2max 2ln ()1x x a x ≥-,令22ln ()1x xg x x =-,利用求得法则及求导公式可求得3222ln '()(1)x x x x g x x --=-,令3()2ln h x x x x x=--,可得22'()312ln 232ln 3h x x x x x =---=--,可得26(26233''()6x x x h x x x x x+--=-==,因为(0,1]x ∈,所以(0,)3x ∈时,''()0h x <,,1]3x ∈时,''()0h x >,所以函数)'(h x在(0,3x ∈时单调减,在3x ∈时单调增,即'()132ln ln 32h x h ≥=--=-,而'(1)0h =,所以()h x在上是减函数,且(1)0h =,所以函数()h x在区间上满足()0h x ≥恒成立,同理也可以确定()0h x ≥在上也成立,即'()0g x ≥在(0,1]x ∈上恒成立,即22ln ()1x xg x x =-在(0,1]x ∈上单调增,且22111ln 2ln 2ln 11lim lim lim 1222x x x x x x x x x x x →→→++===-,故所求的实数a 的取值范围是1[,)2+∞,故选B. 点睛:该题属于应用导数研究函数最值的综合问题,在解题的过程中,注意构造新函数,并且反复求导,研究函数的单调性,从而确定出函数值的符号,从而确定出函数的单调性,从而得出函数在哪个点处取得最值,还有需要应用洛必达法则求极限来达到求最值的目的.二、填空题13.已知a 、b 、c 分别是ABC ∆三个内角A 、B 、C 的对边,1cos 2a Bbc +=,则角A 的大小为___________. 【答案】3π 【解析】 【分析】根据正弦定理,将表达式转化为角的表达式,由三角形内角的定理,化简即可求得角A . 【详解】因为a 、b 、c 分别是ABC ∆三个内角A 、B 、C 的对边,1cos 2a Bbc += 由正弦定理可得1sin cos sin sin 2A B B C += 因为sin sin()C A B =+ 展开化简可得1sin cos sin sin cos sin cos 2A B B A B B A +=+ 即1sin sin cos 2B B A = 因为三角形中sin 0B ≠ 则1cos 2A = 解得3A π=故答案:3π 【点睛】本题考查了正弦定理在解三角形中的简单应用,属于基础题.14.现有高一学生两人,高二学生两人,高三学生一人,将这五人排成一行,要求同一年级的学生不能相邻,则不同的排法总数为______. 【答案】48 【解析】 【分析】先求得五个人的全排列,除去相邻的情况,即为同一年级学生不相邻的情况. 【详解】将五个人全排列,共有55A 种;高一学生和高二学生都相邻:捆绑法把高一两个人和高二两个人看成一个整体,再三个团体全排列,共有223223A A A 种. 高一学生相邻,高二学生不相邻:捆绑法把高一学生作为一个整体排列,和高三学生再全排列,将高二的学生插3个空位中的两个,共有222223A A A 种. 高二学生相邻,高一学生不相邻:捆绑法把高而学生作为一个整体排列,和高三学生再全排列,将高一的学生插3个空位中的两个,共有222223A A A 种. 所以满足同一年级的学生不能相邻的总排列方法有5223222222522322322312024242448A A A A A A A A A A ---=---=种故答案为:48【点睛】本题考查了排列问题的综合应用,对于相邻问题,通常使用捆绑法作为一个整体处理,对于不相邻问题,通常采用插空法处理,属于中档题.15.已知直线1y x =-与双曲线()2210,0ax by a b +=><的渐近线交于A ,B 两点,且过原点和线段AB中点的直线的斜率为a b =______.【答案】【解析】 【分析】根据双曲线方程表示出双曲线的渐近线方程,与直线方程联立可得,A B 两点坐标,利用中点坐标公式求得中点M 的坐标.即可由直线斜率公式求得ab. 【详解】双曲线()2210,0ax by a b +=><所以其渐近线方程为y x = 因为直线1y x =-与渐近线交于A ,B 两点则1y x y x =-⎧⎪⎨=⎪⎩解得x y ⎧=⎪⎪⎪⎪⎨⎪⎪=⎪⎪⎩x y ⎧=⎪⎪⎪⎪⎨⎪⎪=⎪⎪⎩即两个交点坐标为A ⎛,B ⎛ 设,A B 中点坐标为M 则由中点坐标公式可得11,1a b M a a bb ⎛⎫ ⎪ ⎝+⎪⎪+⎭由题意OM k =则2M OM My a k x b===-故答案为: -【点睛】本题考查了双曲线的渐近线方程的简单应用,直线交点坐标的求法,斜率公式及中点坐标公式的应用,化简过程较为繁琐,属于中档题.16.已知边长为ABCD 的顶点都在同一个球面上,若3BAD π∠=,平面ABD ⊥平面CBD ,则该球的球面面积为___________.【答案】20π 【解析】 【分析】根据题意,画出空间几何图形.由几何关系,找出球心.由勾股定理解方程即可求得球的半径,进而得球的面积. 【详解】根据题意, G 为底面等边三角形CBD重心,作OG ⊥底面CBD .作AE BD ⊥交BD 于E ,过O 作OF AE ⊥交AE 于F .连接,AO OC 画出空间几何图形如下图所示:因为等边三角形CBD 与等边三角形ABD 的边长为23,且3BAD π∠=所以23sin33AE CE π==⨯=G 为底面等边三角形CBD 的重心,则113133EG CE ==⨯=,2GC = 面ABD ⊥平面CBD因而四边形OGEF 为矩形,设OG h =,则EF h =,球的半径为r 在Rt AFO ∆和Rt OGC ∆中()222222312h r h r⎧-+=⎪⎨+=⎪⎩解得15h r =⎧⎪⎨=⎪⎩ 所以球的表面积为()2244520S r πππ==⨯=故答案为: 20π【点睛】本题考查了空间几何体的结构特征,三棱锥外接球的半径与表面积求法,属于中档题.三、解答题17.如图,四棱锥S ABCD -的底面是边长为1的菱形,其中60DAB ∠=︒,SD 垂直于底面ABCD ,3SB =;(1)求四棱锥S ABCD -的体积;(2)设棱SA 的中点为M ,求异面直线DM 与SB 所成角的大小.【答案】(1) 66;(2) 3π.【解析】 【分析】(1)求出1BD =,3AC =,2SD =,由此能求出四棱锥S ABCD -的体积.(2)取BC 中点E ,以D 为原点,DA 为x 轴,DE 为y 轴,DS 为z 轴,建立空间直角坐标系,利用向量法能求出异面直线DM 与SB 所成角.【详解】解:(1)∵四棱锥S ABCD -的底面是边长为1的菱形,其中60DAB ∠=︒,SD 垂直于底面ABCD ,3SB =,∴1BD =,11211cos1203AC =+-⨯⨯⨯︒=,22312SD BD SB =-=-=,1131322ABCD S AC BD =⨯⨯=⨯⨯=, ∴四棱锥S ABCD -的体积113623326ABCD V S SD =⨯⨯=⨯⨯=. (2)取BC 中点E ,以D 为原点,DA 为x 轴,DE 为y 轴,DS 为z 轴,建立空间直角坐标系,()1,0,0A ,(2S ,12,0,22M ⎛ ⎝⎭,132B ⎛⎫ ⎪ ⎪⎝⎭, 122DM ⎛= ⎝⎭u u u u r ,1322SB ⎛= ⎝u u r ,设异面直线DM 与SB 所成角为θ,则31cos 2DM SB DM SBθ⋅===⋅u u u u r u u r u u u ur u u r ,故3πθ=, ∴异面直线DM 与SB 所成角为3π. 【点睛】本题考查了异面直线及其所成的角以及棱锥的体积,需熟记椎体的体积公式,异面直线所成的角可采用空间向量法进行求解. 18.已知函数3()sin cos 22f x x x ωω=+(其中0>ω). (1)若函数()f x 的最小正周期为3π,求ω的值,并求函数()f x 的单调递增区间; (2)若2ω=,0α<<π,且3()2f α=,求α的值. 【答案】(1)23ω=,递增区间332k k π⎡⎤π-ππ+⎢⎥⎣⎦,(k Z ∈);(2)12πα=或4π.【解析】 【分析】(1)利用辅助角公式化简,根据函数f (x )的最小正周期为3π,即可求ω的值和单调递增区间; (2)将ω=2,可得f (x )解析式,0<α<π,由()32f α=,利用三角函数公式即可求α的值. 【详解】解:(1)函数()322f x sin x x ωω=+=sin (ωx 6π+), ∵函数f (x )的最小正周期为3π,即T =3π2πω=∴ω23=那么:()236f x x π⎛⎫=+ ⎪⎝⎭,由2222362k x k πππππ-≤+≤+,k ∈Z , 得:332k x k ππππ-≤≤+∴函数f (x )的单调递增区间为332k k ππππ⎡⎤-++⎢⎥⎣⎦,,k ∈Z ;(2)函数()32f x sin x x ωω=+=(ωx 6π+),∵ω=2∴f (x)=(2x 6π+), ()32f α=,可得sin (2α6π+)=∵0<α<π,∴6π≤(2α6π+)136π≤2α63ππ+=或23π解得:α4π=或α12π=.【点睛】本题主要考查三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.19.已知等差数列{}n a 的前n 项和为n S ,满足2*1()2nn a S n N +⎛⎫=∈ ⎪⎝⎭.数列{}n b 的前n 项和为n T ,满足*2()n n T b n N =-∈.(1)求数列{}n a 和{}n b 的通项公式;(2)求数列2n n a b ⎧⎫⎨⎬⎩⎭的前n 项和'n S . 【答案】(1)21n a n =-,112n n b -⎛⎫ ⎪⎝⎭=;(2)23'32n nn S +=-. 【解析】 【分析】(1)根据题意,求得12,a a ,然后求得公差,即可求出数列{}n a 的通项,再利用11,1,2n n n T n b T T n -=⎧=⎨-≥⎩ 求得{}n b 的通项公式; (2)先求出2n n a b ⎧⎫⎨⎬⎩⎭的通项,然后利用数列求和中错位相减求和'n S . 【详解】解:(1)由212n n a S +⎛⎫= ⎪⎝⎭,得211112a S a +⎛⎫== ⎪⎝⎭,解得11a =. 由222122112a S a a a +⎛⎫=+=+= ⎪⎝⎭,解得23a =或21a =-.若21a =-,则2d =-,所以33a =-.所以2331312a S +⎛⎫=-≠= ⎪⎝⎭,故21a =-不合题意,舍去. 所以等差数列{}n a 的公差212d a a =-=, 故21n a n =-.数列{}n b 对任意正整数n ,满足2n n T b =-. 当1n =时,1112b T b ==-,解得11b =;当1n >时,()()11122n n n n n n n b T T b b b b ---=-=---=-, 所以()1122n n b b n -=≥. 所以{}n b 是以首项11b =,公比12q =的等比数列, 故数列{}n b 的通项公式为112n n b -⎛⎫= ⎪⎝⎭.(2)由(1)知2122n n n a b n -=, 所以2311352321'...22222n n nn n S ---=+++++,①所以2311132321' (22222)n nn n n S +--=++++,② ①-②,得2311122221'...222222n n n n S +-=++++-211111121 (22222)n n n -+-⎛⎫=++++- ⎪⎝⎭ 111112212112212n n n -+⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭-⎢⎥⎣⎦=+--1111211222n n n -+-⎛⎫=+--⎪⎝⎭, 所以23'32n nn S +=-. 【点睛】本题主要考查了数列的综合(包含数列通项的求法,以及求和中错位相减),易错点在于是否检验n=1的情况,以及计算的失误,属于中档题.20.已知椭圆C :22221x y a b +=()0a b >>的离心率2e =,左、右焦点分别是1F 、2F ,且椭圆上一动点M 到2F1,过2F 的直线l 与椭圆C 交于A ,B 两点. (1)求椭圆C 的标准方程;(2)当1F AB ∆以1F AB ∠为直角时,求直线AB 的方程;(3)直线l 的斜率存在且不为0时,试问x 轴上是否存在一点P 使得OPA OPB ∠=∠,若存在,求出P 点坐标;若不存在,请说明理由.【答案】(1)2212x y +=(2)直线AB 的方程为1y x =-+或1y x =-(3)存在,()2,0P【解析】 【分析】(1)由椭圆C的离心率2e =,且椭圆上一动点M 到2F1,列出方程组,求得,a b 的值,即可得到椭圆的标准方程;(2)设直线AB l :()1y k x =-,则1AF l :()11y x k=-+,联立方程组,求得k 的值,即可求得直线的方程;(3)设AB l :()1y k x =-,联立方程组,根据根与系数的关系,求得12x x +,12x x ,再由斜率公式和以0AP BP k k +=,即可求解点P 的坐标,得到答案.【详解】(1)由题意,椭圆C的离心率e =,且椭圆上一动点M 到2F1,可得22221c e a a c a b c ⎧==⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得11a cb ⎧=⎪=⎨⎪=⎩,所以椭圆的标准方程为2212x y +=.(2)由题意可知,当k 不存在时,1F AB ∆不符合题意. 设直线AB l :()1y k x =-,则1AF l :()11y x k=-+, ∴()()111y k x y x k ⎧=-⎪⎨=-+⎪⎩,得()2211k x k +=-,∴22212,11k k A k k ⎛⎫-- ⎪++⎝⎭∴()()()222222218211k k kk-+=++,427610k k --=,∴21k =,直线AB 的方程为1y x =-+或1y x =-.(3)设(),0P m ,()11,A x y ,()22,B x y ,AB l :()1y k x =-,()22122y k x x y ⎧=-⎨+=⎩∴()2222124220k x k x k +-+-=, ∴2122412k x x k +=+,21222212k x x k-=+, ∵11AP y k x m =-,22BP y k x m =-,所以()()()()1221120AP BPy x m y x m k k x m x m -+-+==--, ∴()1221120y x y x m y y +-+=,∴()()1212220kx x k mk x x km -+++=, ∴24km k =,2m =,∴()2,0P .【点睛】本题主要考查椭圆的标准方程的求解、及直线与圆锥曲线的位置关系的综合应用,解答此类题目,通常联立直线方程与椭圆(圆锥曲线)方程,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等. 21.已知函数1()ln f x a x x=-,a R ∈. (1)若曲线()y f x =在点处的切线与直线20x y +=垂直,求a 的值;(2)求函数()f x 的单调区间;(3)当1a =,且2x ≥时,证明:(1)25f x x -≤-. 【答案】(1)1(2)见解析(3)见解析 【解析】【详解】(1)函数()f x 的定义域为{}0x x ,21()a f x x x '=+. 又曲线()y f x =在点处的切线与直线20x y +=垂直,所以(1)12f a '=+=,即1a =.(2)由于21()ax f x x ='+. 当0a ≥时,对于,有()0f x '>在定义域上恒成立,即()f x 在上是增函数.当0a <时,由()0f x '=,得.当时,()0f x '>,()f x 单调递增;、 当时,()0f x '<,()f x 单调递减.(3)当1a =时,1(1)ln(1)1f x x x -=---,.、令1()ln(1)251g x x x x =---+-. 2211(21)(2)()21(1)(1)x x g x x x x --=+-=----'. 当2x >时,()0g x '<,()g x 在单调递减. 又(2)0=g ,所以()g x 在恒为负.所以当时,()0g x ≤.即1ln(1)2501x x x ---+≤-. 故当1a =,且2x ≥时,(1)25f x x -≤-成立. 22.在平面直角坐标系xOy 中,直线l 的参数方程为1cos sin x t y t αα=+⎧⎨=⎩(其中t 为参数,且0)απ<<,在以O为极点、x 轴的非负半轴为极轴的极坐标系(两种坐标系取相同的单位长度)中,曲线C 的极坐标方程为22tan cos ρθθ=,设直线l 经过定点P ,且与曲线C 交于A 、B 两点. (Ⅰ)求点P 的直角坐标及曲线C 的直角坐标方程; (Ⅱ)求证:不论a 为何值时,2211||||+PA PB 为定值.【答案】(Ⅰ)直角坐标为(1,0),22(0)y x x =≠;(Ⅱ)见解析 【解析】 【分析】(Ⅰ)根据题意,令直线l 的参数方程中0t =即可求出点P 的直角坐标,整理化简曲线C 的极坐标方程,结合cos ,sin x y ρθρθ==,即可得到曲线C 的直角坐标方程;(Ⅱ)将直线l 的参数方程代入曲线C 的直角坐标方程,根据参数t 的几何意义,利用韦达定理即可证明2211||||+PA PB 为定值. 【详解】(Ⅰ)因为直线l 的参数方程为1cos sin x t y t αα=+⎧⎨=⎩(其中t 为参数,且0)απ<<, 所以当0t =时,得点(1,0)P ,即点P 的直角坐标为(1,0);又曲线C 的极坐标方程为22tan cos ρθθ=, 2sin 2cos 0ρθθ∴=≠,22sin 2cos 0ρθρθ∴=≠,Q cos ,sin x y ρθρθ==,22(0)y x x ∴=≠,即曲线C 的直角坐标方程为22(0)y x x =≠;(Ⅱ)证明:将直线l 的参数方程1cos sin x t y t αα=+⎧⎨=⎩代入22(0)y x x =≠, 整理得22sin 2cos 20t t αα--=,其中0απ<<,所以判别式△2224cos 8sin 44sin 0ααα=+=+>,由韦达定理可得,1222cos sin t t αα+=,1222sin t t α-=, 由参数方程中参数的几何意义可得,2221212222221212()211114cos 4sin 1||||()4t t t t PA PB t t t t αα+-++=+===, 即不论a 为何值时,2211||||+PA PB 都为定值1. 【点睛】本题考查极坐标方程与直角坐标方程的互化及参数方程中参数的几何意义;利用参数方程中参数的几何意义是证明2211||||+PA PB 为定值的关键;属于中档题、常考题型. 23.已知不等式|2||1|5x x -++…的解集为M .(Ⅰ)求M ;(Ⅱ)设m 为M 中的最大元素,正数a ,b 满足a b m +=【答案】(Ⅰ){|23}M x x =-剟;(Ⅱ)【解析】【分析】(Ⅰ)利用分段讨论法,分12x -<<,1x ≤-,2x ≥三种情况分别去绝对值解不等式,然后再取并集即可; (Ⅱ)由(Ⅰ)知,3a b +=,先平方,利用均值不等式求出2的最大值,然后再开方即可。
2020衡水名师原创理科数学专题卷:专题04《函数的图象、函数的应用》【教师版】

8
2020 衡水名师原创理科数学专题卷
三.解答题(共 70 分)
y
17.(本题满分 10 分)
已知函数 f (x) x2 2 x 1. (1)证明函数 f (x) 是偶函数; (2)在如图所示的平面直角坐标系中作出函数 f (x) 的图象. 【答案】(1)利用定义证明 f ( x) f (x)
令
x
1 ,则
f
1
2 1 e1
1 cos1
1 e 1 e
cos1
0 ,故选
B.
4. 已知当 x 0,1 时,函数 y mx 12 的图象与 y x m 的图象有且只有一个交点,则正实数 m 的取值
范围是
(A) 0,1 2 3,
(C) 0, 2 2 3,
(B) 0,13,
C.
2e,
6 e3
D. 0, 2e
【答案】A
【解析】显然当 m 0 时,原方程可化为 f (x) 0 仅有两个解,排除 B,C,当 m 1时,设 h x ex x2 3 仅
有一个零点(如下图),故原方程仅有一个解排除 D,故选 A.
11. 某工厂产生的废气经过过滤后排放,排放时污染物的含量不得超过 1%.己知在过滤过程中废气中的污染
(D) 0, 2 3,
【答案】B
【解析】当 0 m 1时, 1 1 , y (mx 1)2 单调递减,且 y (mx 1)2 [(m 1)2,1] , y x m 单 m
调递增,且 y x m [m,1 m] ,此时有且仅有一个交点;当 m 1时,0 1 1 ,y (mx 1)2 在[ 1 ,1]
【解析】设
,
,
有两个交点
如图,
只有当第二个交点与 个交点.于是:切点:
衡水中学专版——导数及其应用(含解析)

衡水中学专版——导数及其应用 一、选择题1. 【2020届河北省衡水中学高三上学期五调考试】不等式()22ln 40ax a x x a ->-->解集中有且仅含有两个整数,则实数a 的取值范围是( ) A .()ln3,2B .[)2ln3,2-C .(]0,2ln3-D .()0,2ln3-2. 【2020届河北省衡水中学高三年级小二调考试】已知函数()y f x =的导函数为()f x ',满足R x ∀∈,()()f x f x '>且(1)e f =,则不等式(ln )f x x >的解集为( ) A .(e,)+∞B .(1,)+∞C .(0,e)D .(0,1)3. 【2020届河北省衡水中学高三年级小二调】已知函数()()()ln 2240f x x a x a a =+--+>,若有且只有两个整数1x ,2x 使得()10f x >,且()20f x >,则a 的取值范围是( ) A .()ln3,2 B .[)0,2ln3- C .()0,2ln3-D .(]0,2ln3-4.【河北省衡水中学2018届高三上学期七调考试数学(理)试题】已知e 为自然对数的底数,若对任意的1,1x e ⎡⎤∈⎢⎥⎣⎦,总存在唯一的()0,y ∈+∞,使得ln ln 1y yx x a y+++=成立,则实数a 的取值范围是( ) A .(),0-∞ B .(],0-∞ C .2,e e ⎛⎤⎥⎝⎦D .(],1-∞-5. 【河北省衡水中学2018届高三十六模】已知函数()()()ln ,23f x x g x m x n ==++,若对任意的()0,x ∈+∞,总有()()f x g x ≤恒成立,记()23m n +的最小值为(),f m n ,则(),f m n 最大值为( )A .1B .1e C .21eD6. 【河北省衡水中学2018年高考押题(二)】 已知函数,若存在三个零点,则的取值范围是( )A .B .C .D .7. 【河北省衡水中学2018年高考押题(三)】已知0x 是方程222ln 0x x e x +=的实根,则下列关于实数0x 的判断正确有______.①0ln2x ≥ ②01x e< ③002ln 0x x += ④002ln 0xe x +=8.【衡水中学2019届高三开学二调考试】 已知函数,,若对任意的,,都有成立,则实数的取值范围是 A .B .C .D .9. 【衡水中学2019届高三开学二调考试】 已知函数,则满足的x 的取值范围是( )A .1<x<3B .0<x<2C .0<x<eD .1<x<e 二、填空题1. 【2020届河北省衡水中学高三年级小二调考试】已知定义域为()0,∞+的函数()xe g x x=,()22ln 1h x x x =++,若存在唯一实数0x ,使得()()003g x m h x e -=,则实数m 的值是__________. 2.【2020届河北省衡水中学高三年级小二调考试】已知方程2()()10f x kf x -+=恰有四个不同的实数根,当函数2()x f x x e =时,实数k 的取值范围是____.3. 【河北省衡水中学2019-2020学年度高三年级上学期四调】设定义在D 上的函数()y h x =在点00(,())P x h x 处的切线方程为:()l y g x =,当0x x ≠时,若()()0h x g x x x ->-在D 内恒成立,则称P 点为函数()y h x =的“类对称中心点”,则函数22()ln 2x f x x e=+的“类对称中心点”的坐标是________.4.【衡水中学2019届高三开学二调考试】已知0,0,k b >>且()ln 2kx b x +≥+对任意的2x >-恒成立,则bk的最小值为_____. 三、解答题1. 【2020届河北省衡水中学高三上学期五调考试】 已知函数()ln(1)1x f x e x ax x =--+-. (1)若0a =,证明:()0f x ≥.(2)若函数()f x 在0x =处有极大值,求实数a 的取值范围. 2. 【2020届河北省衡水中学高三年级小二调】若函数()21ln 22f x a x x ax =+-,0a >,a 为常数.(1)求函数()f x 的单调区间;(2)若()f x 有两个极值点分别为1x ,2x ,不等式()()()1212f x f x x x λ+<+恒成立,求λ的最小值.3.【2020届河北省衡水中学高三年级小二调】若定义在R 上的函数()()1xf x e a x =--,a ∈R .(1)求函数()f x 的单调区间;(2)若x ,y ,m 满足x m y m -≤-,则称x 比y 更接近m .当2a ≥且1x ≥时,试比较e x和1x e a -+哪个更接近ln x ,并说明理由.4.【2020届河北省衡水中学高三年级小二调】已知函数()1ln 1f x x a x ⎛⎫=+- ⎪⎝⎭,a R ∈.(1)若()0f x ≥,求实数a 取值的集合;(2)证明:()12ln 2xe x e x x+≥-+- 5.【2020届河北省衡水中学高三年级小二调】 已知函数()11f x a x=+-(a ∈R ).(1)若2a =,证明:当1x >时,()2ln x f x >;(2)若对于任意的0x >且1x ≠,都有()()2ln 1a f x x -⋅>,求a 的取值集合. 6. 【2020届河北省衡水中学全国高三期末大联考】 已知函数2()ln 1f x x mx =++,m ∈R .(1)当2m =-时,求函数()f x 的单调区间及极值; (2)讨论函数()f x 的零点个数.7. 【河北省衡水市衡水中学2019-2020学年高三上学期二调】 设函数()sin cos ,[0,]2f x a x x x x π=-∈. (Ⅰ)当1a =时,求证:()0f x ≥;(Ⅱ)如果()0f x ≥恒成立,求实数a 的最小值.8.【河北省衡水市衡水中学2019-2020学年高三上学期二调】 已知函数22()x f x e ax =-,a ∈R .(1)若()f x 在区间(0,)+∞内单调递增,求a 的取值范围; (2)若()f x 在区间(0,)+∞内存在极大值M ,证明:4aM <. 9.【河北省衡水市衡水中学2019-2020学年高三上学期二调】已知函数1()(ln 1)f x a x x =-+的图像与x 轴相切,21()(1)log 2b x g x b x -=--.(1)求证:2(1)()x f x x-≤;(2)若21x b <<,求证:2(1)0()2b g x -<<.10.【河北省衡水中学2018届高三毕业班模拟演练一】 已知函数.(1)若函数恰有一个零点,求实数的取值范围;(2)设关于的方程的两个不等实根,求证:(其中为自然对数的底数).11. 【河北省衡水中学2018—2019学年高三年级上学期四调考试数学(理)试题】已知函数的图象的一条切线为轴.(1)求实数的值; (2)令,若存在不相等的两个实数满足,求证:.12. 【河北省衡水中学2018届高三第十六次模拟考试数学(理)试题】 已知函数(为常数,是自然对数的底数),曲线在点处的切线与轴垂直. (1)求的单调区间;(2)设,对任意,证明:.13. 【河北省衡水中学2018届高三第十七次模拟考试数学(理)试题】 已知函数.(1)求函数的单调区间;(2)当时,函数的图象恒不在轴的上方,求实数的取值范围.14. 【河北省衡水中学2018届高三高考押题(一)理数试题试卷】已知函数()22ln 2(0)f x x mx x m =-+>(1)讨论函数()f x 的单调性; (2)当32m ≥时,若函数()f x 的导函数()'f x 的图象与x 轴交于,A B 两点,其横坐标分别为1212,()x x x x <,线段AB 的中点的横坐标为0x ,且12,x x 恰为函数()2ln h x x cx bx =--的零点,求证:()()1202'ln23x x h x -≥-+ 15. 【河北省衡水中学2018届高三十六模】 已知函数(为常数,是自然对数的底数),曲线在点处的切线与轴垂直. (1)求的单调区间;(2)设,对任意,证明:.16. 【河北省衡水中学2018年高考押题(二)】 设函数.(1)试讨论函数的单调性;(2)设,记,当时,若方程有两个不相等的实根,,证明.17. 【河北省衡水中学2019届高三第一次摸底考试】 已知函数.(1)当时,求证:;(2)讨论函数的零点的个数。
专题5.1 导数的概念及其意义、导数的运算【原卷版】

1.函数y =f (x )在x =x 0处的导数定义:称函数y =f (x )在x =x 0处的瞬时变化率为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即.2.函数f (x )的导函数 称函数为f (x )的导函数.1. 基本初等函数的导数公式原函数导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x n (n ∈Q *) f ′(x )=nx n -1 f (x )=sin x f ′(x )=cos x f (x )=cos x f ′(x )=-sin x f (x )=a x f ′(x )=a x ln a f (x )=e x f ′(x )=e x f (x )=log a x f ′(x )=1x ln af (x )=ln xf ′(x )=1x0000()()limlim x x f x x f x yxx ∆→∆→+∆-∆=∆∆00000()()()lim lim x x f x x f x yf x x x ∆→∆→+∆-∆==∆∆0()()()limx f x x f x f x x∆→+∆-=∆专题5.1 导数的概念及其意义、导数的运算2.导数的运算法则(1) [f (x )±g (x )]′=f ′(x )±g ′(x ); (2) [f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)(g (x )≠0). (4) 复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.1.函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).2.特别提醒:区分在点处的切线与过点处的切线(1)曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,斜率为f ′(x 0)的切线,是唯一的一条切线. (2)曲线y =f (x )过点P (x 0,y 0)的切线,点P 不一定是切点,切线至少有一条,切线可能有多条. 3.几类重要的切线方程(1)y =x -1是曲线y =l n x 的切线,y =x 是曲线y =l n (x +1)的切线,…,y =x +n 是曲线y =l n (x +n +1)的切线,如图1.(2)y =x +1与y =e x 是曲线y =e x 的切线,如图2. (3)y =x 是曲线y =si n x 与y =t an x 的切线,如图3.(4)y =x -1是曲线y =x 2-x ,y =x l n x 及y =1-1x 的切线,如图4. 由以上切线方程可得重要不等式,如l n x ≤x -1,x +1≤e x 等.1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.2.可导函数y =f (x)的导数为f ′(x),若f ′(x)为增函数,则f (x)的图象是下凹的;反之,若f ′(x)为减函数,则f (x)的图象是上凸的. 3.熟记以下结论: (1) 211()'x x=-; 2()'()()'()()'()()f x f x g x g x f x g x g x ⎡⎤⋅-⋅=⎢⎥⎣⎦(2) 21'()[]'()[()]f x f x f x =- (f (x )≠0); (3)[af (x )±bg (x )]′=af ′(x )±bg ′(x ).考点01 导数的概念【典例01】(2023上·北京·高三北京市第三十五中学校考阶段练习)某种新产品的社会需求量y 是时间t 的函数,记作:()y f t =.若()00f y =,社会需求量y 的市场饱和水平估计为500万件,经研究可得,()f t 的导函数()f t '满足:()()()()500f t kf t f t '=-(k 为正的常数),则函数()f t 的图像可能为( )【规律方法】1.根据导数的定义求函数在点处导数的方法: ①求函数的增量; ②求平均变化率;③得导数,简记作:一差、二比、三极限.2.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.【总结提升】1.求函数导数的一般原则如下:(1)连乘积的形式:先展开化为多项式的形式,再求导; (2)根式形式:先化为分数指数幂,再求导;(3)复杂公式:通过分子上凑分母,化为简单分式的和、差,再求导; (4)不能直接求导:适当恒等变形,转化为能求导的形式再求导.求复合函数的导数,一般是运用复合函数的求导法则,将问题转化为求基本函数的导数解决. ①分析清楚复合函数的复合关系是由哪些基本函数复合而成的,适当选定中间变量; ②分步计算中的每一步都要明确是对哪个变量求导,而其中特别要注意的是中间变量;③根据基本函数的 导数公式及导数的运算法则,求出各函数的导数,并把中间变量转换成自变量的函数; ④复合函数的求导熟练以后,中间步骤可以省略,不必再写出函数的 复合过程.3.函数的导数与导数值的区间与联系:导数是原来函数的导函数,而导数值是导函数在某一点的函数值,导数值是常数.考点03 曲线切线的斜率、倾斜角问题【典例05】(2023上·辽宁葫芦岛·高三校联考阶段练习)奇函数()()()324f x ax a x x =+-∈R 在点()()1,1f 处的切线斜率为( )()()1,1f 处切线方程为 .【规律方法】以曲线上的点(x 0,f (x 0))为切点的切线方程的求解步骤: ①求出函数f (x )的导数f ′(x ); ②求切线的斜率f ′(x 0);③写出切线方程y -f (x 0)=f ′(x 0)(x -x 0),并化简.考点05 求过一点的切线方程(斜率)【典例09】(2023·全国·模拟预测)过原点与曲线()2ln ,2,1,2x x f x x x ≥⎧=⎨+<⎩相切的一条切线的方程为 .【典例10】(2023下·江西萍乡·高二校联考阶段练习)已知函数()3234f x x x =--.(1)求曲线()y f x =在1x =处的切线1l 的方程; (2)求过原点O 与曲线()y f x =相切的直线2l 的方程. 【总结提升】如果已知点(x 1,y 1)不在曲线上,则设出切点(x 0,y 0),解方程组⎩⎪⎨⎪⎧y 0=f (x 0),y 1-y 0x 1-x 0=f ′(x 0),得切点(x 0,y 0),进而确定切线方程.求切线方程时,要注意判断已知点是否满足曲线方程,即是否在曲线上;与曲线只有一个公共点的直线不一定是曲线的切线,曲线的切线与曲线的公共点不一定只有一个.考点06 求切点坐标【典例11】(2023·高二课时练习)曲线33y x x =-+在点P 处的切线平行于直线21y x =-,则点P 的坐标【典例12】(2019·江苏·高考真题)在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(e ,1)(e 为自然对数的底数),则点A 的坐标是____. 【总结提升】已知斜率求切点:已知斜率k ,求切点(x 1,f (x 1)),即解方程f ′(x 1)=k .考点07 切线的平行与垂直ln230x y -+=平行,则实数=a ( )A .ln22-B .ln2-C .2ln2-D .3ln2-考点08 曲线的公切线问题【典例15】(2023下·四川绵阳·高二校考期中)若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线()ln 1y x =+的切线,则k =( )A .2B .3C .1【规律总结】1.解决此类问题通常有两种方法一是利用其中一曲线在某点处的切线与另一曲线相切,列出关系式求解;二是设公切线l 在y =f (x )上的切点P 1(x 1,f (x 1)),在y =g (x )上的切点P 2(x 2,g (x 2)),则f ′(x 1)=g ′(x 2)=1212()()f xg x x x --.2.处理与公切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程(组)并解出参数,建立方程(组)的依据主要是:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.考点09 求参数问题【典例17】(2023·海南·校联考模拟预测)已知函数()()1e xf x x =+,过点(),0P m 作曲线()y f x =的两条切线,切点分别为()(),A a f a 和()(),B b f b ,若0a b +=,则实数m =( )A .0B .1C .2D .3【典例18】(2023下·广东汕头·高二统考期末)已知直线(,0)y ax b a b =+∈>R 是曲线()e x f x =与曲线已知曲线的切线条数求参数范围问题时,需要明确的是,曲线存在几条切线,就会相应的有几个切点,因此就可以将切线条数问题转化为切点个数问题;也就是说抓住“切点”这个“牛鼻子”,将问题进一步转化为关于相应函数零点个数问题.考点10 导数几何意义相关的应用问题【典例19】(2022·全国·高三专题练习)已知0,0a b >>,直线y x a =+与曲线1e 21x y b -=-+相切,则下列不等式成立的是( ) A .18ab ≤B .218a b+≤C D .3a b +≤求解与导数的几何意义有关问题时应注意的两点 (1)注意曲线上横坐标的取值范围. (2)谨记切点既在切线上又在曲线上.2.(2020·北京·高考真题)为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改,设企业的污水排放量W 与时间t 的关系为()W f t =,用()()f b f a b a---的大小评价在[,]a b 这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论: ①在[]12,t t 这段时间内,甲企业的污水治理能力比乙企业强;②在2t 时刻,甲企业的污水治理能力比乙企业强; ③在3t 时刻,甲、乙两企业的污水排放都已达标;④甲企业在[][][]112230,,,,,t t t t t 这三段时间中,在[]10,t 的污水治理能力最强. 其中所有正确结论的序号是____________________.3.(2022·全国·高考真题)若曲线()e x y x a =+有两条过坐标原点的切线,则a 的取值范围是________________. 一、单选题1.(2022下·安徽滁州·高二统考期末)已知函数()2ln f x x x =-,()f x '为()f x 的导函数,则()1f '的值为( )A .1-B .0C .1D .22.(2023上·山东济宁·高三统考期中)若曲线()1e xy ax =+在点()0,1处的切线方程是210x y -+=,则=a( ). A .3B .2C .1D .03.(2023上·陕西西安·高二长安一中校考期末)若曲线2ln 1y x x =++在点(1,2)处的切线与直线10x ay +-=垂直,则实数a 的值为( )A .-4B .-3C .4D .34.(2023下·湖北·高二武汉市第四十九中学校联考期中)若直线0x y a ++=是曲线()314f x x bx =+-与曲线()23ln g x x x =-的公切线,则a b -=( ).A .26B .23C .15D .11二、多选题5.(2023下·湖南·高二期中)过点(2,6)P -作曲线3()3f x x x =-的切线,则切线方程可能是( )A .30x y +=B .24540x y --=C .9240x y --=D .12240x y --=匀速旋转(到OB 处为止)时,所扫过的圆内阴影部分的面积S 是时间t 的函数,它的图象大致为( )A .B .C .D .若把图中的圆改成如图(1)所示的半圆,正确的答案是哪个?如果改成图(2)中的三角形呢?12.(2010上·黑龙江双鸭山·高三阶段练习)已知函数()316f x x x =+-.(1)求曲线()y f x =在点()2,6-处的切线方程;(2)直线l 为曲线()y f x =的切线,且经过原点,求直线l 的方程及切点坐标.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020衡水名师原创理科数学专题卷专题五 导数及其应用考点13:导数的概念及运算(1,2题)考点14:导数的应用(3-11题,13-15题,17-22题) 考点15:定积分的计算(12题,16题)考试时间:120分钟 满分:150分说明:请将选择题正确答案填写在答题卡上,主观题写在答题纸上第I 卷(选择题)一、选择题(本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是最符合题目要求的。
)1.函数()2sin f x x =的导数是( )A.2sin xB.22sin xC.2cos xD.sin 2x 答案.D【解析】由题意得,函数的导数为()2(sin )2sin (sin )2sin cos sin 2f x x x x x x x '''==⋅==.2.已知()21cos 4f x x x =+,()'f x 为()f x 的导函数,则()'f x 的图像是( )A 【解析】由题意得,()1sin 2f x x x '=-, 所以()11()sin()[sin ]()22f x x x x x f x ''-=---=--=-,所以函数()f x '为奇函数,即函数的图象关于原点对称,当2x π=时,1()1024f ππ'=-<,当2x >时,()0f x '>恒成立,故选A.3. 若2x =-是函数21()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( )A.1-B.32e --C.35e - D.1【答案】A4. 若曲线()ln y x a =+的一条切线为y ex b =+,其中,a b 为正实数,则2ea b ++的取值范围是( ) A.2,2e e ⎛⎫++∞⎪⎝⎭B.[),e +∞C.[)2,+∞D.[)2,e C 【解析】设切点为),(00y x ,则有2)ln(1000-=⇒⎪⎩⎪⎨⎧+=+=+ae b bex a x e e x ,e a b 2,0>∴>Θ,212≥+=++aa b e a ,故选C. 5. 已知函数2x y =的图象在点),(200x x 处的切线为l ,若l 也与函数x y ln =,)1,0(∈x 的图象相切,则0x 必满足( ) A .2100<<x B .1210<<x C .2220<<x D .320<<x D 【解析】函数2y x =的导数y'2x =,2y x =在点200(,)x x 处的切线斜率为02k x =,切线方程为()20002y x x x x -=-,设切线与ln y x =相交的切点为(),ln m m ,(01m <<),由ln y x =的导数为1'y x=可得012x m =,切线方程为()1ln y m x m m -=-,令0x =,可得20ln 1y m x =-=-,由01m <<可得012x >,且201x >,解得01x >由012m x =,可得()200,ln 210x x --=,令()()2ln 21,f x x x =-- ()()11,'20,x f x x f x x>=->在1x >递增, 且22ln 2210,33ln 2310ff=-<=->,则有()200ln 210x x --=的根02,3x ∈,故选D.6. 已知函数()f x 的导数为()f x ′,且()()()10x f x xf x ++>′对x R ∈恒成立,则下列函数在实数集内一定是增函数的为( )A.()f xB.()xf xC.()x e f xD.()x xe f x D 【解析】设()()x F x xe f x =,则()()()()()()()11x x x F x x e f x xe f x e x f x xf x =++=++⎡⎤⎣⎦′′′.()()()10x f x xf x ++>Q ′对R x ∈恒成立,且0x e >.()()0,F x F x >∴′∴在R 上递增.7. 已知函数()f x 与()'f x 的图象如图所示,则函数()()x f x g x e=的递减区间为( )A.()0,4B.()4,1,,43⎛⎫-∞ ⎪⎝⎭C.40,3⎛⎫⎪⎝⎭D.()()0,1,4,+∞ D 【解析】()()()()()()xx xx ex f x f e e x f e x f x g -'=-'='2, 令()0<'x g 即()()0<-'x f x f , 由图可得()()+∞∈,41,0Y x ,故函数单调减区间为()()0,1,4,+∞,故选D.8.定义在R 上的函数()f x 满足:'()1()f x f x >-,(0)6f =,'()f x 是()f x 的导函数,则不等式()5x x e f x e >+(其中e 为自然对数的底数)的解集为( )A .(0,)+∞B .(,0)(3,)-∞+∞UC .(,0)(1,)-∞+∞UD .(3,)+∞A 【解析】设x xg x e f x e x R =-∈()(),(),[]1'1x x x x g x e f x e f x e e f x f x f x f x '=+'-=+'--Q ()()()()(),()>(),100f x f x g x y g x ∴+'-∴'∴=()()>,()>,()在定义域上单调递增, 55x x e f x e g x +∴Q ()>,()>,又00061500g e f e g x g x =-=-=∴∴Q ()(),()>(),>,∴不等式的解集为0+∞(,).9. 已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a =( ) A .12-B .13C .12D .1【答案】C【解析】函数的零点满足()2112x x xx a e e --+-=-+,设()11x x gx e e --+=+,则()()211111111x x x x x x e g x eeee e---+----'=-=-=, 当()0g x '=时,1x =,当1x <时,()0g x '<,函数()g x 单调递减,当1x >时,()0g x '>,函数()g x 单调递增,当1x =时,函数取得最小值()12g=,设()22h x x x =- ,当1x =时,函数取得最小值1- ,10. 已知函数()f x 的定义域为R ,()'f x 为函数()f x 的导函数,当[)0,x ∈+∞时,()'2sin cos 0x x f x ->且x R ∀∈,()()cos21f x f x x -++=.则下列说法一定正确的是( ) A.15324643f f ππ⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭ B.15344643f f ππ⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭C3134324f f ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭ D.1332443f f ππ⎛⎫⎛⎫-->- ⎪ ⎪⎝⎭⎝⎭B 【解析】令()()2sin F x x f x =-,则()()''sin 2F x x f x =-.因为当[)0,x ∈+∞时,()'2sin cos 0x x f x ->,即()'sin 2x f x >,所以()()''sin 20F x x f x =->,所以()()2sin F x x f x =-在[)0,x ∈+∞上单调递增. 又x R ∀∈,()()cos21f x f x x -++=,所以()()22sin f x f x x -+=, 所以,,故()()2sin F x x f x =-为奇函数,所以()()2sin F x x f x =-在R 上单调递增,所以5463F F ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭.即15344643f f ππ⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭,故选B.11. 已知函数 ()()()()2325ln ,26,2f x x ax a x a Rg x x x x g x =--∈=-++-在[]1,4上的最大值为 b ,当[)1,x ∈+∞时,()f x b ≥恒成立,则a 的取值范围是( ) A.2a ≤ B.1a ≤ C.1a ≤- D.0a ≤ B【解析】)13)(2(253)(2'+--=++-=x x x x x g ,所以)(x g 在]2,1[上是增函数,]4,2[上是减函数0)(,0)2()(≥==x f g x g 在),1[+∞∈x 上恒成立,由),1[+∞∈x 知,0ln >+x x ,所以0)(≥x f 恒成立等价于xx x a ln 2+≤在),1[+∞∈x ,时恒成立,令),1[,ln )(2+∞∈+=x xx x x h , 有0)ln (ln 2)1()(2'>++-=x x xx x x h ,所以)(x h 在),1[+∞上是增函数, 有1)1()(=≥h x h ,所以1≤a .12. 已知0a >,0b >,'()f x 为()f x 的导函数,若()ln 2x f x =,且31112'()12b b dx f a b x =+-⎰,则a b+的最小值为( )A .B .C .92 D .92+ C 【解析】∵()x x f 1=',∴()a a f 1=',∵2212111213b b x b dx x b bb +-=⎪⎭⎫ ⎝⎛-=⎰,()1212113-+'=⎰b a f dx x b b ,∴1212221-+=+-b a b b ,∴1212=+b a ,∵0a >,0b >,∴()()29222252225212=⋅+≥++=⎪⎭⎫ ⎝⎛++=+a b b a a b b a b a b a b a ,当abb a 22=且1212=+b a ,即23,3==b a 时等号成立,故选C.第Ⅱ卷(非选择题)二.填空题(每题5分,共20分) 13. 已知函数ln 4()x f x x+=,求曲线)(x f 在点(1,(1))f 处的切线方程____________370x y +-=【解析】()23ln xx xf +-=',所以(1)3,(1)4k f f '==-=,切线方程为43(1),y x -=--即370x y +-=14. 若函数2()xf x x e ax =--在R 上存在单调递增区间,则实数a 的取值范围是 .2ln 22a ≤-【解析】因为函数2()xf x x e ax =--,所以()2xf x x e a '=--, 因为2()xf x x e ax =--在R 上存在单调递增区间, 所以()20xf x x e a '=-->,即2x a x e <-有解,令()2xg x x e =-,则()2xg x e '=-,则()20ln 2xg x e x '=-=⇒=,所以当ln 2x <时,()20xg x e '=->;当ln 2x >时,()20xg x e '=-<,当ln 2x =时,()max 2ln 22g x =-,所以2ln 22a <-.15. 若函数21()ln 12f x x x =-+在其定义域内的一个子区间(1,1)a a -+内存在极值,则实数a 的取值范围 .)23,1[【解析】函数的定义域为),0(+∞,令0214212)(2=-=-='x x x x x f , 解得21=x 或21-=x (不在定义域内舍), 所以要使函数在子区间)1,1(+-a a 内存在极值等价于),0()1,1(21+∞⊂+-∈a a , 即⎪⎪⎪⎩⎪⎪⎪⎨⎧>+<-≥-21121101a a a ,解得231<≤a ,答案为)23,1[.16. 如图,阴影部分的面积是_________.323【解析】由题意得,直线2y x =与抛物线23y x =-, 解得交点分别为(3,6)--和(1,2),抛物线23y x =-与x 轴负半轴交点(3,0)-,设阴影部分的面积为S ,则12203(32))S x x dx x dx =--+-⎰⎰032332)xdx x dx ---+-⎰5322392333=+-=.三.解答题(共70分) 17.(本题满分10分)已知函数()()x f x ae x a R =-∈,其中e 为自然对数的底数, 2.71828e =….(Ⅰ)判断函数()f x 的单调性,并说明理由;(Ⅱ)若[]1,2x ∈,不等式()x f x e -≥恒成立,求a 的取值范围. (Ⅰ)理由见解析;(Ⅱ)⎪⎪⎭⎫⎢⎣⎡+∞+,112e e【解析】(Ⅰ)由题可知,()x f x ae x =-,则()1x f x ae '=-, (i )当0a ≤时,()0f x '<,函数()x f x ae x =-为R 上的减函数, (ii )当0a >时,令10x ae -=,得ln x a =-,② (),ln x a ∈-∞-,则()0f x '<,此时函数()f x 为单调递减函数;②若()ln ,x a ∈-+∞,则()0f x '>,此时函数()f x 为单调递增函数.………………(4分) (Ⅱ)由题意,问题等价于[]1,2x ∈,不等式x x ae x e --≥恒成立, 即[]1,2x ∈,21xx xe a e+≥恒成立,令()21xx xe g x e+=,则问题等价于a 不小于函数()g x 在[]1,2上的最大值.………………(6分)由()()()()221214212x xx xxe exe e x e xxx e g x e '+-+--'==,当[]1,2x ∈时,()0g x '<,所以函数()g x 在[]1,2上单调递减,……………………………(8分) 所以函数()g x 在[]1,2x ∈的最大值为()2111g e e=+, 故[]1,2x ∈,不等式()x f x e -≥恒成立,实数a 的取值范围为⎪⎪⎭⎫⎢⎣⎡+∞+,112e e.…………(10分)18.(本题满分12分)已知函数()x f x e ax =-,(0a >). (Ⅰ)记()f x 的极小值为()g a ,求()g a 的最大值; (Ⅱ)若对任意实数x 恒有()0f x ≥,求()f a 的取值范围. (Ⅰ)()max 1g a =(Ⅱ)()f a 的取值范围是(21,e e e ⎤-⎦.【解析】(Ⅰ)函数()f x 的定义域是(),-∞+∞,()'x f x e a =-.在定义域上单调递增。