人教版八年级上数学专题之因式分解难题易错题(无答案)

合集下载

(易错题精选)初中数学因式分解技巧及练习题附解析

(易错题精选)初中数学因式分解技巧及练习题附解析

(易错题精选)初中数学因式分解技巧及练习题附解析一、选择题1.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ()244x x x x -+=-- ,故A 选项错误; B. ()21x xy x x x y ++=++,故B 选项错误; C. ()()()2x x y y y x x y -+-=- ,故C 选项正确;D. 244x x -+=(x-2)2,故D 选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.2.下列各式中,由等式的左边到右边的变形是因式分解的是( )A .(x +3)(x -3)=x 2-9B .x 2+x -5=(x -2)(x +3)+1C .a 2b +ab 2=ab(a +b)D .x 2+1=x 1()x x+ 【答案】C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是整式的乘法,故A 错误;B 、没有把一个多项式转化成几个整式积的形式,故B 错误;C 、把一个多项式转化成了几个整式积的形式,故C 正确;D 、没有把一个多项式转化成几个整式积的形式,故D 错误;故选:C .【点睛】本题考查了因式分解,因式分解是把一个多项式转化成几个整式积的形式.3.已知12,23x y xy -==,则43342x y x y -的值为( )A .23B .2C .83D .163【答案】C【解析】【分析】利用因式分解以及积的乘方的逆用将43342x y x y -变形为(xy)3(2x-y),然后代入相关数值进行计算即可.【详解】 ∵12,23x y xy -==,∴43342x y x y -=x 3y 3(2x-y)=(xy)3(2x-y)=23×13=83, 故选C .【点睛】本题考查了因式分解的应用,代数式求值,涉及了提公因式法,积的乘方的逆用,熟练掌握和灵活运用相关知识是解题的关键.4.已知2021201920102010201020092011x -=⨯⨯,那么x 的值为( )A .2018B .2019C .2020D .2021.【答案】B【解析】【分析】将2021201920102010-进行因式分解为2019201020092011⨯⨯,因为左右两边相等,故可以求出x 得值.【详解】解:2021201920102010- ()()()2019220192019220192019=201020102010=20102010120102010120101201020092011⨯-⨯-=⨯-⨯+=⨯⨯∴2019201020092011201020092011x ⨯⨯=⨯⨯∴x=2019故选:B .【点睛】本题主要考查的是因式分解中提取公因式和平方差公式,正确的掌握因式分解的方法是解题的关键.5.下列各式分解因式正确的是( )A .22()()()(1)a b a b a b a b +-+=++-B .236(36)x xy x x x y --=-C .223311(4)44a b ab ab a b -=- D .256(1)(6)x x x x --=+- 【答案】D【解析】【分析】 利用提公因式法、十字相乘法法分别进行分解即可.【详解】A. 22()()()(1)+-+≠++-a b a b a b a b ,故此选项因式分解错误,不符合题意;B. 23-6-(3-6-1)=x xy x x x y ,故此选项因式分解错误,不符合题意;C. 223211(4)44-=-a b ab ab a b ,故此选项因式分解错误,不符合题意; D. 256(1)(6)x x x x --=+-,故此选项因式分解正确,符合题意.故选:D【点睛】本题考查了提公因式法与十字相乘法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用其他方法进行分解.6.把多项式分解因式,正确的结果是( )A .4a 2+4a+1=(2a+1)2B .a 2﹣4b 2=(a ﹣4b )(a+b )C .a 2﹣2a ﹣1=(a ﹣1)2D .(a ﹣b )(a+b )=a 2+b 2【答案】A【解析】【分析】本题考查的是因式分解中的平方差公式和完全平方公式【详解】解:A. 4a 2+4a+1=(2a+1)2,正确;B. a 2﹣4b 2=(a ﹣2b )(a+2b ),故此选项错误;C. a 2﹣2a+1=(a ﹣1)2,故此选项错误;D. (a ﹣b )(a+b )=a 2﹣b 2,故此选项错误;故选A7.下列运算结果正确的是( )A .321x x -=B .32x x x ÷=C .326x x x ⋅=D .222()x y x y +=+【答案】B【解析】【分析】根据合并同类项法则、同底数幂乘除法法则、公式法分解因式逐项进行计算即可得.【详解】A 、3x ﹣2x =x ,故A 选项错误;B 、x 3÷x 2=x ,正确;C 、x 3•x 2=x 5,故C 选项错误;D 、x 2+2xy+y 2=(x+y)2,故D 选项错误,故选B.【点睛】本题考查了合并同类项、同底数幂乘除、公式法分解因式,熟练掌握相关的运算法则以及完全平方公式的结构特征是解题的关键.8.多项式x 2y (a -b )-xy (b -a )+y (a -b )提公因式后,另一个因式为( ) A .21x x -+B .21x x ++C .21x x --D .21x x +-【答案】B【解析】解:x 2y (a -b )-xy (b -a )+y (a -b )= y (a -b )(x 2+x +1).故选B .9.下列各式从左到右的变形中,属于因式分解的是( )A .m (a +b )=ma +mbB .a 2+4a ﹣21=a (a +4)﹣21C .x 2﹣1=(x +1)(x ﹣1)D .x 2+16﹣y 2=(x +y )(x ﹣y )+16【答案】C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是整式的乘法,故A 不符合题意;B 、没把一个多项式转化成几个整式积的形式,故B 不符合题意;C 、把一个多项式转化成几个整式积的形式,故C 符合题意;D 、没把一个多项式转化成几个整式积的形式,故D 不符合题意;故选C .【点睛】本题考查了因式分解的意义,判断因式分解的标准是把一个多项式转化成几个整式积的形式.10.多项式2()()()x y a b xy b a y a b ---+-提公因式后,另一个因式为( ) A .21x x --B .21x x ++C .21x x --D .21x x +-【答案】B【解析】【分析】各项都有因式y (a-b ),根据因式分解法则提公因式解答.【详解】 2()()()x y a b xy b a y a b ---+-=2()()()x y a b xy a b y a b -+-+-=2()(1)y a b x x -++,故提公因式后,另一个因式为:21x x ++,故选:B.【点睛】此题考查多项式的因式分解,掌握因式分解的方法是解题的关键.11.已知a ,b ,c 满足3a b c ++=,2224a b c ++=,则222222222a b b c c a c a b+++++=---( ). A .0B .3C .6D .9【答案】D【解析】【分析】将等式变形可得2224+=-a b c ,2224+=-b c a ,2224+=-a c b ,然后代入分式中,利用平方差公式和整体代入法求值即可.【详解】解:∵2224a b c ++=∴2224+=-a b c ,2224+=-b c a ,2224+=-a c b∵3a b c ++= ∴222222222+++++---a b b c c a c a b=222444222---++---c a b c a b=()()()()()()222222222-+-+-+++---c c a a b b c ab=222+++++c a b=()6+++c a b=6+3=9故选D .【点睛】此题考查的是分式的化简求值题和平方差公式,掌握分式的基本性质和平方差公式是解决此题的关键.12.某天数学课上,老师讲了提取公因式分解因式,放学后,小华回到家拿出课堂笔记,认真复习老师课上讲的内容,他突然发现一道题:-12xy 2+6x 2y+3xy=-3xy•(4y-______)横线空格的地方被钢笔水弄污了,你认为横线上应填写( )A .2xB .-2xC .2x-1D .-2x-l【答案】C【解析】【分析】根据题意,提取公因式-3xy ,进行因式分解即可.【详解】解:原式=-3xy×(4y-2x-1),空格中填2x-1.故选:C .【点睛】本题考查用提公因式法和公式法进行因式分解的能力.一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止,同时要注意提取公因式后各项符号的变化.13.已知a b >,a c >,若2M a ac =-,N ab bc =-,则M 与N 的大小关系是( ) A .M N <B .M N =C .M N >D .不能确定【答案】C【解析】【分析】计算M-N 的值,与0比较即可得答案.【详解】∵2M a ac =-,N ab bc =-,∴M-N=a(a-c)-b(a-c)=(a-b)(a-c),∵a b >,a c >,∴a-b >0,a-c >0,∴(a-b)(a-c)>0,∴M >N ,故选:C .【点睛】本题考查整式的运算,熟练掌握运算法则并灵活运用“作差法”比较两式大小是解题关键.14.下列因式分解正确的是( )A .()2211x x +=+B .()22211x x x +-=- C .()()22x 22x 1x 1=-+- D .()2212x x x x -+=-+ 【答案】C【解析】【分析】依据因式分解的定义以及提公因式法和公式法,即可得到正确结论.【详解】解:D 选项中,多项式x 2-x+2在实数范围内不能因式分解;选项B ,A 中的等式不成立;选项C 中,2x 2-2=2(x 2-1)=2(x+1)(x-1),正确.故选C .【点睛】本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法.15.下列式子从左到右变形是因式分解的是( )A .12xy 2=3xy •4yB .(x +1)(x ﹣3)=x 2﹣2x ﹣3C .x 2﹣4x +1=x (x ﹣4)+1D .x 3﹣x =x (x +1)(x ﹣1)【答案】D【解析】【分析】根据因式分解的定义逐个判断即可.【详解】A 、不是因式分解,故本选项不符合题意;B 、不是因式分解,故本选项不符合题意;C 、不是因式分解,故本选项不符合题意;D 、是因式分解,故本选项符合题意;故选:D .【点睛】此题考查因式分解的定义,能熟记因式分解的定义的内容是解题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.16.将3a b ab -进行因式分解,正确的是( )A .()2a a b b -B .()21ab a -C .()()11ab a a +-D .()21ab a - 【答案】C【分析】多项式3a b ab -有公因式ab ,首先用提公因式法提公因式ab ,提公因式后,得到多项式()21x -,再利用平方差公式进行分解.【详解】()()()32111a b ab ab a ab a a -=-=+-,故选:C .【点睛】此题主要考查了了提公因式法和平方差公式综合应用,解题关键在于因式分解时通常先提公因式,再利用公式,最后再尝试分组分解;17.把多项式3(x -y)-2(y -x)2分解因式结果正确的是( )A .()()322x y x y ---B .()()322x y x y --+C .()()322x y x y -+-D .()()322y x x y -+-【答案】B【解析】【分析】提取公因式x y -,即可进行因式分解.【详解】 ()()232x y y x --- ()()322x y x y =--+故答案为:B .【点睛】本题考查了因式分解的问题,掌握因式分解的方法是解题的关键.18.下列不是多项式32633x x x +-的因式的是( )A .1x -B .21x -C .xD .3+3x【答案】A【解析】【分析】将多项式32633x x x +-分解因式,即可得出答案.【详解】解:∵32633x x x +-=23(21)3(21)(1)x x x x x x +-=-+又∵3+3x =3(x+1)∴21x -,x ,3+3x 都是32633x x x +-的因式,1x -不是32633x x x +-的因式. 故选:A此题主要考查了提公因式法与十字相乘法的综合运用,熟练应用十字相乘法分解因式是解题关键.19.下列等式从左到右的变形,属于因式分解的是( )A .2(3)(2)6x x x x +-=+-B .24(2)(2)x x x -=+-C .2323824a b a b =⋅D .1()1ax ay a x y --=-- 【答案】B【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A .是整式乘法,故A 错误;B .是因式分解,故B 正确;C .左边不是多项式,不是因式分解,故C 错误;D .右边不是整式积的形式,故D 错误.故选B .【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.20.三角形的三边a 、b 、c 满足a (b ﹣c )+2(b ﹣c )=0,则这个三角形的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形 【答案】A【解析】【分析】首先利用提取公因式法因式分解,再进一步分析探讨得出答案即可【详解】解:∵a (b-c )+2(b-c )=0,∴(a+2)(b-c )=0,∵a 、b 、c 为三角形的三边,∴b-c=0,则b=c ,∴这个三角形的形状是等腰三角形.故选:A .【点睛】本题考查了用提取公因式法进行因式分解,熟练掌握并准确分析是解题的关键.。

人教版数学八年级上册 整式的乘法与因式分解易错题(Word版 含答案)

人教版数学八年级上册 整式的乘法与因式分解易错题(Word版 含答案)

人教版数学八年级上册 整式的乘法与因式分解易错题(Word 版 含答案)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.已知20192019a x =+,20192020b x =+,20192021c x =+,则222a b c ab ac bc ++---的值为( )A .0B .1C .2D .3【答案】D【解析】【分析】根据20192019a x =+,20192020b x =+,20192021c x =+分别求出a-b 、a-c 、b-c 的值,然后利用完全平方公式将题目中的式子变形,即可完成.【详解】∵20192019a x =+,20192020b x =+,20192021c x =+, 20192019201920201a b x x -=+--=-20192019201920212a c x x -=+--=-20192020201920211b c x x -=+--=-∴222a b c ab ac bc ++---2221(222222)2a b c ab ac bc =++--- 2222221(222)2a ab b a ac c b bc c =-++-++-+ 222111()()()222a b a c b c =-+-+- 222111(1)(2)(1)222=⨯-+⨯-+⨯- 11222=++ 3=故选D【点睛】本题考查完全平方公式的应用,熟练掌握完全平方公式是解题关键.2.利用平方差公式计算(25)(25)x x ---的结果是A .245x -B .2425x -C .2254x -D .2425x +【答案】C【解析】【分析】平方差公式是(a+b )(a-b )=a 2-b 2.解:()()()()()2225252525425254x x x x x x ---=--+=--=-, 故选择C.【点睛】本题考查了平方差公式,应牢记公式的形式.3.若代数式x 2+ax +64是一个完全平方式,则a 的值是( )A .-16B .16C .8D .±16【答案】D【解析】试题分析:根据完全平方式的意义,首平方,尾平方,中间加减积的2倍,可知a=±2×8=16.故选:D点睛:此题主要考查了完全平方式的意义,解题关键是明确公式的特点,即:完全平方式分两种,一种是完全平方和公式,就是两个整式的和括号外的平方。

人教版八年级上册数学 整式的乘法与因式分解易错题(Word版 含答案)

人教版八年级上册数学 整式的乘法与因式分解易错题(Word版 含答案)

人教版八年级上册数学 整式的乘法与因式分解易错题(Word 版 含答案)一、八年级数学整式的乘法与因式分解选择题压轴题(难) 1.若A =(2+1)(22+1)(24+1)(28+1)+1,则A 的末位数字是( )A .2B .4C .6D .8【答案】C 【解析】 【分析】 【详解】试题分析:根据题意可得A=(2-1)(2+1)(22+1)(24+1)(28+1)+1 =(22-1)(22+1)(24+1)(28+1)+1 =(24-1)(24+1)(28+1)+1 =(28-1)(28+1)+1 =216根据21=2;22=4;23=8;24=16;25=32;···因此可由16÷4=4,所以216的末位为6 故选C点睛:此题是应用平方差公式进行计算的规律探索题,解题的关键是通过添加式子,使原式变化为平方差公式的形式;再根据2的n 次幂的计算总结规律,从而可得到结果.2.把多项式2425m -分解因式正确的是( ) A .(45)(45)m m +- B .(25)(25)m m +- C .(5)(5)m m -+ D .(5)(5)m m m -+【答案】B 【解析】利用公式法分解因式的要点,根据平方差公式:()()22a b a b a b -=+-,分解因式为:()()()222425252525m m m m -=-=+-.故选B.3.若3x y -=,则226x y y --=( ) A .3 B .6C .9D .12【答案】C 【解析】 【分析】由3x y -=得x=3+y ,然后,代入所求代数式,即可完成解答. 【详解】解:由3x y -=得x=3+y代入()2222369669y y y y y y y +--=++--= 故答案为C. 【点睛】本题主要考查了完全平方公式的应用,灵活对代数式进行变形是解答本题的关键.4.因式分解x 2-ax +b ,甲看错了a 的值,分解的结果是(x +6)(x -1),乙看错了b 的值,分解的结果为(x -2)(x +1),那么x 2+ax +b 分解因式正确的结果为( ) A .(x -2)(x +3) B .(x +2)(x -3)C .(x -2)(x -3)D .(x +2)(x +3)【答案】B 【解析】 【分析】 【详解】因为(x +6)(x -1)=x 2+5x-6,所以b=-6; 因为(x -2)(x +1)=x 2-x-2,所以a=1. 所以x 2-ax +b=x 2-x-6=(x-3)(x+2). 故选B.点睛:本题主要考查了多项式的乘法和因式分解,看错了a ,说明b 是正确的,所以将看错了a 的式子展开后,可得到b 的值,同理得到a 的值,再把a ,b 的值代入到x 2+ax +b 中分解因式.5.下列各式从左边到右边的变形是因式分解的是( ) A .(a +1)(a -1)=a 2-1 B .a 2-6a +9=(a -3)2 C .x 2+2x +1=x (x +2x )+1 D .-18x 4y 3=-6x 2y 2·3x 2y【答案】B 【解析】 【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定. 【详解】A 、是多项式乘法,不是因式分解,错误;B 、是因式分解,正确.C 、右边不是积的形式,错误;D 、左边是单项式,不是因式分解,错误. 故选B . 【点睛】本题的关键是理解因式分解的定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,然后进行正确的因式分解.6.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-【答案】C 【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ()244x x x x -+=-- ,故A 选项错误;B. ()21x xy x x x y ++=++,故B 选项错误;C. ()()()2x x y y y x x y -+-=- ,故C 选项正确; D. 244x x -+=(x-2)2,故D 选项错误, 故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.7.有两块总面积相等的场地,左边场地为正方形,由四部分构成,各部分的面积数据如图所示.右边场地为长方形,长为()2a b +,则宽为( )A .12B .1C .()12a b + D .+a b【答案】C 【解析】 【分析】用长方形的面积除以长可得. 【详解】宽为:()()()()22222a ab ab b a b a b a b +++÷+=+÷+=()12a b + 故选:C 【点睛】考核知识点:整式除法与面积.掌握整式除法法则是关键.8.已知三个实数a,b,c 满足a-2b+c=0,a+2b+c <0,则( ) A .b>0,b 2-ac ≤0 B .b <0,b 2-ac ≤0 C .b>0,b 2-ac ≥0 D .b <0,b 2-ac ≥0【答案】D【解析】 【分析】根据题意得a+c=2b ,然后将a+c 替换掉可求得b <0,将b 2-ac 变形为()24a c -,可根据平方的非负性求得b 2-ac≥0. 【详解】 解:∵a-2b+c=0, ∴a+c=2b , ∴a+2b+c=4b <0, ∴b <0,∴a 2+2ac+c 2=4b 2,即22224a ac cb ++=∴b 2-ac=()22222220444a c a ac c a ac c ac -++-+-==≥,故选:D. 【点睛】 本题考查了等式的性质以及完全平方公式的应用,熟练掌握完全平方公式是解题关键.9.下列从左到右的变形中,属于因式分解的是( ) A .()()2224x x x +-=-B .2222()a ab b a b -+=-C .()11am bm m a b +-=+-D .()21(1)1111x x x x ⎛⎫--=---⎪-⎝⎭【答案】B 【解析】 【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,根据因式分解的定义,即可得到本题的答案. 【详解】A .属于整式的乘法运算,不合题意;B .符合因式分解的定义,符合题意;C .右边不是乘积的形式,不合题意;D .右边不是几个整式的积的形式,不合题意; 故选:B . 【点睛】本题考查了因式分解的定义,即将多项式写成几个因式的乘积的形式,掌握定义是解题的关键.10.已知a =96,b =314,c =275,则a 、b 、c 的大小关系是( )A .a >b >cB .a >c >bC .c >b >aD .b >c >a【答案】C 【解析】 【分析】根据幂的乘方可得:a =69=312,c =527=315,易得答案.【详解】因为a =69=312,b =143,c =527=315, 所以,c>b>a 故选C 【点睛】本题考核知识点:幂的乘方. 解题关键点:熟记幂的乘方公式.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.已知212()02a b -++=,则20192020a b =__________. 【答案】12【解析】 【分析】先利用绝对值和平方的非负性求得a 、b 的值,然后将20192020a b 转化为20192019()a b b ⋅的形式可求得. 【详解】∵212()02a b -++=∴a -2=0,12b +=0 解得:a=2,12b =-20192020ab=20192019()abb ⋅=()2019112⎛⎫-⨯- ⎪⎝⎭=1 2故答案为:12【点睛】本题考查绝对值和平方的非负性,解题关键是利用非负性,先得出a 、b 的值.12.多项式x 2+2mx+64是完全平方式,则m = ________ . 【答案】±8【解析】根据完全平方式的特点,首平方,尾平方,中间是加减首尾积的2倍,因此可知2mx=2×(±8)x ,所以m=±8.故答案为:±8.点睛:此题主要考查了完全平方式,解题时,要明确完全平方式的特点:首平方,尾平方,中间是加减首尾积的2倍,关键是确定两个数的平方.13.多项式18x n+1-24x n 的公因式是_______. 【答案】6x n【解析】运用公因式的概念,找出系数的最大公约数是6,相同字母的最低指数次幂是x n ,可得公因式为6x n . 故答案为:6x n.14.已知25,23a b ==,求2a b +的值为________. 【答案】15. 【解析】 【分析】逆用同底数幂的乘法运算法则将原式变形得出答案. 【详解】解:∵2a =5,2b =3, ∴2a+b =2a ×2b =5×3=15. 故答案为:15. 【点睛】此题主要考查了同底数幂的乘法运算,正确将原式变形是解题关键.15.若a 2+a-1=0,则a 3+2a 2+2014的值是___________. 【答案】2015 【解析】 【分析】根据a 2+a-1=0可得a 2+a=1,对a 3+2a 2+2014进行变形,整体代入即可. 【详解】 ∵a 2+a-1=0 ∴a 2+a=1a 3+2a 2+2014=a (a 2+a )+a 2+2014=a+a 2+2014=2015 故答案为2015 【点睛】本题考查的是多项式的乘法,整体代入法是解答的关键.16.已知:如图,△ACB 的面积为30,∠C 90=︒,BC a =,AC b =,正方形ADEB 的面积为169,则2()a b -的值为_____________.【答案】49 【解析】首先根据三角形的面积可知12ab=30,可得ab=60,再利用勾股定理和正方形的面积公式求出a 2+b 2=169,因此可知(a-b )2= a 2+b 2-2ab=169-120=49. 故答案为:49.点睛:此题主要考查了勾股定理,关键是掌握在任何直角三角形中,两条直角边的平方和等于斜边的平方,同时考查了三角形的面积计算和 完全平方公式的计算.17.已知x 、y 为正偶数,且2296x y xy +=,则22x y +=__________. 【答案】40 【解析】 【分析】根据22x y xy 96+=可知xy(x+y)=96,由x 、y 是正偶数可知xy≥4,x+y≥4,进而可知96 可分解成3种乘积的形式,分别计算即可得只有一种情况符合题意,即可求出x 、y 的值,根据x 、y 的值求得答案即可. 【详解】∵22x y xy 96+=, ∴xy(x+y)=96,∵x 、y 为正偶数,xy≥4,x+y≥4, ∴96=2⨯2⨯2⨯2⨯2⨯3=6⨯16=8⨯12=4⨯24 当xy(x+y)= 4⨯24时,无解, 当xy(x+y)= 6⨯16时,无解, 当xy(x+y)=8⨯12时,x+y=8,xy=12, 解得:x=2,y=6,或x=6,y=2, ∴x 2+y 2=22+62=40. 故答案为:40 【点睛】本题考查因式分解,把96分解成所有约数的积再分情况求解是解题关键.18.5(m -n)4-(n-m)5可以写成________与________的乘积.【答案】 (m-n)4, (5+m-n )【解析】把多项式5(m -n)4-(n-m)5运用提取公因式法因式分解即可得5(m -n)4-(n-m)5=(m -n)4(5+m-n ).故答案为:(m-n)4,(5+m-n ).19.计算:532862a a a -÷=()___________. 【答案】343a a - 【解析】根据整式的除法—多项式除以单项式,可知:532862a a a -÷=()8a 5÷2a 2-6a 3÷2a 2=343a a -. 故答案为:343a a -.20.若21x x +=,则433331x x x +++的值为_____. 【答案】4 【解析】 【分析】把所求多项式进行变形,代入已知条件,即可得出答案. 【详解】 ∵21x x +=, ∴()43222233313313313()1314x x x x xx x x x x x +++=+++=++=++=+=;故答案为:4. 【点睛】本题考查了因式分解的应用;把所求多项式进行灵活变形是解题的关键.。

【精选】人教版八年级上册数学 整式的乘法与因式分解易错题(Word版 含答案)

【精选】人教版八年级上册数学 整式的乘法与因式分解易错题(Word版 含答案)
解法三:设x2+2=m,5x=n,
则原式=(m+n)(m+n+1)﹣12=(m+n)2+(m+n)﹣12=(m+n+4)(m+n﹣3)
=(x2+5x+6)(x2+5x﹣1)=(x+2)(x+3)(x2+5x﹣1).
按照上面介绍的方法对下列多项式分解因式:
(1)(x2+x﹣4)(x2+x+3)+10;
(2)由(1)的规律可得
(2-1) =264-1,
=264-1.
故答案是:264-1.
(3)已知 ,求 .
= 2+3 ]
=76.
故答案是:76.
【点睛】
此题考查了多项式乘以多项式,弄清题中的规律是解本题的关键.
5.(1)填空: =;
=;
=.
(2)猜想: =(其中n为正整数,且 ).
(3)利用(2)猜想的结论计算: .
一、八年级数学整式的乘法与因式分解解答题压轴题(难)
1.材料:数学兴趣一小组的同学对完全平方公式进行研究:因 ,将左边展开得到 ,移项可得: .
数学兴趣二小组受兴趣一小组的启示,继续研究发现:对于任意两个非负数 、 ,都存在 ,并进一步发现,两个非负数 、 的和一定存在着一个最小值.
根据材料,解答下列问题:
(2)(x+1)(x+2)(x+3)(x+6)+x2;
(3)(x+y﹣2xy)(x+y﹣2)+(xy﹣1)2.
(3)令 ,

= = ,∴S=342.
考点:1.平方差公式;2.规律型.

专题14.4因式分解-重难点题型(教师版含解析)2022年八年级数学上册举一反三系列(人教版)

专题14.4因式分解-重难点题型(教师版含解析)2022年八年级数学上册举一反三系列(人教版)

专题14.4因式分解-重难点题型【人教版】【知识点1因式分解】定义:把一个多项式化成了几个整式的积的形式,这样的式子变形叫做这个多项式的因式分解,也叫做把这个多项式分解因式。

以上公式都可以用来对多项式进行因式分解,因式分解的常用方法:①提公因式法:pa+pb+pc=p(a+b+c);②公式法:a2-b2=(a+b)(a-b);a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2。

③分组分解法:ac+ad+bc+cd=a(c+d)+b(c+d)=(a+b)(c+d)④十字相乘法:a2+(p+q)a+pq=(a+p)(a+q)因式分解的一般步骤:(1)如果多项式的各项有公因式,那么先提取公因式。

(2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的项数:2项式可以尝试运用公式法分解因式;3项式可以尝试运用公式法、十字相乘法分解因式;4项式及4项式以上的可以尝试分组分解法分解因式(3)分解因式必须分解到每一个因式都不能再分解为止。

【题型1因式分解的定义】【例1】(2021秋•岱岳区校级月考)下列等式中,从左到右的变形是因式分解的是()A.x2﹣4x+1=x(x﹣4)+1B.(x+1)2=x2+2x+1C.x2﹣4=(x+2)(x﹣2)D.18a3bc=3a2b⋅6ac【分析】根据因式分解的定义即可求出答案.把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.【解答】解:A.右边不是整式的积的形式,不符合因式分解的定义,故此选项不符合题意;B.是整式的乘法,不是因式分解,故此选项不符合题意;C.左边是多项式,右边是整式的积的形式,符合因式分解的定义,故此选项符合题意;D.左边不是多项式,不符合因式分解的定义,故此选项不符合题意.故选:C.【变式1-1】(2021•唐山一模)下列各式:①x2﹣16=(x+4)(x﹣4),②(a+b)2=a2+2ab+b2,③a2b ﹣ab2=ab(a﹣b).从左到右的变形中,属于因式分解的是()A.2B.①②C.①③D.②③【分析】根据因式分解是把一个多项式转化成几个整式的积的形式,可得答案.【解答】解:①是因式分解;②是整式的乘法;③是因式分解;故选:C.【变式1-2】(2021•黄山区二模)下列因式分解正确的是()A.2ab2﹣4ab=2a(b2﹣2b)B.a2+b2=(a+b)(a﹣b)C.x2+2xy﹣4y2=(x﹣y)2D.﹣my2+4my﹣4m=﹣m(2﹣y)2【分析】将各式计算得到结果,即可作出判断.【解答】解:A.2ab2﹣4ab=2ab(b﹣2),分解不完整,故错误;B.a2+b2不能分解因式,而(a+b)(a﹣b)=a2﹣b2,故错误;C.x2+2xy﹣4y2不能分解因式,而(x﹣y)2=x2﹣2xy+y2,故错误;D.﹣my2+4my﹣4m=﹣m(2﹣y)2,故正确.故选:D.【变式1-3】(2021春•青川县期末)下列因式分解正确的是()A.x2y2﹣z2=x2(y+z)(y﹣z)B.﹣x2y﹣4xy+5y=﹣y(x2+4x+5)C.(x+2)2﹣9=(x+5)(x﹣1)D.9﹣12a+4a2=﹣(3﹣2a)2【分析】利用平方差、完全平方公式先判断A、C、D,再利用提公因式与完全平方公式判断B.【解答】解:∵x2y2﹣z2=(xy+z)(xy﹣z)≠x2(y+z)(y﹣z),故选项A不符合题意;﹣x2y﹣4xy+5y=﹣y(x2+4x﹣5)=﹣y(y+5)(x﹣4),分解不彻底,故选项B不符合题意;(x+2)2﹣9=(x+5)(x﹣1),故选项C符合题意;9﹣12a+4a2=(3﹣2a)2≠﹣(3﹣2a)2,故选项D不符合题意.故选:C.【题型2分解因式】【例2】(2021春•鄄城县期末)因式分解:(1)(a﹣b)(x﹣y)﹣(b﹣a)(x+y);(2)(x2+1)2﹣4x2.【分析】(1)用提取公因式法分解因式;(2)用平方差公式、完全平方公式分解因式.【解答】解:(1)原式=(a﹣b)(x﹣y)+(a﹣b)(x+y)=(a﹣b)[(x﹣y)+(x+y)]=2x(a﹣b),(2)原式=(x2+1)2﹣(2x)2=(x2+1+2x)(x2+1﹣2x)=(x+1)2(x﹣1)2.【变式2-1】(2021•汉寿县模拟)分解因式:x2y2﹣16x2=()A.x2(y2﹣16)B.x2(y+4)(y﹣4)C.y2(x2﹣4)D.y2(x+4)(x﹣4)【分析】原式提取公因式x2,再利用平方差公式分解即可.【解答】解:原式=x2(y2﹣16)=x2(y+4)(y﹣4).故选:B.【变式2-2】(2021春•碑林区校级月考)分解因式:a2﹣b2+ab2﹣a2b=(a﹣b)(a+b﹣ab).【分析】先分组,然后直接利用平方差公式和提取公因式法分解因式得出答案;【解答】解:a2﹣b2+ab2﹣a2b=(a2﹣b2)+(ab2﹣a2b)=(a+b)(a﹣b)﹣ab(a﹣b)=(a﹣b)(a+b﹣ab).故答案为(a﹣b)(a+b﹣ab).【变式2-3】(2020秋•红山区期末)分解因式:①8m2n+2mn;②2a2﹣4a+2;③3m(2x﹣y)2﹣3mn2;④x4﹣2x2+1.【分析】①利用提取公因式法进行因式分解;②先提取公因式,然后利用完全平方公式进行因式分解;③先提取公因式,然后利用平方差公式进行因式分解;④先根据完全平方公式,再根据平方差公式进行因式分解.【解答】解:①原式=2mn(4m+1);②原式=2(a2﹣2a+1)=2(a﹣1)2;③原式=3m[(2x﹣y)2﹣n2]=3m(2x﹣y+n)(2x﹣y﹣n);④原式=(x2﹣1)2=(x+1)2(x﹣1)2.【题型3因式分解的应用(求代数式的值)】【例3】(2021春•高新区期末)若a=b+1,则代数式a2﹣2ab+b2+2的值为3.【分析】把a=b+1变形得a﹣b=1,然后两边平方得到(a﹣b)2=1,利用完全平方公式得a2﹣2ab+b2=1,再整体代入所求的代数式中即可得到答案.【解答】解:∵a=b+1,∴a﹣b=1.∵a2﹣2ab+b2+2,=(a﹣b)2+2=3,∴代数式a2﹣2ab+b2+2的值为3.故答案为3.【变式3-1】(2021•苍溪县模拟)若2a﹣3b=﹣3,则代数式4a2﹣6ab+9b的值为()A.﹣1B.9C.7D.5【分析】由已知字母a、b的系数为2、﹣3,代数式中前二项的系数4、﹣6,提取此二项的公因式2a后,代入求值变形得﹣6a+9b,再提出﹣3,整体代入即可.【解答】解:∵2a﹣3b=﹣3,∴4a2﹣6ab+9b=2a(2a﹣3b)+9b=2a×(﹣3)+9b=﹣6a+9b=﹣3(2a﹣3b)=﹣3×(﹣3)=9,故选:B.【变式3-2】(2021•内江)若实数x满足x2﹣x﹣1=0,则x3﹣2x2+2021=2020.【分析】由等式性质可得x2=x+1,x2﹣x=1,再整体代入计算可求解.【解答】解:∵x2﹣x﹣1=0,∴x2=x+1,x2﹣x=1,x3﹣2x2+2021=x(x+1)﹣2x2+2021=x2+x﹣2x2+2021=x﹣x2+2021=﹣1+2021=2020.故答案为2020.【变式3-3】(2021春•诸暨市期末)已知x≠y,且满足两个等式x2﹣2y=20212,y2﹣2x=20212,则x2+2xy+y2的值为4.【分析】联立方程,通过因式分解求出x+y的值,再将x2+2xy+y2因式分解得(x+y)2,将x+y的值代入求解.【解答】解:2−2=20212①2−2=20212②,①﹣②得x2﹣y2+2x﹣2y=0,(x+y)(x﹣y)+2(x﹣y)=0,(x﹣y)(x+y+2)=0,∵x≠y,∴x+y+2=0,即x+y=﹣2,∴x2+2xy+y2=(x+y)2=4.故答案为:4.【题型4因式分解的应用(求系数的值)】【例4】(2021春•南山区校级期中)若多项式x2+mx﹣21可以分解为(x+3)(x﹣7),则m=﹣4.【分析】先用多项式乘多项式法则先计算(x+3)(x﹣7),再根据乘法与因式分解的关系求出m.【解答】解:∵(x+3)(x﹣7)=x2﹣4x﹣21,又∵x2+mx﹣21=(x+3)(x﹣7),∴x2﹣4x﹣21=x2+mx﹣21.∴m=﹣4.故答案为:﹣4.【变式4-1】(2021•碑林区校级开学)若2x﹣5是多项式4x2+mx﹣5(m为系数)的一个因式,则m的值是()A.8B.﹣6C.﹣8D.﹣10【分析】根据题意可得4x2+mx﹣5=(2x﹣5)(2x+1),再根据多项式乘多项式的运算法则求解即可.【解答】解:∵2x﹣5是多项式4x2+mx﹣5(m为系数)的一个因式,设4x2+mx﹣5=(2x﹣5)(kx+b),∴2kx2+(2b﹣5k)x﹣5b=4x2+mx﹣5,∴2k=4,5b=5,解得k=2,b=1,∴4x2+mx﹣5=(2x﹣5)(2x+1),∵(2x﹣5)(2x+1)=4x2﹣8x﹣5,∴m=﹣8.故选:C.【变式4-2】(2021春•聊城期末)已知二次三项式x2+px+q因式分解的结果是(x﹣3)(x﹣5),则p+q =7.【分析】直接利用多项式乘多项式运算法则得出p,q的值,进而得出答案.【解答】解:∵x2+px+q=(x﹣3)(x﹣5),∴x2+px+q=x2﹣8x+15,故p=﹣8,q=15,则p+q=﹣8+15=7.故答案为:7.【变式4-3】(2021•寻乌县模拟)已知:整式A=x(x+3)+5,整式B=ax﹣1.(1)若A+B=(x+2)2,求a的值;(2)若A﹣B可以分解为(x﹣2)(x﹣3),求A+B.【分析】(1)由A=x(x+3)+5=x2+3x+5,得A+B=x2+3x+5+ax﹣1=x2+(3+a)+4,那么(x+2)2=x2+4x+4=x2+(3+a)+4.,从而求得a.(2)由A﹣B=x2+3x+5﹣(ax﹣1)=x2+(3﹣a)+6,得x2+(3﹣a)+6=(x﹣2)(x﹣3),进而解决此题.【解答】解:(1)∵A=x(x+3)+5=x2+3x+5,∴A+B=x2+3x+5+ax﹣1=x2+(3+a)x+4.∵A+B=(x+2)2,∴A+B=(x+2)2=x2+4x+4=x2+(3+a)+4.∴3+a=4.∴a=1.(2)由(1)得:A=x2+3x+5.∴A﹣B=x2+3x+5﹣(ax﹣1)=x2+(3﹣a)x+6.∴x2+(3﹣a)+6=(x﹣2)(x﹣3).∴x2+(3﹣a)x+6=x2﹣5x+6.∴3﹣a=﹣5.∴a=8.∴A+B=x2+11x+4.【题型5因式分解的应用(判定三角形的形状)】【例5】(2020秋•中山市期末)已知a,b,c是△ABC的三条边的长度,且满足a2﹣b2=c(a﹣b),则△ABC一定是等腰三角形.【分析】先把等式左边进行因式分解可化为a+b)(a﹣b)=c(a﹣b),移项提取公因式可得(a﹣b)(a+b﹣c)=0,根据三角形三边之间的关系两边之和大于第三边,可得a﹣b=0,即可得出答案.【解答】解:由a2﹣b2=c(a﹣b),(a+b)(a﹣b)=c(a﹣b),(a+b)(a﹣b)﹣c(a﹣b)=0,(a﹣b)(a+b﹣c)=0,∵三角形两边之和大于第三边,即a+b>c,∴a+b﹣c≠0,∴a﹣b=0,即a=b,即△ABC一定是等腰三角形.故答案为:等腰.【变式5-1】(2020秋•嘉鱼县期末)若△ABC的三边长a,b,c满足a2+2b2+c2﹣2ab﹣2bc=0,则△ABC 是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形【分析】根据完全平方公式即可求解.【解答】解:∵a2+2b2+c2﹣2ab﹣2bc=0,∴a2﹣2ab+b2+b2﹣2bc+c2=0,∴(a﹣b)2+(b﹣c)2=0,∴a﹣b=0且b﹣c=0,即a=b=c,△ABC是等边三角形.故选:D.【变式5-2】(2020秋•卫辉市期末)若△ABC的三边长是a、b、c,且a2+b2+c2=ab+bc+ac,则这个三角形形状是等边三角形.【分析】利用完全平方公式,将等式转化为12(a﹣b)2+12(b﹣c)2+12(c﹣a)2=0,利用偶次方的非负性即可解答.【解答】解:∵a2+b2+c2=ab+bc+ac,∴a2+b2+c2﹣ab﹣bc﹣ac=0,∴12(a﹣b)2+12(b﹣c)2+12(c﹣a)2=0,∴a﹣b=0,b﹣c=0,c﹣a=0,∴a=b=c,∴△ABC是等边三角形,故答案为:等边.【变式5-3】(2021春•滕州市期末)阅读下面的材料:常用的分解因式的方法有提取公因式法,公式法等,但有的多项式只用上述方法无法分解,如:x2﹣4y2﹣2x+4y,细心观察这个式子,会发现前两项符合平方差公式,后两项可提取公因式,前后两部分分别因式分解后又出现新的公因式,提取公因式就可以完成整个式子的分解因式.具体过程如下:x2﹣4y2﹣2x+4y=(x2﹣4y2)﹣(2x﹣4y)=(x+2y)(x﹣2y)﹣2(x﹣2y)=(x﹣2y)(x+2y﹣2).像这种将一个多项式适当分组后,进行分解因式的方法叫做分组分解法.利用分组分解法解决下面的问题:(1)分解因式:x2﹣2xy+y2﹣2x+2y;(2)△ABC的三边a,b,c满足a2﹣b2﹣ac+bc=0,判断△ABC的形状.【分析】(1)x2﹣2xy+y2﹣2x+2y,利用完全平方公式因式分解,先将x2﹣2xy+y2=(x﹣y)2,得到(x ﹣y)2﹣2(x﹣y),再利用提取公因式即可得到(x﹣y)﹣(x﹣y﹣2),(2)已知a2﹣b2﹣ac+bc=0先为两组,a2﹣b2和ac﹣bc,分别提公因式a+b与c,得(a+b)(a﹣b)﹣c(a﹣b)=0再提公因式得(a﹣b)(a+b﹣c)=0因此a=b或a+b﹣c=0,三角形任意两边之和大于第三边,即a+b﹣c≠0,根据等腰三角形的判定得△ABC是等腰三角形.【解答】解:(1)x2﹣2xy+y2﹣2x+2y=(x2﹣2xy+y2)﹣2(x﹣y)=(x﹣y)(x﹣y﹣2),(2)a2﹣b2﹣ac+bc=0,∵a2﹣b2﹣ac+bc=0,∴(a2﹣b2)﹣(ac﹣bc)=0,(a+b)(a﹣b)﹣c(a﹣b)=0,(a﹣b)(a+b﹣c)=0,a﹣b=0或a+b﹣c=0,∵三角形任意两边之和大于第三边,∴a+b﹣c≠0,∴△ABC是等腰三角形.【题型6因式分解的应用(整体思想)】【例6】(2021春•福田区校级期中)阅读理解:对于一些次数较高或者是比较复杂的式子进行因式分解时,换元法是一种常用的方法,下面是某同学用换元法对多项式(a2﹣2a﹣1)(a2﹣2a+3)+4进行因式分解的过程.解:设a2﹣2a=A,原式=(A﹣1)(A+3)+4(第一步)=A2+2A+1(第二步)=(A+1)2(第三步)=(a2﹣2a+1)2(第四步)=(a﹣1)4回答下列问题:(1)该同学第二步到第三步运用了因式分解的C(填代号).A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)请你模仿以上方法,分解因式:(x2﹣4x﹣3)(x2﹣4x+11)+49.【分析】(1)利用完全平方公式的意义,即可求解;(2)按照例题的分解方法进行分解即可.【解答】解:(1)∵A2+2A+1=(A+1)2,∴第二步到第三步运用了因式分解的“两数和的完全平方公式”,故答案为:C;(2)设x2﹣4x=A,(x2﹣4x﹣3)(x2﹣4x+11)+49=(A﹣3)(A+11)+49=A2+8A+16=(A+4)2=(x2﹣4x+4)2=(x﹣2)4.【变式6-1】(2021春•江都区期中)先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=m,则原式=m2+2m+1=(m+1)2.再将x+y=m代入,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x﹣y)+(x﹣y)2=(x﹣y+1)2;(2)因式分解:9(x﹣2)2﹣6(x﹣2)+1;(3)因式分解:(x2﹣6x)(x2﹣6x+18)+81.【分析】(1)把(x﹣y)看作一个整体,直接利用完全平方公式因式分解即可;(2)把(x﹣2)看作一个整体,直接利用完全平方公式因式分解即可;(3)令A=x2﹣6x,因式分解后代入即可将原式因式分解.【解答】解:(1)1+2(x﹣y)+(x﹣y)2,令x﹣y=m,则原式=m2+2m+1=(m+1)2.再将x﹣y=m代入,得原式=(x﹣y+1)2,故答案为:(x﹣y+1)2;(2)9(x﹣2)2﹣6(x﹣2)+1,令x﹣2=n,则原式=9n2﹣6n+1=(3n﹣1)2.再将x﹣2=n代入,得原式=(3x﹣6﹣1)2=(3x﹣7)2;(3)令A=x2﹣6x,则原式变为A(A+18)+81=A2+18A+81=(A+9)2,故(x2﹣6x)(x2﹣6x+18)+81=(A+9)2=(x2﹣6x+9)2=(x﹣3)4.【变式6-2】(2021春•金台区期末)阅读下列材料:材料1:将一个形如x2+px+q的二次三项式因式分解时,如果能满足q=mn且p=m+n,则可以把x2+px+q 因式分解成(x+m)(x+n),如:(1)x2+4x+3=(x+1)(x+3);(2)x2﹣4x﹣12=(x﹣6)(x+2).材料2:因式分解:(x+y)2+2(x+y)+1.解:将“x+y看成一个整体,令x+y=A,则原式=A2+2A+1=(A+1)2,再将“A”还原得:原式=(x+y+1)2.上述解题用到“整体思想”整体思想是数学解题中常见的一种思想方法,请你解答下列问题:(1)根据材料1,把x2+2x﹣24分解因式;(2)结合材料1和材料2,完成下面小题:①分解因式:(x﹣y)2﹣8(x﹣y)+16;②分解因式:m(m﹣2)(m2﹣2m﹣2)﹣3.【分析】(1)将x2+2x﹣24写成x2+(6﹣4)x+6×(﹣4),根据材料1的方法可得(x+6)(x﹣4)即可;(2)①令x﹣y=A,原式可变为A2﹣8A+16,再利用完全平方公式即可;②令B=m(m﹣2)=m2﹣2m,原式可变为B(B﹣2)﹣3,即B2﹣2B﹣3,利用十字相乘法可分解为(B﹣3)(B+1),再代换后利用十字相乘法和完全平方公式即可.【解答】解:(1)x2+2x﹣24=x2+(6﹣4)x+6×(﹣4)=(x+6)(x﹣4);(2)①令x﹣y=A,则原式可变为A2﹣8A+16,A2﹣8A+16=(A﹣4)2=(x﹣y﹣4)2,所以(x﹣y)2﹣8(x﹣y)+16=(x﹣y﹣4)2;②设B=m2﹣2m,则原式可变为B(B﹣2)﹣3,即B2﹣2B﹣3=(B﹣3)(B+1)=(m2﹣2m﹣3)(m2﹣2m+1)=(m﹣3)(m+1)(m﹣1)2,所以m(m﹣2)(m2﹣2m﹣2)﹣3=(m﹣3)(m+1)(m﹣1)2.【变式6-3】(2021春•南山区校级期中)先阅读材料:分解因式:(a+b)2+2(a+b)+1.解:令a+b=M,则(a+b)2+2(a+b)+1=M2+2M+1=(M+1)2,所以(a+b)2+2(a+b)+1=(a+b+1)2.材料中的解题过程用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法,请你运用这种思想方法解答下列问题:(1)分解因式:(x+y)2﹣2(x+y)+1=(x+y﹣1)2.(2)分解因式:(m+n)(m+n﹣4)+4;(3)证明:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某个整数的平方.【分析】(1)将(x+y)看作一个整体进行因式分解;(2)将(m+n)看作一个整体进行因式分解;(3)先计算(n+1)(n+2)得n2+3n+2,再将n2+3n看作整体因式分解得原式=(n2+3n+1)2,继而由n2+3n+1为正整数可得答案.【解答】解:(1)令x+y=M,则(x+y)2﹣2(x+y)+1=M2﹣2M+1=(M﹣1)2,所以(x+y)2﹣2(x+y)+1=(x+y﹣1)2.故答案为:(x+y﹣1)2;(2)令A=m+n,则(m+n)(m+n﹣4)+4=A(A﹣4)+4=A2﹣4A+4=(A﹣2)2,所以(m+n)(m+n﹣4)+4=(m+n﹣2)2;(3)(n+1)(n+2)(n2+3n)+1=(n2+3n)[(n+1)(n+2)]+1=(n2+3n)(n2+3n+2)+1=(n2+3n)2+2(n2+3n)+1.令n2+3n=A,则原式=A2+2A+1=(A+1)2=(n2+3n+1)2.∵n是正整数,∴n2+3n+1也为正整数.∴式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.。

专题10 因式分解重难点题型分类(解析版)八年级数学上册重难点题型分类高分必刷题(人教版)

专题10 因式分解重难点题型分类(解析版)八年级数学上册重难点题型分类高分必刷题(人教版)

专题10 因式分解重难点题型分类-高分必刷题(解析版)专题简介:本份资料包含《因式分解》这一在各次期中期末中常考的主流题型,所选题目源自各名校期中、 期末试题中的典型考题,具体包含六类题型:因式分解的概念、提公因式法、用平方差公式分解因式、用完全平方公式分解因式、用十字相乘法分解因式、分组分解法,本专题资料适合于培训机构的老师给学生作复习培训时使用或者学生月考、期末考前刷题时使用。

题型一:因式分解的概念因式分解的概念(1)定义:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.(2)原则:①分解必须要彻底(即分解之后因式均不能再做分解);②结果最后只留下小括号 ③结果的多项式首项为正。

1.(2022·福建泉州)下列各式由左边到右边的变形中,正确因式分解的是( )A .232(3)2a a a a -+=-+B .2(1)a x a a ax -=-C .()22393x x x ++=+D .()()2141414a a a -=+- 【详解】A 、右边不是整式积的形式,不是因式分解,故本选项错误;B 、符合因式分解的定义,故本选项正确;C 、左边≠右边,不是因式分解,故本选项错误;D 、左边≠右边,不是因式分解,故本选项错误.故选:D .2.(2021·江西)下列因式分解中,正确的是( )A .()211x x x +=+B .()()2222x x x -=+-C .()22693x x x -+=-D .()()21644x x x x x +-=+-+ 【详解】解:A 、等式左边不能因式分解,故本选项错误;B 、()()2222x x x -=+-,故本选项错误; C 、用完全平方公式,()22693x x x -+=-,正确;D 、等式右边不是因式分解,故本选项错误.故选C .3.(2022·上海)下列四个式子从左到右的变形是因式分解的为( )A .()()22x y x y y x --=--B .23231226a b a b ⋅=C .()()()442281933x y x y x y x y -++-=D .()()()()222222821222812a a a a a a a a +-++++-+= 【详解】解:AD.等号右边都不是积的形式,所以不是因式分解,故AD 不符合题意;B.左边不是多项式,所以不是因式分解,故B 不符合题意;C.符合因式分解的定义,故C 符合题意;故选:C .题型二:提公因式法提公因式法的定义(1)定义:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成 因式乘积的形式,这种分解因式的方法叫做提公因式法.(2)理论依据:乘法分配律的逆运算)(c b a ac ab +=+.4.(2022·甘肃)已知a −b =3,ab =2,则22a b ab -的值为____________.【详解】解:∵3a b -=,2ab =,∴22a b ab - ()=ab a b - =23⨯ =6.故答案为:6.5.(2022·河北邯郸)分解因式:x (x -3)-x +3=_______________________.【详解】解:x (x -3)-x +3=x (x -3)-(x -3)=(x -3)(x -1),故答案为:(x -3)(x -1).6.(2022·辽宁)因式分解:()()26a x y b y x ---=________. 【详解】解:2a (x -y )-6b (y -x )=()()23x y a b -+.故答案为:()()23x y a b -+.题型三:用平方差公式分解因式公式法(1)公式法的定义:逆用乘法公式将一个多项式分解因式的方法叫做公式法.(2)方法归纳:①平分差公式))((22b a b a b a -+=-;②完全平方公式222)(2b a b ab a ±=+±.7.(2022·河北邯郸)下列多项式中,既能用提取公因式又能用平方差公式进行因式分解的是( ) A .22a b -- B .24a -+ C .34a a - D .24a a + 【详解】解:A.22a b --,不能因式分解,故该选项不符合题意;B.24a -+()()22a a =+-,只用了平方差公式因式分解,故该选项不符合题意;C.34a a -()()()2422a a a a a =-=+-,故该选项符合题意;D. 24a a +,能用提公因式的方法因式分解,故该选项不符合题意.故选C .8.(2022·辽宁沈阳)在下列各式中,能用平方差公式因式分解的是( )A .24a +B .24a -C .24a --D .22a m + 【详解】解:A 、24a +,不能用平方差公式因式分解,故本选项不符合题意;B 、()()2422a a a -=+-,能用平方差公式因式分解,故本选项符合题意;C 、()2244a a --=-+,不能用平方差公式因式分解,故本选项不符合题意;D 、22a m +,不能用平方差公式因式分解,故本选项不符合题意;故选:B9.(2022·广西贺州)在实数范围内分解因式:425x -=________________________________.10.(2022·陕西汉中)分解因式:()2249a b +-=________.【详解】解:原式()()22=43a b +-()()=4343a b a b +-++ 故答案为:()()4343a b a b +-++.11.(2022·辽宁葫芦岛·八年级期末)因式分解:2()25()x m n n m -+-【详解】解:原式=2)(25()x m n m n ---=2()(25)m n x -- =()(5)(5)m n x x -+-.12.(2022·山东济宁)()()2222x y x y +-+分解因式的结果是______. 【详解】解:()()2222x y x y +-+=()()()()222+-2⎡⎤+++⎡⎤⎣⎦⎣⎦+x y x y x y x y =2+2)((22)+++--x y x y x y x y =(3+3()-+)x y x y =3(+()-)x y x y - 或=3(+()-)x y y x 故答案为:3(+()-)x y x y -或3(+()-)x y y x . 13.(2022·湖南永州)因式分解(1)336m m - (2)()222224m n m n +- 【详解】解:(1)解:336m m -()236m m =-()()66m m m =+-;(2)解:()222224m n m n +-()()22222m n mn =+-()()222222m n mn m n mn =+++-()()22m n m n =+-.14.(2022·山东菏泽)分解因式:(1)2()4()x a b b a -+- (2)22(2)(2)a b a b +-- 【详解】解:(1)解:原式()2()4a b x =--()(2)(2)a b x x =--+; (2)解:原式(22)(22)a b a b a b a b =++-+-+(3)(3)a b b a =+-.题型四:用完全平方公式分解因式15.(2022·陕西榆林)下列各式中,能用完全平方公式分解因式的是( )A .241x -B .221x x +-C .221x x ++D .22x xy y -+ 【详解】解:A 、241x -可以用平方差公式因式分解为(2x +1)(2x -1).故选项A 不符合题意; B 、221x x +-不能用完全平方公式进行因式分解,故选项B 不符合题意;C 、2221(1)x x x ++=+,故选项C 符合题意;D 、22x xy y -+不能用完全平方公式进行因式分解,故选项D 不符合题意.故选:C .16.(2022·山东滨州)下列各式:①22x y --;②22114a b -+;③22a ab b ++;④222x xy y -+-;⑤2214mn m n -+,能用公式法分解因式的有( ) A .2个 B .3个 C .4个 D .5个17.(2022·山东济南)下列各式能用完全平方公式进行分解因式的是( )A .21x +B .221x x --C .239x x ++D .214x x -+ 【详解】解:A .x 2+1,缺少积的2倍项,不能用完全平方公式进行分解因式,故A 不符合题意;B .x 2+2x -1,缺少两数的平方的和,不能用完全平方公式进行分解因式,故B 不符合题意;18.(2021·湖北·十堰)分解因式:3222a a b ab -+=_________________.【详解】解:()()23222222a a b ab a a ab b a a b -+=-+=-,故答案为:()2a ab -. 19.(2022·辽宁)已知多项式29(6)4x m x -++可以按完全平方公式进行因式分解,则m =________________.【详解】解:多项式()2229(6)43(6)2x m x x m x -++=-++,∵该多项式可以按完全平方公式进行因式分解,∴(6)232m -+=⨯⨯或(6)232m -+=-⨯⨯,解得18m =-或6m =.故答案为:18-或6.20.(2022·湖南岳阳)若多项式29x kx ++可以用完全平方公式进行因式分解,则k =_________.【详解】解:∵多项式29x kx ++可以用完全平方公式进行因式分解,∴2136k =±⨯⨯=±.故答案为:6±.21.(2022·吉林)分解因式:am 2﹣2amn +an 2=_____.【详解】解:am 2﹣2amn +an 2=()()2222a m mn n a m n -+=-, 故答案为:()2a m n -.22.(2022·辽宁营口·八年级期末)分解因式:﹣8a 3b +8a 2b 2﹣2ab 3=_____.【详解】解:原式=﹣2ab (4a 2﹣4ab +b 2)=﹣2ab (2a ﹣b )2,故答案为:﹣2ab (2a ﹣b )2.23.(2022·陕西渭南)分解因式:﹣x 2y +6xy ﹣9y =___.【详解】解:﹣x 2y +6xy ﹣9y()()22=693y x x y x --+=--故答案为:()23y x --.24.(2021·四川达州)分解因式24(21)x x +-=________.【详解】解:(2x +1)2-x 4=(2x +1-x 2)(2x +1+x 2)=(2x +1-x 2)(x +1)2.故答案为:(2x +1-x 2)(x +1)2.题型五:用十字相乘法分解因式十字相乘法(一)二次项系数为1的二次三项式直接利用公式——))(()(2q x p x pq x q p x ++=+++进行分解.特点:(1)二次项系数是1;(2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和.(二)二次项系数不为1的二次三项式——c bx ax ++2条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c(3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++25.(2022·辽宁抚顺)分解因式:2-2-8a a =______.【详解】解:a 2-2a -8=(a -4)(a +2),故答案为:(a -4)(a +2).26.(2022·吉林长春)分解因式:x 2﹣5x ﹣6=_____.【详解】解:x 2﹣5x ﹣6 ()()61x x =-+故答案为:()()61x x -+.27.(2022·上海浦东)因式分解:2412x x --=_______.【详解】解:因为1262,624-=-⨯-+=-,且4-是x 的一次项的系数,所以2412(6)(2)--=-+x x x x ,故答案为:(6)(2)x x -+.28.(2021·上海虹口)因式分解:2a 2-4a -6=________.【详解】解:2a 2-4a -6=2(a 2-2a -3)=2(a -3)(a +1)故答案为:2(a -3)(a +1).29.(2022·黑龙江)把多项式2412ab ab a --分解因式的结果是_________.【详解】2412ab ab a --2(412)a b b =--()()62a b b =-+故答案为:(6)(2)a b b -+.30.(2022·上海)在实数范围内分解因式:2252x x -+=________.【详解】解:225221()()2x x x x -+=--,故答案为:(21)(2)x x --.31.(2022·山东淄博)分解因式:3243a a a -+=__________.【详解】解:32243(43)(1)(3).a a a a a a a a a -+=-+=--32.(2020·上海浦东)分解因式:32514x x x --=__________. 【详解】解:32514x x x --=()2514x x x --=()()27x x x +-故答案为:()()27x x x +-.33.(2018·黑龙江)在实数范围内分解因式:x 4﹣2x 2﹣3=_____.题型六:分组分解法34.(2022·黑龙江)分解因式:2224a ab b -+-=________________.【详解】解:2224a ab b -+-2()4a b =--(2)(2)a b a b =-+--故答案为:(2)(2)a b a b -+--. 35.(2021·江苏常州)因式分解:22421x y y ---=__________.【详解】22421x y y ---224(21)x y y =-++22(2)(1)x y =-+(21)(21)x y x y =++--. 故答案为:(21)(21)x y x y ++--.36.已知a 、b 、c 为ABC ∆的三边,且满足222244a c b c a b -=-,试判断ABC ∆的形状( )A .直角三角形B .等腰三角形C .直角或等腰三角形D .直角或等边三角形【解答】解:222244a c b c a b -=-,2222222()()()c a b a b a b ∴-=+-,2222222()()()0c a b a b a b --+-=, 22222()()0a b c a b ---=,22a b ∴=或222c a b =+,ABC ∴∆是等腰三角形或直角三角形, 故选:C .37.分解因式:22424x xy y x y --++= .【解答】解:22424x xy y x y --++22(44)(2)x xy y x y =-++-2(2)(2)x y x y =-+-(2)(21)x y x y =--+.故答案为:(2)(21)x y x y --+.38.已知2226100a b a b ++-+=,求ab 的值.【解答】解:2226100a b a b ++-+=,2221690a a b b ∴+++-+=,22(1)(3)0a b ∴++-=, 10a ∴+=,30b -=,1a ∴=-,3b =,133ab ∴=-⨯=-.39.已知a ,b ,c 是ABC ∆的三边,且满足222222a b c ab ac ++=+,试判断ABC ∆的形状,并说明理由.【解答】解:ABC ∆为等边三角形,理由如下:由222222a b c ab ac ++=+得: 2222220a ab b a ac c -++-+=,22()()0a b a c ∴-+-=,0a b ∴-=,0a c -=a b ∴=,a c = a b c ∴==,ABC ∴∆为等边三角形.40.已知a ,b ,c 为ABC ∆的三边,若2222220a b c ac bc ++--=,判断ABC ∆的形状?【解答】解:2222220a b c ac bc ++--=,2222220a c ac b c bc ∴+-++-=, 即22()()0a c b c -+-=,0a c ∴-=且0b c -=,即a c =且b c =,a b c ∴==. 故ABC ∆是等边三角形.41.三角形ABC 的三条边长a ,b ,c 满足222166100a b c ab bc --++=,求证:2a c b +=.【解答】证明:222166100a b c ab bc --++=,222269(1025)0a ab b c bc b ∴++--+=, 22(3)(5)0a b c b ∴+--=,(35)(35)0a b c b a b c b ∴++-+-+=,即(2)(8)0a c b a b c +-+-=, a ,b ,c 是三角形三边长,0a b c ∴+->,80a b c ∴+->,20a c b ∴+-=, 2a c b ∴+=.。

八年级上册因式分解难题

八年级上册因式分解难题

八年级上册因式分解难题一、题目。

1. 分解因式:x^4 - 81解析:x^4-81=(x^2)^2 - 9^2 =(x^2 + 9)(x^2-9) =(x^2+9)(x + 3)(x - 3)2. 分解因式:9x^2 - 16y^2解析:根据平方差公式a^2 - b^2=(a + b)(a - b),这里a = 3x,b=4y所以9x^2-16y^2=(3x + 4y)(3x - 4y)3. 分解因式:(a + b)^2 - 4(a + b)+4解析:将(a + b)看成一个整体,设m=a + b,则原式变为m^2-4m + 4,根据完全平方公式(a - b)^2=a^2-2ab + b^2,这里a=m,b = 2所以m^2-4m + 4=(m - 2)^2,即(a + b-2)^24. 分解因式:x^3 - 2x^2+x解析:x^3-2x^2+x=x(x^2-2x + 1) =x(x - 1)^25. 分解因式:25m^2 - 80m+64解析:根据完全平方公式(a - b)^2=a^2-2ab + b^2,这里a = 5m,b=8所以25m^2-80m + 64=(5m - 8)^26. 分解因式:x^2y - 4y^3解析:x^2y-4y^3=y(x^2-4y^2) =y(x + 2y)(x - 2y)7. 分解因式:a^2 - 2ab + b^2 - c^2解析:a^2-2ab + b^2-c^2=(a - b)^2-c^2 =(a - b + c)(a - b - c)8. 分解因式:x^3+27解析:根据立方和公式a^3+b^3=(a + b)(a^2 - ab + b^2),这里a=x,b = 3所以x^3+27=(x + 3)(x^2-3x + 9)9. 分解因式:16x^4 - 1解析:16x^4-1=(4x^2)^2-1^2 =(4x^2 + 1)(4x^2-1) =(4x^2+1)(2x + 1)(2x - 1) 10. 分解因式:3ax^2+6axy+3ay^2解析:3ax^2+6axy + 3ay^2=3a(x^2+2xy + y^2) =3a(x + y)^211. 分解因式:m^2(m - 1)-4(1 - m)^2解析:m^2(m - 1)-4(1 - m)^2=m^2(m - 1)-4(m - 1)^2 =(m - 1)[m^2-4(m - 1)] =(m - 1)(m^2-4m + 4) =(m - 1)(m - 2)^212. 分解因式:(x + y)^2 - 10(x + y)+25解析:设m=x + y,则原式为m^2-10m + 25=(m - 5)^2=(x + y - 5)^213. 分解因式:x^2 - y^2 - z^2+2yz解析:x^2-y^2 - z^2+2yz=x^2-(y^2 - 2yz+z^2) =x^2-(y - z)^2 =(x + y - z)(x - y + z)14. 分解因式:8x^3 - 27y^3解析:根据立方差公式a^3 - b^3=(a - b)(a^2+ab + b^2),这里a = 2x,b=3y所以8x^3-27y^3=(2x - 3y)(4x^2+6xy + 9y^2)15. 分解因式:a^4 - b^4解析:a^4 - b^4=(a^2)^2-(b^2)^2 =(a^2 + b^2)(a^2 - b^2) =(a^2 + b^2)(a + b)(a - b)16. 分解因式:x^2 - 4xy+4y^2 - 9解析:x^2-4xy + 4y^2-9=(x - 2y)^2-3^2 =(x - 2y + 3)(x - 2y - 3)17. 分解因式:2x^2 - 12x+18解析:2x^2-12x + 18=2(x^2-6x + 9) =2(x - 3)^218. 分解因式:x^3 - 6x^2+9x解析:x^3-6x^2+9x=x(x^2-6x + 9) =x(x - 3)^219. 分解因式:m^2 - 5m - 14解析:对于二次三项式ax^2+bx + c,这里a = 1,b=-5,c=-14 m^2-5m - 14=(m - 7)(m+ 2)20. 分解因式:a^2 - 4a - 21解析:对于二次三项式ax^2+bx + c,这里a = 1,b=-4,c = - 21 a^2-4a - 21=(a - 7)(a + 3)。

人教版数学八年级上册 整式的乘法与因式分解易错题(Word版 含答案)

人教版数学八年级上册 整式的乘法与因式分解易错题(Word版 含答案)

人教版数学八年级上册 整式的乘法与因式分解易错题(Word 版 含答案)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.(2017重庆市兼善中学八年级上学期联考)在日常生活中如取款、上网等都需要密码.有一种用“因式分解法”产生的密码方便记忆,如:对于多项式44x y -,因式分解的结果是()()()22x y x y x y -++,若取9x =, 9y =时,则各个因式的值为()0x y -=, ()18x y +=, ()22162x y +=,于是就可以把“018162”作为一个六位数的密码.对于多项式32x xy -,取20x, 10y =时,用上述方法产生的密码不可能...是( ) A .201030B .201010C .301020D .203010【答案】B【解析】【分析】【详解】解:x 3-xy 2=x (x 2-y 2)=x (x+y )(x-y ),当x=20,y=10时,x=20,x+y=30,x-y=10,组成密码的数字应包括20,30,10,所以组成的密码不可能是201010.故选B .2.已知20192019a x =+,20192020b x =+,20192021c x =+,则222a b c ab ac bc ++---的值为( )A .0B .1C .2D .3【答案】D【解析】【分析】根据20192019a x =+,20192020b x =+,20192021c x =+分别求出a-b 、a-c 、b-c 的值,然后利用完全平方公式将题目中的式子变形,即可完成.【详解】∵20192019a x =+,20192020b x =+,20192021c x =+, 20192019201920201a b x x -=+--=-20192019201920212a c x x -=+--=-20192020201920211b c x x -=+--=-∴222a b c ab ac bc ++---2221(222222)2a b c ab ac bc =++---2222221(222)2a ab b a ac c b bc c =-++-++-+ 222111()()()222a b a c b c =-+-+- 222111(1)(2)(1)222=⨯-+⨯-+⨯- 11222=++ 3=故选D【点睛】本题考查完全平方公式的应用,熟练掌握完全平方公式是解题关键.3.若()(1)x m x +-的计算结果中不含x 的一次项,则m 的值是( )A .1B .-1C .2D .-2.【答案】A【解析】【分析】根据多项式相乘展开可计算出结果.【详解】 ()()1x m x +-=x 2+(m-1)x-m ,而计算结果不含x 项,则m-1=0,得m=1.【点睛】本题考查多项式相乘展开系数问题.4.下列计算正确的是( )A .3x 2 ·4x 2 =12x 2B .(x -1)(x —1)=x 2—1C .(x 5)2 =x 7D .x 4 ÷x =x 3【答案】D【解析】试题分析:根据单项式乘以单项式的法则,可知3x 2 ·4x 2 =12x 4,故A 不正确; 根据乘法公式(完全平方公式)可知(x -1)(x —1)=x 2—2x+1,故B 不正确; 根据幂的乘方,底数不变,指数相乘,可得(x 5)2 =x 10,故C 不正确;根据同底数幂的相除,可知x 4 ÷x =x 3,故D 正确. 故选:D.5.下列运算正确的是A .532b b b ÷=B .527()b b =C .248·b b b =D .2·22a a b a ab -=+()【答案】A【解析】选项A , 532b b b ÷=,正确;选项B , ()25b =10b ,错误;选项C , 24·b b =6b ,错误;选项D , 2·22a a b a ab -=-,错误.故选A.6.如图将4个长、宽分别均为a ,b 的长方形,摆成了一个大的正方形,利用面积的不同表示方法写出一个代数恒等式是( )A .a 2+2ab+b 2=(a+b )2B .a 2﹣2ab+b 2=(a ﹣b )2C .4ab=(a+b )2﹣(a ﹣b )2D .(a+b )(a ﹣b )=a 2﹣b 2【答案】C【解析】【分析】根据图形的组成以及正方形和长方形的面积公式,知:大正方形的面积﹣小正方形的面积=4个矩形的面积.【详解】∵大正方形的面积﹣小正方形的面积=4个矩形的面积,∴(a+b )2﹣(a ﹣b )2=4ab ,即4ab=(a+b )2﹣(a ﹣b )2.故选C .7.下列从左到右的变形,是因式分解的是( )A .()()23x 3x 9x -+=-B .()()()()y 1y 33y y 1+-=-+C .()24yz 2y z z 2y 2z zy z -+=-+ D .228x 8x 22(2x 1)-+-=-- 【答案】D【解析】【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【详解】根据因式分解的定义得:从左边到右边的变形,是因式分解的是228x 8x 22(2x 1)-+-=--.其他不是因式分解:A,C 右边不是积的形式,B 左边不是多项式.【点睛】本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.8.下列等式由左边向右边的变形中,属于因式分解的是 ( )A .x 2+5x -1=x(x+5)-1B .x 2-4+3x=(x+2)(x -2)+3xC .(x+2)(x -2)=x 2-4D .x 2-9=(x+3)(x -3)【答案】D【解析】【分析】根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,判断求解.【详解】解:A 、右边不是积的形式,故A 错误;B 、右边不是积的形式,故B 错误;C 、是整式的乘法,故C 错误;D 、x 2-9=(x+3)(x -3),属于因式分解.故选D .【点睛】此题主要考查因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.9.将多项式241x +加上一个单项式后,使它能成为另一个整式的完全平方,下列添加单项式错误的是( )A .4xB .4x -4C .4x 4D .4x -【答案】B【解析】【分析】完全平方公式:()222=2a b a ab b +++,此题为开放性题目.【详解】设这个单项式为Q ,如果这里首末两项是2x 和1这两个数的平方,那么中间一项为加上或减去2x 和1积的2倍,故Q=±4x ;如果这里首末两项是Q 和1,则乘积项是22422x x =⋅,所以Q=44x ;如果该式只有24x 项,它也是完全平方式,所以Q=−1;如果加上单项式44x -,它不是完全平方式故选B.此题考查完全平方式,解题关键在于掌握完全平方式的基本形式.10.下列运算中正确的是( )A .236a a a ⋅=B .()325a a =C .226235a a a +=D .()()22224a b a b a b +--=【答案】D【解析】【分析】根据同底数幂的乘法,可判断A 和B ,根据合并同类项,可判断C ,根据平方差公式,可判断D .【详解】A. 底数不变指数相加,故A 错误;B. 底数不变指数相乘,故B 错误;C. 系数相加字母部分不变,故C 错误;D. 两数和乘以这两个数的差等于这两个数的平方差,故D 正确;故选D.【点睛】本题考查了平方差公式、合并同类项以及同底数幂的乘法,解题的关键是熟练的掌握平方差公式、合并同类项以及同底数幂的乘法的运算.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.已知222246140x y z x y z ++-+-+=, 则()2002x y z --=_______.【答案】0【解析】【分析】利用完全平方式的特点把原条件变形为222(1)(2)(3)0x y z -+++-=,再利用几个非负数之和为0,则每一个非负数都为0的结论可得答案.【详解】解:因为:222246140x y z x y z ++-+-+=所以222(21)(44)(69)0x x y y z z -+++++-+=所以222(1)(2)(3)0x y z -+++-= 所以102030x y z -=⎧⎪+=⎨⎪-=⎩ ,解得123x y z =⎧⎪=-⎨⎪=⎩所以()2002x y z --=[]221(2)3(33)0---=-=故答案为0.【点睛】本题考查完全平方式的特点,非负数之和为0的性质,掌握该知识点是关键.12.已知25,23a b==,求2a b +的值为________.【答案】15.【解析】【分析】逆用同底数幂的乘法运算法则将原式变形得出答案.【详解】解:∵2a =5,2b =3,∴2a+b =2a ×2b =5×3=15.故答案为:15.【点睛】此题主要考查了同底数幂的乘法运算,正确将原式变形是解题关键.13.已知3a b +=,2ab =-, (1)则22a b +=____;(2)则a b -=___.【答案】13;【解析】试题解析:将a+b=-3两边平方得:(a+b )2=a 2+b 2+2ab=9,把ab=-2代入得:a 2+b 2-4=9,即a 2+b 2=13;(a-b )2=a 2+b 2-2ab=13+4=17,即.14.若m+1m =3,则m 2+21m =_____. 【答案】7【解析】分析:把已知等式两边平方,利用完全平方公式化简,即可求出答案.详解:把m+1m =3两边平方得:(m+1m )2=m 2+21m +2=9, 则m 2+21m=7, 故答案为:7点睛:此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.15.分解因式2242xy xy x ++=___________【答案】22(1)x y +【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】原式=2x(y2+2y+1)=2x(y+1)2,故答案为2x(y+1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.分解因式6xy2-9x2y-y3 = _____________.【答案】-y(3x-y)2【解析】【分析】先提公因式-y,然后再利用完全平方公式进行分解即可得.【详解】6xy2-9x2y-y3=-y(9x2-6xy+y2)=-y(3x-y)2,故答案为:-y(3x-y)2.【点睛】本题考查了利用提公因式法与公式法分解因式,熟练掌握因式分解的方法及步骤是解题的关键.因式分解的一般步骤:一提(公因式),二套(套用公式),注意一定要分解到不能再分解为止.17.若(x+p)与(x+5)的乘积中不含x的一次项,则p=_____.【答案】-5【解析】【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn计算,再根据乘积中不含x的一次项,得出它的系数为0,即可求出p的值.【详解】解:(x+p)(x+5)=x2+5x+px+5p=x2+(5+p)x+5p,∵乘积中不含x的一次项,∴5+p=0,解得p=﹣5,故答案为:﹣5.18.长、宽分别为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为_____.【答案】70.【分析】由周长和面积可分别求得a+b 和ab 的值,再利用因式分解把所求代数式可化为ab (a+b ),代入可求得答案【详解】∵长、宽分别为a 、b 的矩形,它的周长为14,面积为10,∴a+b=142=7,ab=10, ∴a 2b+ab 2=ab (a+b )=10×7=70,故答案为:70.【点睛】本题主要考查因式分解的应用,把所求代数式化为ab (a+b )是解题的关键.19.若21x x +=,则433331x x x +++的值为_____.【答案】4【解析】【分析】把所求多项式进行变形,代入已知条件,即可得出答案.【详解】∵21x x +=,∴()43222233313313313()1314x x x xx x x x x x x +++=+++=++=++=+=; 故答案为:4.【点睛】本题考查了因式分解的应用;把所求多项式进行灵活变形是解题的关键.20.若m+n=3,则2m 2+4mn+2n 2-6的值为________.【答案】12【解析】原式=2(m 2+2mn +n 2)-6,=2(m +n )2-6,=2×9-6,=12.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级上数学专题之因式分解难题易错题 一、 非选择题
1.分解因式
(1)12a ²b-24ab ²+6ab (2)-5a ³+10a ²-15a (3)-a ²x m+2+abx m+1-acx m -ax
m+3
(4)a ²+2ab+b ²-c ² (5)(a+2b+c)3-(a+b)3-(b+c)3
(6)x ²-9y ²+6y-1 (7)3x ²+5xy-2y ²+x+9y-4 (8)1-m+1
4
m ²
(9)4a ²-12ab+9b ²
(10)16m 4+24m ²n+9n ²
(11)4a ²b ²+4ab+1
(12)x 6-12x 3+36
(13)(a -b )²-10(a-b)+25
(14)a ²b ²+16ab+39
(15) 15x 2n +7x n y n+1-4y 2n+2
(16)(x ²+3x)²-22(x ²+3x)+72
2.解答题
(1)x+1x =2,则x 3+1
x
3 =__________。

(2)计算123×987
1368+268×987
1368+456×987
1368+521×987
1368
(3)证明:对于任意自然数n,3n+2-2n+2+3n-2n一定是10的倍数。

(4)化简:1+x+x(1+x)+x(1+x)²+…+x(1+x)1995,且当x=0时,求原式的值。

(5)若a、b、c为△ABC的三边,且满足a2+b2+c2-ab-bc-ca=0。

探索△ABC的形状,并说明理由。

(6)试说明对于任意自然数n,(n+7)²-(n-5)²都能被24整除。

(7)证明:(x²-4)(x²-10x+21)+100的值一定是非负数。

(8)a²+(a+1)²+(a²+a)²分解因式,并用分解结果计算62+72+422。

(9)矩形的周长是28cm,两边x,y使x3+x2y+xy2-y3=0,求矩形的面积。

(10)x+y=6,xy=-1,求x3+y3的值。

(11)分解因式:a²-1+b²-2ab= .
(12)若x²+2(m-3)x+16是完全平方式,则m的值等于_____。

(13)x2+6x+( )=(x+3)2,x2+( )+9=(x-3)2。

(14)若9x2+k+y2是完全平方式,则k=_______。

(15)若x+y=4,x2+y2=6则xy=___。

(1)X2-11x+24>0,求x的取值范围。

(2)长方形的长、宽为x、y,周长为16cm,且满足x-y-x2+2xy-y2+2=0,求长方形的面积。

(3)已知:a、b、c为互不相等的数,且满足(a-c)2=4(b-a)(c-b),求证:a-b=b-c
(4)若x3+5x2+7x+a有一因式x+1。

求a,并将原式因式分解。

(20)在多项式x+1,x+2,x+3,x2+2x-3,x2+2x-1,x2+2x+3,哪些是多项式(x2+2x)4-10(x2+2x)2+9的因式?
(21)已知多项式2x3-x2-13x+k有一个因式,求k的值,并把原式分解因式。

(22)在△ABC中,三边a、b、c满足a2-16b2-c2+6ab+10bc=0,求证:a+c=2b
二.选择题
1. 代数式a 3b 2
-12 a 2b 3, 12 a 3b 4+a 4b 3,a 4b 2-a 2b 4的公因式是( )
A 、a 3b 2
B 、a 2b 2
C 、a 2b 3
D 、a 3b 3
2.把16-x 4
分解因式,其结果是( )
A 、(2-x)4
B 、(4+x 2
)( 4-x 2
) C 、(4+x 2
)(2+x)(2-x) D 、(2+x)3
(2-x) 3.若9a 2+6(k -3)a +1是完全平方式,则 k 的值是( ) A 、±4 B 、±2 C 、3 D 、4或2 4.把x 2
-y 2-2y -1分解因式结果正确的是( )。

A .(x +y +1)(x -y -1) B .(x +y -1)(x -y -1) C .(x +y -1)(x +y +1) D .(x -y +1)(x +y +1) 5.分解因式:x 2
-2xy+y 2
+x-y 的结果是( ) A(x-y)(x-y+1) B(x-y)x-y-1) C .(x+y)(x-y+1)
D(x+y)(x-y-1)
6.若mx 2
+kx+9=(2x-3)2
,则m ,k 的值分别是( )
A 、m=—2,k=6,
B 、m=2,k=12,
C 、m=—4,k=—12、
D m=4,k=12
7.下列名式:x 2
-y 2
,-x 2
+y 2
,-x 2
-y 2
,(-x)2
+(-y)2
,x 4
-y 4
中能用平方差公式分解因式的有( ) A 、1个,B 、2个,C 、3个,D 、4个。

相关文档
最新文档