基本图形及其位置关系
几何数学讲解

几何数学讲解
几何数学是数学的一个重要分支,主要研究空间中点、线、面及其相关性质和运算。
以下是几何数学讲解的主要内容:
1. 几何基本概念:包括点、线、面、角、三角形、四边形等基本图形的定义和性质。
2. 几何图形的关系:研究图形之间的位置关系,如平行、垂直、相交等。
3. 几何图形的测量:包括长度、面积和体积的计算方法。
4. 几何图形的变换:研究图形在空间中的平移、旋转、对称等变换。
5. 几何推理与证明:通过逻辑推理和证明,探讨图形的性质和定理。
下面我们以直角梯形为例,进行几何数学的讲解:
直角梯形:有一个角是直角的梯形叫做直角梯形。
它具有以下基本性质:
1. 两底平行且不相等,两腰不平行也不相等,一腰上的两角是直角。
2. 直角梯形的面积公式:S = (a + b)h / 2,其中a和b分别为上底和下底,h为高。
3. 直角梯形的中位线等于高。
4. 直角梯形斜腰的中点到直角腰的两端点距离相等。
在直角梯形中,我们可以根据已知条件进行计算和推理,例如,给定直角梯形的上底、下底和高,我们可以计算出其面积。
此外,我们还可以通过证明来了解直角梯形的性质,如证明直角梯形的两条腰长不相等。
总之,几何数学主要研究空间中的图形及其性质,通过计算、推理和证明来探讨图形的规律。
在学习几何数学时,要注重对基本概念的理解,掌握图形的性质和定理,并培养空间想象力和逻辑思维能力。
各种图形的属性与识别技巧

各种图形的属性与识别技巧一、图形的定义与基本属性1.1 图形:图形是由线段、射线、曲线等组成的几何对象。
1.2 基本属性:图形的基本属性包括形状、大小、位置、方向等。
二、基本图形的识别与属性2.1 点:点是图形的基本组成单位,没有长度、宽度和高度。
2.2 线段:线段是由两个端点确定的直线部分,具有长度。
2.3 射线:射线是由一个起点和一个方向确定的直线,延伸至无穷远。
2.4 直线:直线是没有端点的无限延伸的线。
2.5 三角形:三角形是由三条边和三个角组成的图形。
2.6 四边形:四边形是由四条边和四个角组成的图形。
2.7 矩形:矩形是一种四边形,对边平行且相等,四个角都是直角。
2.8 正方形:正方形是矩形的一种特殊情况,四条边相等,四个角都是直角。
2.9 圆形:圆形是由无数个等距离于圆心的点组成的图形。
2.10 椭圆形:椭圆形是由两个焦点和连接这两个焦点的线段组成的图形。
三、图形的识别技巧3.1 观察法:通过观察图形的形状、大小、位置等特征来识别图形。
3.2 测量法:通过测量图形的边长、角度等数值来识别图形。
3.3 画图法:通过画出图形的轮廓或模型来识别图形。
3.4 分解法:将复杂图形分解为基本图形,再进行识别。
3.5 计算法:通过计算图形的面积、体积等数值来识别图形。
四、图形的变换4.1 平移:将图形沿着某个方向移动一定的距离,不改变图形的形状和大小。
4.2 旋转:将图形绕着某个点旋转一定的角度,不改变图形的大小。
4.3 翻转:将图形沿着某条直线翻转,改变图形的方向。
4.4 缩放:将图形按照一定的比例放大或缩小,不改变图形的形状。
五、图形的应用5.1 平面几何:研究二维空间中的图形及其属性、相互关系和变换。
5.2 立体几何:研究三维空间中的图形及其属性、相互关系和变换。
5.3 几何建模:利用图形构建现实世界中的模型,如建筑设计、动画制作等。
5.4 几何证明:利用图形和几何性质证明数学定理和命题。
两直线的位置关系公式

两直线的位置关系公式两直线的位置关系公式是指用数学公式来描述两条直线之间的位置关系。
在平面几何中,直线是最基本的图形,研究直线之间的位置关系对于解决很多几何问题具有重要意义。
下面将介绍两条直线的四种位置关系及其对应的公式。
1. 平行关系:当两条直线之间没有交点且始终保持相同的方向时,它们是平行的。
此时,可以使用斜率来判断两条直线是否平行。
如果两条直线的斜率相等但截距不相等,那么它们是平行的。
用数学公式表示为:直线1的斜率 = 直线2的斜率且直线1的截距≠ 直线2的截距2. 垂直关系:当两条直线之间的夹角为90度时,它们是垂直的。
在平面直角坐标系中,两条直线垂直的条件是它们的斜率的乘积等于-1。
用数学公式表示为:直线1的斜率× 直线2的斜率 = -13. 相交关系:当两条直线在平面上有一个公共的交点时,它们是相交的。
相交的情况有两种:交点为有限点和交点为无穷远点。
直线相交的条件是它们的斜率不相等。
用数学公式表示为:直线1的斜率≠ 直线2的斜率4. 重合关系:当两条直线完全重合时,它们是重合的。
重合的直线有无穷多个交点,它们的斜率和截距相等。
用数学公式表示为:直线1的斜率 = 直线2的斜率且直线1的截距 = 直线2的截距两条直线的位置关系可以通过斜率、截距等数学公式来判断。
这些公式可以帮助我们在解决几何问题时确定直线之间的位置关系,从而得出准确的结论。
在实际应用中,我们可以通过计算斜率和截距,或者观察直线的图形来判断它们的位置关系,进而解决相关问题。
直线的位置关系公式是平面几何中的重要概念,对于几何学的学习和实际问题的解决都具有重要意义。
《基本平面图形》基础知识点

(1)圆的定义:定义①:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆,记作“⊙O”,读作“圆O”.
定义②:圆可以看做是所有到定点O的距离等于定长r的点的集合.
(2)与圆有关的概念:弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等.
③线段:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA).
(2)点与直线的位置关系:①点经过直线,说明点在直线上;直线公理:经过两点有且只有一条直线.简称:两点确定一条直线.
(4)经过一点的直线有无数条,过两点就唯一确定,过三点就不一定了.
(1)角的和差倍分
①∠AOB是∠AOC和∠BOC的和,记作:∠AOB=∠AOC+∠BOC.∠AOC是∠AOB和∠BOC的差,记作:∠AOC=∠AOB-∠BOC.②若射线OC是∠AOB的三等分线,则∠AOB=3∠BOC或∠BOC= ∠AOB.
(2)度、分、秒的加减运算.在进行度分秒的加减时,要将度与度,分与分,秒与秒相加减,分秒相加,逢60要进位,相减时,要借1化60.
(3)扇形面积计算公式:设圆心角是n°,圆的半径为R的扇形面积为S,
或 (其中l为扇形的弧长)
(4)求阴影面积常用的方法:①直接用公式法;②和差法;③割补法.
(5)求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.
九、角平分线的定义
(1)角平分线的定义
从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.
(2)性质:若OC是∠AOB的平分线
则∠AOC=∠BOC= ∠AOB或∠AOB=2∠AOC=2∠BOC.
平面几何的基本图形

平面几何的基本图形平面几何是几何学中的一个分支,研究平面上的点、线、面及其相互关系。
在平面几何中,有一些基本图形是我们常见且重要的,它们是点、线、线段、射线、角、多边形、圆和曲线。
本文将会逐一介绍这些基本图形及其特征。
一、点(Point)点是平面上最基本的图形,用一个大写字母表示,如A、B、C。
点没有长度、面积和方向,只有位置。
点只有一个,不同的点可以有不同的位置。
在平面几何中,点是构成其他几何图形的基础。
二、线(Line)线由无数个点组成,无限延伸,没有宽度。
线段是有限的线,有两个端点。
线用两个大写字母表示,如AB、CD。
在平面几何中,线是连接两个点的直线路径。
三、线段(Line Segment)线段是两个点之间的有限线,有固定的长度。
线段用两个大写字母表示,并在两个字母之间加一条横线,如AB。
与线相比,线段具有确定的长度。
四、射线(Ray)射线起始于一个点,无限延伸,只有一个端点。
射线用一个大写字母及一个端点所在的小写字母表示,如OA,其中O为起点。
五、角(Angle)角是由两条射线共同起点组成的图形。
角用三个字母表示,中间的字母代表角的顶点,两边的字母分别代表两条射线。
例如∠ABC表示以点B为顶点,射线BA和射线BC所夹的角。
角可以根据其大小分为锐角、直角、钝角和平角。
六、多边形(Polygon)多边形是由多条线段连接而成的封闭图形。
多边形由至少三条线段组成,每个线段称为边,相邻边之间的交点称为顶点。
根据边的数量,多边形可以分为三角形、四边形、五边形等。
最常见的多边形是三角形、四边形和五边形。
七、圆(Circle)圆是由一条曲线和平面上的一个点组成的图形,其中曲线称为圆周,点称为圆心。
圆周上的任意一点到圆心的距离都相等,这个距离称为半径。
用一个大写字母表示圆心,用圆心字母上方加一个小写字母表示圆周,如O、OA。
八、曲线(Curve)曲线在平面上呈现出曲折或弯曲的形状,没有直线的性质。
曲线可以是闭合的,也可以是不闭合的。
三角形的位置关系三角形的重心

三角形的位置关系三角形的重心三角形的位置关系-三角形的重心三角形是几何学中最基本的图形之一,它的位置关系及其特点一直是数学研究的重点。
本文将讨论三角形的一个重要位置关系——三角形的重心。
一、三角形的定义与基本性质三角形是由三条线段组成的封闭图形,其具体定义为三个不共线的点所确定的图形。
三角形的基本性质包括内角和为180°、任意两边之和大于第三边、高度相等的两边成比例。
二、三角形的重心定义三角形的重心是指三角形三条线段的交点,也就是三条中线的交点。
中线是指连接一个顶点与对边中点的线段。
三、重心的性质1. 重心是三角形内部的点,它既在三角形的内部,也在三条中线上。
2. 三角形的三条中线交于一个点,即重心。
3. 重心到三个顶点的距离满足下列关系:GA/MA=GB/MB=GC/MC=2/1,其中GA、GB、GC表示重心到顶点A、B、C的距离,MA、MB、MC表示中线与对边的交点到对边起点的距离。
因此,重心到顶点的距离大于到对边中点的距离。
4. 重心将全体面积的三等分,即三角形被重心分成的三个小三角形的面积相等。
四、重心的意义与应用1. 重心是三角形的一个重要特征点,通过重心可以研究三角形的很多性质,如面积、周长、边长比、内角度量等。
2. 在工程学中,三角形的重心对于确定平衡和稳定性非常重要。
例如,在建筑设计中,确定物体的重心有助于合理布置家具、灯具等。
3. 三角形的重心还应用于平面几何的证明和计算中,可以通过构造重心来辅助推导和解题。
五、举例分析以一个具体的三角形为例,考察其重心的位置关系。
假设三角形的三个顶点分别为A、B、C,连接中线GA、GB、GC后交于重心G。
通过计算可以得到重心到各顶点的距离,验证重心的特性。
六、总结本文介绍了三角形的一个重要位置关系——三角形的重心,重心具有许多独特的性质和应用。
通过研究重心,我们可以更好地理解和应用三角形的几何性质。
希望本文对读者对三角形位置关系的理解有所帮助。
用向量研究平行和垂直关系

现
现实中的几何模型问题
实 生
欧氏几何中定理的证明
活
中
的
物
理
问
题
文化品读
立体几何 演绎体系
向量代数乃是空间结构的全面而且美妙的代 数,而空间的基本性质和基本定理的运用则转化 为其运算律的系统运用。这就是学习向量几何, 并用以探索大自然所要达到的境界!
——项武义
用向量研究平行关系与垂直关系
用向量研究
平行关系与垂直关系
用向量研究
平行关系与垂直关系
立体几何 演绎体系
用向量刻画两个基本图形及其基本位置关系(平行与垂直)
1. 如何用向量刻画空间中的一条直线? 2. 如何用向量刻画空间中的一个平面?
用向量研究平行关系与垂直关系
用向量刻画两个基本图形及其基本位置关系(平行与垂直)
两条直线平行的充要条件是它们的方向向量互相平行. 两条直线垂直的充要条件是它们的方向向量互相垂直. 一条直线与一个平面平行或一条直线在一个平面内的充要条件是这条直线的方向向量和 这个平面的法向量互相垂直. 一条直线与一个平面垂直的充要条件是这条直线的方向向量和这个平面的法向量互相平行. 两个平面平行的充要条件是它们的法向量互相平行. 两个平面互相垂直的充要条件是这两个平面的法向量互相垂直.
一条直线与一个平面内两条相交直线都垂直,则该直线与这个平面垂直.
l
AB
注:这里 OA, OB,l 是空间 的一个基底。
思考&体会
向量法解决问题的程序?
用向量研究平行关系与垂直关系
向量运用——现实中的几何模型问题
问题2:初探一个结晶体模型
如图,一个结晶体的形状为平行六面体.
其中,以顶点 A为端点的三条棱长都为
认识基本的几何图形:数学知识点

认识基本的几何图形:数学知识点几何学是数学中的一个重要分支,研究的是形状、大小、相对位置以及它们之间的关系。
在几何学中,我们学习了很多基本的几何图形,它们在我们的生活中无处不在。
本文旨在介绍一些常见的基本几何图形及其数学知识点。
1. 点(point):点是几何中最基本的概念之一,它没有大小和形状,只有位置。
我们可以用大写字母来表示一个点,例如,点A、点B等。
2. 线段(line segment):线段由两个点A和点B之间所有的点组成,并在两端用端点A和端点B表示。
我们可以使用符号“AB”来表示线段。
3. 直线(line):直线是由无数个点连在一起而成的,它没有长度,也没有宽度。
我们可以用一个小箭头来表示一条直线,例如,直线AB。
4. 射线(ray):射线是由一个起点和一个方向组成的,它只有一个端点,却可以延伸到无穷远处。
我们可以使用符号“→”来表示一条射线,例如,射线AB。
5. 角(angle):角是由两条射线的公共起点和它们的非公共部分组成的。
我们可以使用大写字母来表示一个角,例如,角ABC。
6. 直角(right angle):直角是指两条相互垂直的直线所夹的角,它的度数为90°。
直角可以用一个小方框来表示,例如,∟ABC。
7. 三角形(triangle):三角形是由三条线段组成的,每两条线段之间都有一个角。
三角形有不同的分类,包括等边三角形、等腰三角形、直角三角形等。
8. 长方形(rectangle):长方形是一种具有四个直角的四边形,它的对边相等,且相邻边互相垂直。
9. 正方形(square):正方形是一种特殊的长方形,它的四条边长度相等,且四个角都是直角。
10. 圆(circle):圆是由一个固定点到平面上所有其他点的距离都相等的点的集合。
圆由圆心和半径组成,圆心是圆上任意一点到圆心的直线的中垂线的交点。
11. 梯形(trapezoid):梯形是一种四边形,它的两条边是平行边,且相邻边之间没有交点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本图形及其位置关系一:【课前预习】(一):【知识梳理】1.直线、射线、线段之间的区别:联系:射线是的一部分。
线段是的一部分,也是的一部分.2.直线和线段的性质:(1)直线的性质:①经过两点直线,即两点确定一条直线;②两条直线相交,有交点.(2)线段的性质:两点之间的所有连线中,线段最短,即.3.角的定义:有公共端点的所组成的图形叫做角;角也可以看成是由一条射线绕着它的端点旋转而成的图形.(1)角的度量:把平角分成180份,每一份是1°的角,1°= ′,1′= ″(2)角的分类:(3)相关的角及其性质:①余角:如果两个角的和是直角,那么称这两个角互为余角.②补角:如果两个角的和是平角,那么称这两个角互为补角.③对顶角:如果两个角有公共顶点,并且它们的两边互为反向延长线,这样的两个角叫做对顶角.④互为余角的有关性质:①∠1+∠2=90°⇔∠1、∠2互余;②同角或等角的余角相等,如果∠l十∠2=90○,∠1+∠3= 90○,则∠2 ∠3.⑤互为补角的有关性质:①若∠A +∠B=180○⇔∠A、∠B互补;②同角或等角的补角相等.如果∠A+∠C=180○,∠A+∠B=180°,则∠B ∠C.⑥对顶角的性质:.(4)角平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.4.同一平面内两条直线的位置关系是:5.“三线八角”的认识:三线八角指的是两条直线被第三条直线所截而成的八个角.正确认识这八个角要抓住:同位角即位置相同的角;内错角要抓住“内部,两旁”;同旁内角要抓住“内部、同旁”.6.平行线的性质:(1)两条平行线被第三条直线所截,角相等,角相等,同旁内角互补.(2)过直线外一点直线和已知直线平行.(3)两条平行线之间的距离是指在一条直线上7.任意找一点向另一条直线作垂线,垂线段的长度就是两条平行线之间的距离.8.平行线的定义:在同一平面内.的两条直线是平行线。
9.如果两条直线都与第三条直线平行,那么,.10.两条直线被第三条直线所截,如果相等,那么这两条直线平行;如果相等.那么这两条直线平行;如果互补,那么这两条直线平行.这三个条件都是由角的数量关系(相等或互补)来确定直线的位置关系(平行)的,因此能否找两直线平行的条件,关键是能否正确地找到或识别出同位角,内错角或同旁内角.11.常见的几种两条直线平行的结论:(1)两条平行线被第三条直线所截,一组同位角的角平分线平行.(2)两条平行线被第三条直线所截,一组内错角的角平分线互相平行.(二):【课前练习】1.如果线段AB=5cm,BC= 3cm,那么A、C两点间的距离是()A.8 cm B、2㎝ C.4 cm D.不能确定2.计算:⑴132°19′42″+ 2 6°3 0′28″=_____⑵34.51°= 度分秒.⑶92 o3″-5 5°2 0′4 4″=_______;⑷33 °15′16″×5=_____3.下列说法中正确的个数有()①线段AB和线段BA是同一条线段;②射角AB和射线BA是同一条射线;③直线AB和直线BA是同一条直线;④射线AC在直线AB上;⑤线段AC在射线AB 上.A.1个B.2个C.3个D.4个4.如图,直线a ∥b,则∠A CB=________5.如果一个角的补角是150○,那么这个角的余角是____________二:【经典考题剖析】1.已知线段AB=20㎝,C为 AB中点,D为CB 上一点,E为DB的中点,且EB=3 ㎝,则CD= ________cm.解:4 点拨:由题意,BC=0.5AB=10cm,DB=2 EB=6cm,则CD=BC-DB=10-6=4(cm 2.如图所示,AC为一条直线,O是AC上一点,∠AOB=120°OE、OF分别平分∠AOB和∠BOC,.(1)求∠EOF的大小;(2)当OB绕O旋转时,OE、OF仍为∠AOB和∠BOC平分线,问:OF、OF有怎样的位置关系?你能否用一句话概括出这个命题.3.将一长方形纸片,按图的方式折叠,BC、BD为折痕,则∠CBD的度数为()A.60° B.75° C.90° D.95°4.如图,AB∥EF∥DC,EG∥BD,则图中与∠1相等的角共有()A.6个 B.5个 C.4个 D.2个5.如图,直线AD与AB、CD相交于 A、D两点,EC、BF与AB、CD交于点E、C、B、F,且∠l=∠2,∠B=∠C,求证:∠A=∠D.三:【课后训练】1.下列每组数分别是三根小木棒、的长度,用它们能摆成三角形的一组是()A.1cm,2cm,3cm B.3cm,4cm,5cmC.5cm,7cm,13cm D.7cm,7cm,15cm2.过△ABC的顶点C作边AB的垂线,如果这条垂线将∠ACB分为50°和20°的两个角,那么∠A、∠ B中较大的角的度数是________.3.如图,AB⊥CD,AC⊥BC,图中与∠CAB互余的角有()A.0个 B.l个 C.2个 D.3个4.如图所示,在△ABC中,∠A=50°,BO、CO分别平分∠ABC和∠ACB.求∠BOC的度数.5.已知:△ABC的两边AB=3cm,AC=8cm.(1)求第三边BC的取值范围;(2)若第三边BC长为偶数,求BC的长;(3)若第三边BC长为整数,求BC的长6.如图,已知∠AOC与∠B都是直角,∠BOC=59○.(1)求∠AOD的度数;(2)求∠AOB和∠DOC的度数;(3)∠A OB与∠DOC有何大小关系;(4)若不知道∠BOC的具体度数,其他条件不变,这种关系仍然成立吗?7.如图,AB∥CD,直线EF分别交A B、CD于点E、F,EG平分∠B EF,交CD于点G,∠1=50○求∠2的度数.8.如图,已知B D ⊥AC ,EF ⊥AC ,D 、F 为垂足,G 是AB 上一点,且∠l=∠2. 求证:∠AGD=∠ABC .9.已知:如图,CD ⊥AB 于D ,E 是BC 上一点,EF ⊥AB 于F .∠l=∠2. 求证:∠AGD=∠ACB .三角形一:【课前预习】 (一):【知识梳理】1.三角形中的主要线段(1)三角形的角平分线:三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线. (2)三角形的中线:连结三角形的一个顶点和它的对边中点的线段叫做三角形的中线. (3)三角形的高:从三角形的一个顶点向它的对边(或其延长线)引垂线,顶点和垂足间的线段叫做三角形的高.(4) 三角形的中位线:连接三角形两边的中点的线段。
2.三角形的边角关系(1)三角形边与边的关系:三角形中两边之和大于第三边;三角形任意两边之差小于第三边;(2)三角形中角与角的关系:三角形三个内角之和等于180o. 3.三角形的分类(1)按边分:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形底和腰不等的等腰三角形等腰三角形等边三角形(2)按角分:⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形锐角三角形斜三角形钝角三角形4.特殊三角形(1)直角三角形性质①角的关系:∠A+∠B=900;②边的关系:222a b c +=ac h E D BAC③边角关系:00901230C BC AB A ⎫∠=⎪⇒=⎬∠=⎪⎭;④09012C CE AB AE BE ⎫∠=⇒=⎬=⎭ ⑤2ch ab s ==;⑥2c R =a+b-c外接圆半径;内切圆半径r=2(2)等腰三角形性质①角的关系:∠A=∠B ;②边的关系:AC=BC ;③AC BC AD BDCD AB ACD BCD==⎫⎧⇒⎬⎨⊥∠=∠⎭⎩ ④轴对称图形,有一条对称轴。
(3)等边三角形性质①角的关系:∠A=∠B=∠C=600;②边的关系:AC=BC=AB ;③AB AC BD CD AD BC BAD CAD==⎫⎧⇒⎬⎨⊥∠=∠⎭⎩;④轴对称图形,有三条对称轴。
(4)三角形中位线:12AD BD DE BCAE BE DE BC⎧==⎫⎪⇒⎬⎨=⎭⎪⎩∥ 5.特殊三角形的判定[略,见《浙江中考》P 106] 6.两个重要定理:(1)角平分线性质定理及逆定理:角平分线上的点到角的两边的距离相等;到角的两边的距离相等的点在这个角的平分线上;三角形的三条角平分线相交于一点(内心)(2)垂直平分线性质定理及逆定理:线段垂直平分线上的点到两个端点的距离相等;到线段两端点的距离相等的点在这条线段的垂直平分线上;三角形的三边的垂直平分线相交于一点(外心)(二):【课前练习】1.以下列各组线段长为边,能组成三角形的是( ) A .1cm ,2cm ,4 cm B .8 crn ,6cm ,4cm C .12 cm ,5 cm ,6 cm D .2 cm ,3 cm ,6 cm2.若线段AB=6,线段DC=2,线段AC= a ,则( ) A .a =8 B .a =4 C .a =4或8 D .4<a<83.等腰三角形的两边长分别为5 cm 和10 cm ,则此三角形的周长是( ) A .15cm B .20cm C .25 cm D .20 cm 或25 cm4.一个三角形三个内角之比为1:1:2,则这个三角形的三边比为_______.5.如图,四边形ABCD 中,AB=3,BC=6,AC=35,AD=2,∠D=90○,求CD 的长和四边形 ABCD 的面积.二:【经典考题剖析】1.三角形中,最多有一个锐角,至少有_____个锐角,最多有______个钝角(或直角),三角形外角中,最多有______个钝角,最多有______个锐角.DABCDCABED CBA2.两根木棒的长分别为7cm和10cm,要选择第三根棒,将它钉成一个三角形框架,那么第三根木棒长xcm的范围是__________3.已知D、E分别是ΔABC的边AB、BC的中点,F是BE的中点.若面ΔDEF的面积是10,则ΔADC的面积是多少?4.正三角形的边长为a,则它的面积为_____.5.如图,DE是△ABC的中位线, F是DE的中点,BF的延长线交AC于点H,则AH:HE等于()A.l:1 B.2:1 C.1:2 D.3:2三:【课后训练】1.下列每组数分别是三根小木棒、的长度,用它们能摆成三角形的一组是()A.1cm,2cm,3cm B.3cm,4cm,5cmC.5cm,7cm,13cm D.7cm,7cm,15cm2.过△ABC的顶点C作边AB的垂线,如果这条垂线将∠ACB分为50°和20°的两个角,那么∠A、∠ B中较大的角的度数是________.3.如图,OE是∠AOB的平分线,CD∥OB交OA于C,交OE于D,∠ACD=50o,则∠CDE的度数是()A.175° B.130° C.140° D.155°4.如图,△ABC中,∠C=90○,点E在AC上,ED⊥AB,垂足为D,且ED平分△ABC的面积,则AD:AC等于()A.1:1 B.1: 2 C.1:2 D.1:45.在ΔABC中,AC=5,中线AD=4,则AB边的取值范围是()A.1<AB<9 B.3<AB<13C.5<AB<13 D.9<AB<136.如图,直角梯形ABCD中,AB∥ CD,CB⊥AB,△ABD是等边三角形,若AB=2,则CD=_______,BC=_________.7.如图所示,在△ABC中,∠A=50°,BO、CO分别平分∠ABC和∠ACB.求∠BOC的度数.8. 已知:△ABC的两边AB=3cm,AC=8cm.(1)求第三边BC的取值范围;(2)若第三边BC长为偶数,求BC的长;(3)若第三边BC长为整数,求BC的长9.已知△ABC,(1)如图1-1-27,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=1902A ︒+∠;(2)如图1-1-28,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90A︒-∠;(3)如图1-1-29,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=1902A︒-∠。